The Space Confinement Effect of Catalytic Materials and Its Application in Low Temperature Denitration

Wei Zhang, Qiao Wu, Yehao Fu, Yaocheng Liang, Min Ruan, Yanshan Yin, Shan Cheng

Prog Chem ›› 2024, Vol. 36 ›› Issue (6) : 928-938.

PDF(12539 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(12539 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (6) : 928-938. DOI: 10.7536/PC231005
Review

The Space Confinement Effect of Catalytic Materials and Its Application in Low Temperature Denitration

Author information +
History +

Abstract

The spatial confinement effect of porous materials can change the surface electron distribution and electron transport performance,realize the local reaction in the micro-nano pore domain,effectively prevent the external environment from affecting the active substances in the confined space,and inhibit the agglomeration of the active center,which is an effective way to strengthen the denitrification performance of the catalyst.This paper focuses on the changes in surface energy,periodic boundary conditions and electronic energy levels of different catalytic materials,and discusses the formation mechanism of the spatial confinement effect.The effects of confinement effect on the dispersion of active species,redox ability and molecular adsorption strength in the reaction process and the regulation strategies of size effect,encapsulation effect and molecular sieve effect in confinement effect were described.The strengthening effects of confined catalysts on NH3adsorption performance,reaction selectivity,anti-toxicity and denitrification activity in the denitrification process were summarized.Finally,the development prospect of confined denitrification catalysts was prospected.

Contents

1 introduction

2 The influence of space confinement effect on catalytic reaction

2.1 Inhibiting the aggregation of active species

2.2 Promoting the migration of interface electrons

2.3 Enhancing the adsorption of reaction molecules

3 Spatial confinement effect regulation strategy

3.1 Control of confinement size effect

3.2 Control of confinement encapsulation effect

3.3 Control of confined molecular sieve effect

4 The application of spatial confinement effect in low-temperature denitrification

4.1 Strengthen the adsorption performance of NH3

4.2 Enhance the selectivity of the denitration reaction

4.3 Enhance the anti-toxicity of the catalyst

5 Conclusion and outlook

Key words

porous materials / confinement effect / catalytic mechanism / regulation strategy / low-temperature denitration

Cite this article

Download Citations
Wei Zhang , Qiao Wu , Yehao Fu , et al . The Space Confinement Effect of Catalytic Materials and Its Application in Low Temperature Denitration[J]. Progress in Chemistry. 2024, 36(6): 928-938 https://doi.org/10.7536/PC231005

