MXene-Based Composite Materials:Synthesis and Photoelectrocatalysis for Ammonia Synthesis

Tao Sun, Tiantian Sun, Ming Lu, Wei Sun, Chunbo Liu

Prog Chem ›› 2024, Vol. 36 ›› Issue (6) : 904-913.

PDF(13801 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(13801 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (6) : 904-913. DOI: 10.7536/PC230914
Review

MXene-Based Composite Materials:Synthesis and Photoelectrocatalysis for Ammonia Synthesis

Author information +
History +

Abstract

In recent years,the problems of environmental pollution and energy scarcity have affected human life,and green and low-carbon photocatalytic and electrocatalytic technologies have attracted widespread attention.Semiconductor-based photocatalytic and electrocatalytic technologies are very promising for ammonia synthesis applications.Since single semiconductors suffer from the disadvantages of low carrier separation efficiency and easy compounding,it is crucial to find co-catalysts that can enhance the performance of nitrogen fixation catalysts.Two-dimensional transition metal carbide/nitride/carbon nitride MXene,which has a promising application in photo-and electrocatalytic ammonia synthesis,is ideal for photo-and electrocatalytic nitrogen fixation owing to their good hydrophilicity,large specific surface area,excellent electrical conductivity and abundance of active sites for efficient catalysis of N2reduction.This paper mainly reviews the preparation of MXene and its composites and their progress in the field of photoelectrocatalytic ammonia synthesis.Firstly,the structural features of MXene and the preparation strategies of MXene and its complexes are briefly summarised.Secondly,the performance study of MXene-based composite catalysts for photo-and electrocatalytic ammonia synthesis is highlighted.Finally,the development direction of MXene-based composites is discussed and prospected.

Contents

1 Introduction

2 Structural features of MXene

3 Synthesis of MXene

3.1 Synthesis of pristine MXene

3.2 Synthesis of MXene-based composite structures

4 MXene for photoelectrocatalytic ammonia synthesis

4.1 Application of MXene-based systems in photocatalytic nitrogen fixation

4.2 Application of MXene-based systems in electrocatalytic nitrogen fixation

5 Conclusion and outlook

Key words

MXene / photocatalytic / electrocatalytic / ammonia synthesis

Cite this article

Download Citations
Tao Sun , Tiantian Sun , Ming Lu , et al . MXene-Based Composite Materials:Synthesis and Photoelectrocatalysis for Ammonia Synthesis[J]. Progress in Chemistry. 2024, 36(6): 904-913 https://doi.org/10.7536/PC230914