References

[1]
Grommet A B, Feller M, Klajn R. Nat. Nanotechnol., 2020, 15(4): 256.
[2]
Zhou Z Q, Yu F, Ma J. Environ. Chem. Lett., 2022, 20(1): 563.
[3]
Boles M A, Ling D S, Hyeon T, Talapin D V. Nat. Mater., 2016, 15(2): 141.
[4]
He L B, Zhang L, Tang L P, Sun J, Zhang Q B, Sun L T. Mater. Today Nano, 2018, 1: 8.
[5]
Wang L G, Liu H, Zhuang J H, Wang D S. Small Sci., 2022, 2(11): 2200036.
[6]
Ou C H, Wang D W. Adv. Civ. Eng., 2021(3): 1.
[7]
Wu X Q, Han R, Liu Q L, Su Y, Lu S C, Yang L Z, Song C F, Ji N, Ma D G, Lu X B. Catal. Sci. Technol., 2021, 11(16): 5374.
[8]
Annamalai J, Murugan P, Ganapathy D, Nallaswamy D, Atchudan R, Arya S, Khosla A, Barathi S, Sundramoorthy A K. Chemosphere, 2022, 298: 134184.
[9]
Xiao J P, Pan X L, Guo S J, Ren P J, Bao X H. J. Am. Chem. Soc., 2015, 137(1): 477.
[10]
Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H. Science, 2016, 353(6298): aac9439.
[11]
Sastre G, Corma A. J. Mol. Catal. A Chem., 2009, 305(1/2): 3.
[12]
Jiang Z Z, Zhou W D, Hu C, Luo X F, Zeng W, Gong X G, Yang Y, Yu T, Lei W, Yuan C L. Adv. Mater., 2023, 35: 2300505.
[13]
Yan C, Wang T. Chem. Soc. Rev., 2017, 46(5): 1483.
[14]
Miners S A, Rance G A, Khlobystov A N. Chem. Soc. Rev., 2016, 45(17): 4727.
[15]
Deng D H, Novoselov K S, Fu Q, Zheng N F, Tian Z Q, Bao X H. Nat. Nanotechnol., 2016, 11(3): 218.
[16]
Li H B, Xiao J P, Fu Q, Bao X H. PNAS, 2017, 114(23): 5930.
[17]
Huang X S, Dong F, Zhang G D, Tang Z C. J. Catal., 2023, 420: 134.
[18]
Wu S M, Yang X Y, Janiak C. Angew. Chem. Int. Ed., 2019, 58(36): 12340.
[19]
Huo J J, Lu L, Shen Z Y, Liu Y, Guo J J, Liu Q B, Wang Y, Liu H, Wu M H, Wang G X. J. Mater. Chem. A, 2020, 8(32): 16271.
[20]
A B, C S, Y Z, Xia J, T G. Appl. Surf. Sci., 2020, 541:148460.
[21]
Cao L M, Zhang J, Zhang X F, He C T. Chem. Sci., 2022, 13(6): 1569.
[22]
Yang M, Ling Q, Yang H X, Li C S, Zhang A M. Catal. Commun., 2014, 46: 238.
[23]
Su J N, Zhuang L Z, Zhang S S, Liu Q J, Zhang L Z, Hu G Z. Chin. Chemical Lett., 2021, 32(10): 2947.
[24]
Zhang Z P, Li R M, Wang M J, Li Y S, Tong Y M, Yang P P, Zhu Y J. Appl. Catal. B Environ., 2021, 282: 119542.
[25]
Mu Y B, Huang X S, Tang Z C, Wang Q C. Chem. Eng. J., 2023, 454: 140181.
[26]
Chen X B, Wang P L, Fang P, Wang H Q, Cen C P, Zeng W H, Wu Z B. Environ. Sci.: Nano, 2017, 4(2): 437.
[27]
Yao G S, Wu L P, Lv T, Li J, Huang Y Q, Dong K J, Li X J. Open Chem., 2018, 16(1): 1.
[28]
Gao R J, Wang J, Huang Z F, Zhang R R, Wang W, Pan L, Zhang J F, Zhu W K, Zhang X W, Shi C X, Lim J, Zou J J. Nat. Energy, 2021, 6(6): 614.
[29]
Zhan W T, Wang Y J, Chen J M, Chen Z J, Li Y W. Appl. Catal. B Environ., 2022, 313: 121469.
[30]
Nørskov J K, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin J R, Bligaard T, Jónsson H. J. Phys. Chem. B, 2004, 108(46): 17886.
[31]
Zhou Y N, Chen W, Cui P, Zeng J, Lin Z N, Kaxiras E, Zhang Z Y. Nano Lett., 2016, 16(10): 6058.
[32]
Hawash Z, Ono L K, Raga S R, Lee M V, Qi Y B. Chem. Mater., 2022, 34(8): 3882.
[33]
Dong T, Liu W M, Ma M D, Peng H G, Yang S Y, Tao J X, He C, Wang L, Wu P, An T C. Chem. Eng. J., 2020, 393: 124717.
[34]
Xu M Y, Lai C, Liu X G, Li B S, Zhang M M, Xu F H, Liu S Y, Li L, Qin L, Yi H, Fu Y K. J. Mater. Chem. A, 2021, 9(43): 24148.
[35]
Baig N, Kammakakam I, Falath W. Mater. Adv., 2021, 2(6): 1821.
[36]
Zhang Y Q, Yang J, Ge R Y, Zhang J J, Cairney J M, Li Y, Zhu M Y, Li S A, Li W X. Coord. Chem. Rev., 2022, 461: 214493.
[37]
Wang H W, Gu X K, Zheng S X, Pan H B, Zhu J F, Chen S, Cao L N, Li W X, Lu J L. Sci. Adv., 2019, 5(1): eaat6413.
[38]
Zhang L, Zhang L, Dong X, Zhang S, Zhao Y, Cen Q H, Zhang K M. Microporous Mesoporous Mater., 2021, 311: 110667.
[39]
Zaarour M, Dong B, Naydenova I, Retoux R, Mintova S. Microporous Mesoporous Mater., 2014, 189: 11.
[40]
Ekpe, Ikenna. Int. Res. J. Environmental Sci., 2017, 6(10): 45.
[41]
Cao F C, Ouyang Y P, Huang Z K, Gong Y T, Hu Y B, He Z. Int. J. Mod. Phys. B, 2022, 36(9n11): 2240033.
[42]
Jangi I, Vaezi M J. J. Aust. Ceram. Soc., 2023: 1.
[43]
Derbe T, Temesgen S, Bitew M. Adv. Mater. Sci. Eng., 2021, 2021: 6637898.
[44]
Liang J, Mi Y Y, Song G, Peng H G, Li Y L, Yan R, Liu W M, Wang Z, Wu P, Liu F D. J. Hazard. Mater., 2020, 398: 122986.
[45]
Łuczak J, Kroczewska M, Baluk M, Sowik J, Mazierski P, Zaleska-Medynska A. Adv. Colloid Interface Sci., 2023, 314: 102864.
[46]
Yang X Y, Yuan S, Zou L F, Drake H, Zhang Y M, Qin J S, Alsalme A, Zhou H C. Angew. Chem. Int. Ed., 2018, 57(15): 3927.
[47]
Xu J, Liu J, Li Z, Wang X B, Xu Y F, Chen S S, Wang Z. New J. Chem., 2019, 43(10): 4092.
[48]
Dai E N, Wang X K, Wang Y T, Liu Z N, Sun D F. Angew. Chem. Int. Ed, 2020, 59: 22372.
[49]
Shen K, Zhang M D, Zheng H G. CrystEngComm, 2015, 17(5): 981.
[50]
Wang F L, Guo H L, Chai Y M, Li Y P, Liu C G. Microporous Mesoporous Mater., 2013, 173: 181.
[51]
Huang Q, Yang Y, Qian J J. Coord. Chem. Rev., 2023, 484: 215101.
[52]
Wang Z K, Guo X, Dou W, Wang K B, Mao F F, Wu H, Sun C H. J. Solid State Chem., 2020, 289: 121452.
[53]
Sun Y X, Sun W Y. Chin. Chemical Lett., 2014, 25(6): 823.
[54]
Damma D, Pappas D K, Boningari T, Smirniotis P G. Appl. Catal. B Environ., 2021, 287: 119939.
[55]
López Zavala M Á, Lozano Morales S A, Ávila-Santos M. Heliyon, 2017, 3(11): e00456.
[56]
Abbas W A, Abdullah I H, Ali B A, Ahmed N, Mohamed A M, Rezk M Y, Ismail N, Mohamed M A, Allam N K. Nanoscale Adv., 2019, 1(8): 2801.
[57]
Chen X B, Cen C P, Tang Z X, Zeng W H, Chen D S, Fang P, Chen Z H. J. Nanomaterials, 2013, 2013(3): 1.
[58]
Cai Q Y, Paulose M, Grimes C A, Varghese O K. J. Mater. Res., 2005, 20(1): 230.
[59]
Chávez-Mejía A C, Zaragoza-Sánchez P I, Magaña-López R, Barrera-Díaz C E, Jiménez-Cisneros B E. J. Mater. Sci. Mater. Electron., 2020, 31(18): 15907.
[60]
Galstyan V, Comini E, Faglia G, Sberveglieri G. Sensors, 2013, 13(11): 14813.
[61]
Zhang L, Han Y. Nanotechnology, 2010, 21(5): 055602.
[62]
He G Y, Zhang J H, Hu Y, Bai Z G, Wei C H. Appl. Catal. B Environ., 2019, 250: 301.
[63]
Gupta N, Gupta S M, Sharma S K. Carbon Lett., 2019, 29(5): 419.
[64]
Rahman G, Najaf Z, Mehmood A, Bilal S, Shah A, Mian S, Ali G. C-J. Carbon Res., 2019, 5(1): 3.
[65]