References

[1]
Lan R, Irvine J T S, Tao S. Sci. Rep., 2013, 3(1): 1145.
[2]
Schrauzer G. N., Guth T. D. J. Am. Chem. Soc., 1977, 99(22): 7189.
[3]
Kok S H W, Lee J L, Tan L L, Ong W J, Chai S P. ACS Mater. Lett., 2022, 4(2): 212.
[4]
Zhong Q, Li Y, Zhang G. Chem. Eng. J., 2021, 409: 128099.
[5]
Lu Q, Yu Y, Ma Q, Chen B, Zhang H. Adv. Mater., 2016, 28(10): 1917.
[6]
Feng A, Yu Y, Wang Y, Jiang F, Yu Y, Mi L, Song L. Materials & Design, 2017, 114: 161.
[7]
Geng D C, Zhao X X, Li L J, Song P, Tian B B, Liu W, Chen J Y, Shi D, Lin M, Zhou W, Loh K P. 2D Mater., 2016, 4(1): 011012.
[8]
Soundiraraju B, George B K. ACS Nano, 2017, 11(9): 8892.
[9]
Syamsai R, Grace A N. J. Alloys Compd., 2019, 792: 1230.
[10]
Zheng X Z, Yuan M W, Zhao Y L, Li Z H, Shi K F, Li H F, Sun G B. Adv. Energy Mater., 2023, 13(20): 2204019.
[11]
Er D Q, Li J W, Naguib M, Gogotsi Y, Shenoy V B. ACS Appl. Mater. Interfaces, 2014, 6(14): 11173.
[12]
Lukatskaya M R, Mashtalir O, Ren C E, Dall’Agnese Y, Rozier P, Taberna P L, Naguib M, Simon P, Barsoum M W, Gogotsi Y. Science, 2013, 341(6153): 1502.
[13]
Yun T, Kim H, Iqbal A, Cho Y S, Lee G S, Kim M, Kim S J, Kim D, Gogotsi Y, Kim S O, Koo C M. Adv. Mater., 2020, 32(9): 1906769.
[14]
Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y. Adv. Mater., 2014, 26(7): 992.
[15]
Kumar J A, Prakash P, Krithiga T, Amarnath D J, Premkumar J, Rajamohan N, Vasseghian Y, Saravanan P, Rajasimman M. Chemosphere, 2022, 286: 131607.
[16]
Naguib M, Barsoum M W, Gogotsi Y. Adv. Mater., 2021, 33(39): 2170303.
[17]
Liu P, Xiao P, Lu M, Wang H, Jin N, Lin Z. Chin. Chem. Lett., 2023, 34(4): 107426.
[18]
Lu M, Han W, Li H, Shi W, Wang J, Zhang B, Zhou Y, Li H, Zhang W, Zheng W. Energy Storage Mater., 2019, 16: 163.
[19]
Li N, Huo J, Zhang Y, Ye B, Chen X, Li X, Xu S, He J, Chen X, Tang Y, Zhu Y, Ling K, Zhu R. Sep. Purif. Technol., 2024, 330: 125325.
[20]
Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum M W. Adv. Mater., 2011, 23(37): 4248.
[21]
Ghidiu M, Lukatskaya M R, Zhao M Q, Gogotsi Y, Barsoum M W. Nature, 2014, 516(7529): 78.
[22]
Zuo X X, Chang K, Zhao J, Xie Z Z, Tang H W, Li B, Chang Z R. J. Mater. Chem. A, 2016, 4(1): 51.
[23]
Urbankowski P, Anasori B, Makaryan T, Er D, Kota S, Walsh P L, Zhao M, Shenoy V B, Barsoum M W, Gogotsi Y. Nanoscale, 2016, 8(22): 11385.
[24]
Xu C, Wang L B, Liu Z B, Chen L, Guo J K, Kang N, Ma X L, Cheng H M, Ren W C. Nat. Mater., 2015, 14(11): 1135.
[25]
Wang H M, Zhao R, Qin J Q, Hu H X, Fan X W, Cao X, Wang D. ACS Appl. Mater. Interfaces, 2019, 11(47): 44249.
[26]
Chen X, Li Y, Wu Z, Xu X, Zhu W, Gao X. J. Colloid Interface Sci., 2021, 602: 553.
[27]
Gao W, Li X, Luo S, Luo Z, Zhang X, Huang R, Luo M. J. Colloid Interface Sci., 2021, 585: 20.
[28]
Qin J, Hu X, Li X, Yin Z, Liu B, Lam K. Nano Energy, 2019, 61: 27.
[29]
Zhang M, Zhang Y, Ye L, Yu Z, Liu R, Qiao Y, Sun L, Cui J, Lu X. Appl. Catal., B, 2023, 330: 122635.
[30]
He L D, Wu J, Zhu Y Z, Wang Y M, Mei Y. Ind. Eng. Chem. Res., 2021, 60(15): 5443.
[31]
Zhao Q, Tan S S, Li J, Li J M, Chu X Y, Zhao C M, Zhang J K, Wang L, Xu S C, Lu M. ACS Appl. Energy Mater., 2022, 5(9): 11756.
[32]
Tan S, Zhao Q, Geng Y, Yin J, Zhou C, Zhang P, Chu X, Xu S, Lu M, Wang L, Zhang J, Li H. J. Alloys Compd., 2022, 918: 165778.
[33]
Zhang W, Ma Y, Zhu X, Wang L, Ye J, Hou X, Liu S, Lu M, Tian H, Hu X. J. Alloys Compd., 2022, 913: 165217.
[34]
Hao C Y, Liao Y, Wu Y, An Y J, Lin J N, Gu Z F, Jiang M H, Hu S, Wang X T. J. Phys. Chem. Solids, 2020, 136: 109141.
[35]
Fang Y, Cao Y, Tan B, Chen Q. ACS Appl. Mater. Interfaces, 2021, 13(36): 42624.
[36]
Chang B, Guo Y, Liu H, Li L, Yang B. J. Mater. Chem. A, 2022, 10(6): 3134.
[37]
Li Q, Xu J, Wang S, Yu K, Zhu W, Hou T, Zhang L, Zhang W, Liang S, Wang L. Transactions of Nonferrous Metals Society of China, 2022, 32(1): 233.
[38]
Sun C, Chen Z Q, Cui J, Li K, Qu H X, Xie H F, Zhong Q. Catal. Sci. Technol., 2021, 11(3): 1027.
[39]
Qin J, Liu B, Lam K-H, Song S, Li X, Hu X. ACS Sustainable Chem. Eng., 2020, 8(48): 17791.
[40]
Sun B T, Qiu P Y, Liang Z Q, Xue Y J, Zhang X L, Yang L, Cui H Z, Tian J. Chem. Eng. J., 2021, 406: 127177.
[41]
Liu W, Sun M, Ding Z, Gao B, Ding W. J. Alloys Compd., 2021, 877: 160223.
[42]
Shin H H, Yang W, Lim D K. Carbon, 2023, 214: 118359.
[43]
Zheng X, Yuan M, Guo D, Wen C, Li X, Huang X, Li H, Sun G. ACS Nano, 2022, 16(3): 4487.
[44]
Peng W, Luo M, Xu X, Jiang K, Peng M, Chen D, Chan T, Tan Y. Adv. Energy Mater., 2020, 10(25): 2001364.
[45]
Du C F, Yang L, Tang K, Fang W, Zhao X, Liang Q, Liu X, Yu H, Qi W, Yan Q. Mater. Chem. Front., 2021, 5(5): 2338.
[46]
Chen G, Ding M, Zhang K, Shen Z, Wang Y, Ma J, Wang A, Li Y, Xu H. ChemSusChem, 2022, 15(3): e202102352.
[47]
Luo H, Wang X, Wan C, Xie L, Song M, Qian P. Nanomaterials, 2022, 12(7): 1081.
[48]
Chen X, Zhang S, Qian X, Liang Z, Xue Y, Zhang X, Tian J, Han Y, Shao M. Appl. Catal., B, 2022, 310: 121277.
[49]
Liu A M, Liang X Y, Yang Q Y, Ren X F, Gao M F, Yang Y N, Ma T L. ChemPlusChem, 2021, 86(1): 166.
[50]
Li X C, Luo Y J, Li Q Q, Guo Y L, Chu K. J. Mater. Chem. A, 2021, 9(29): 15955.
[51]
Liu A, Liang X, Zhu H, Ren X, Gao L, Gao M, Yang Y, Li G, Ma T. ChemCatChem, 2022, 14(7): e202101.
[52]
Zeng Y S, Du X C, Li Y Y, Guo Y T, Xie Y M, Huang J W, Rao G F, Lei T Y, Gong C H, Wang X F, Sun B. J. Alloys Compd., 2021, 869: 159335.
[53]
Jin Z, Liu C, Liu Z, Han J, Fang Y, Han Y, Niu Y, Wu Y, Sun C, Xu Y. Adv. Energy Mater., 2020, 10(22): 2000797.
[54]
Xia J, Yang S Z, Wang B, Wu P, Popovs I, Li H, Irle S, Dai S, Zhu H. Nano Energy, 2020, 72: 104681.
[55]
Chu K, Luo Y, Shen P, Li X, Li Q, Guo Y. Adv. Energy Mater., 2022, 12(3): 2103022.
[56]
Shi Y, Liu Y. Appl. Catal., B, 2021, 297: 120482.
[57]
Luo Y, Shen P, Li X, Guo Y, Chu K. Nano Res., 2022, 15(5): 3991.
[58]
Zhang J, Yang L, Wang H, Zhu G, Wen H, Feng H, Sun X, Guan X, Wen J, Yao Y. Inorg. Chem., 2019, 58(9): 5414.
[59]
Chu K, Li X, Li Q, Guo Y, Zhang H. Small, 2021, 17(40): 2102363.
[60]
Ba K, Pu D D, Yang X Y, Ye T, Chen J H, Wang X R, Xiao T S, Duan T, Sun Y Y, Ge B H, Zhang P, Liang Z Q, Sun Z Z. Appl. Catal. B Environ., 2022, 317: 121755.
[61]
Xu X S, Sun B T, Liang Z Q, Cui H Z, Tian J. ACS Appl. Mater. Interfaces, 2020, 12(23): 26060.
[62]
Johnson D, Hunter B, Christie J, King C, Kelley E, Djire A. Sci. Rep., 2022, 12: 657.
[63]
Cao Y, Tan Y, Zhu X T, Li H L, Zhao Y Q, Xu Y. Phys. E Low Dimension. Syst. Nanostruct., 2021, 134: 114875.

Funding

Science and Technology Innovation Center of Jilin Province for Targeted Identification and Photocatalytic Degradation Materials(YDZJ202102CXJD049)
PDF(13801 KB)

Accesses

Citation

Detail

Sections
Recommended

/