Sari A H, Khazali A, Parhizgar S S. Int. Nano Lett., 2018, 8(1): 19.
[66]
Sinnott S B, Andrews R. Crit. Rev. Solid State Mater. Sci., 2001, 26(3): 145.
[67]
Scott C D, Arepalli S, Nikolaev P, Smalley R E. Appl. Phys. A, 2001, 72(5): 573.
[68]
José-Yacamán M, Miki-Yoshida M, Rendón L, Santiesteban J G. Appl. Phys. Lett., 1993, 62(6): 657.
[69]
Ding R G, Lu G Q, Yan Z F, Wilson M A. J. Nanosci. Nanotechnol., 2001, 1(1): 7.
[70]
Koziol K, Boskovic B O, Yahya N. Advanced Structured Materials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010: 23.
[71]
Gergeroglu H, Ebeoglugil M F. Carbon Lett., 2022, 32(7): 1729.
[72]
Li M, Li Z W, Lin Q, Cao J X, Liu F, Kawi S. Chem. Eng. J., 2022, 431: 133970.
[73]
Zaarour M, Cazemier J, Ruiz-Martínez J. Catal. Sci. Technol., 2020, 10(24): 8140.
[74]
Ning X, Deng D Z, Fu H Y, Qu X L, Xu Z Y, Zheng S R. Chem. Commun., 2020, 56(51): 6985.
[75]
Wen M, Dong F, Tang Z C, Zhang J Y. Microporous Mesoporous Mater., 2021, 322: 111156.
[76]
Wen M, Dong F, Tang Z C, Zhang J Y. Mol. Catal., 2022, 519: 112149.
[77]
Brachvogel R C, Hampel F, von Delius M. Nat. Commun., 2015, 6: 7129.
[78]
Sheng Z Y, Ma D R, Yu D Q, Xiao X, Huang B J, Yang L, Wang S. Chin. J. Catal., 2018, 39(4): 821.
[79]
Qiao T, Liu Z G, Liu C H, Meng W, Sun H, Lu Y. Appl. Catal. A Gen., 2021, 617: 118128.
[80]
Boutros M, Gálvez M E, Onfroy T, Da Costa P. Microporous Mesoporous Mater., 2014, 183: 1.
[81]
Ye Z P, Zhao L, Nikiforov A, Giraudon J M, Chen Y, Wang J D, Tu X. Adv. Colloid Interface Sci., 2022, 308: 102755.
[82]
Wang H L, Luo S T, Li X H, Liu W, Wu X D, Weng D, Liu S. Catal. Today, 2019, 332: 189.
[83]
Feng A H, Yu Y, Mi L, Cao Y Z, Yu Y, Song L X. Microporous Mesoporous Mater., 2019, 290: 109646.
[84]
Zhang K, Ostraat M L. Catal. Today, 2016, 264: 3.
[85]
Kwok K M, Ong S W D, Chen L W, Zeng H C. ACS Appl. Mater. Interfaces, 2019, 11(16): 14774.
[86]
Sun Y X, Quan K J, Chen J, Li H, Li X, Li Z G, Qiu H D. Chin. Chemical Lett., 2023, 34(9): 108166.
[87]
Fan C, Quan K J, Chen J, Qiu H D. J. Chromatogr. A, 2022, 1661: 462690.
[88]
Tuan D D, Kwon E, Phattarapattamawong S, Thanh B X, Khiem T C, Lisak G, Wang H T, Lin K Y A. J. Environ. Chem. Eng., 2022, 10(2): 106989.
[89]
Pannopard P, Khongpracha P, Warakulwit C, Namuangruk S, Probst M, Limtrakul J. ChemPhysChem, 2012, 13(2): 583.
[90]
Xu G Y, Guo X L, Cheng X X, Yu J, Fang B Z. Nanoscale, 2021, 13(15): 7052.
[91]
Jiang Z P, Wang Q L, Cai Y Z. Catal. Surv. Asia, 2022, 26(3): 161.
[92]
Li Y F, Hou Y Q, Zhang Y Z, Yang Y T, Huang Z G. J. Colloid Interface Sci., 2022, 608: 2224.
[93]
Guo K, Ji J W, Osuga R, Zhu Y X, Sun J F, Tang C J, Kondo J N, Dong L. Appl. Catal. B Environ., 2021, 287: 119982.
[94]
Matsuki Y, Iwamoto M, Mita K, Shigemi K, Matsunaga S, Oiki S. J. Am. Chem. Soc., 2016, 138(12): 4168.
[95]
Zhou X J, Zhu B Z, Sun Y L, Chen J Y, Geng X, Xu M G. Appl. Surf. Sci., 2023, 607: 154981.
[96]
Chen H Y, Wei Z H, Kollar M, Gao F, Wang Y L, Szanyi J, Peden C H F. J. Catal., 2015, 329: 490.
[97]
Song I, Lee H, Jeon S W, Kim D H. ACS Catal., 2020, 10(20): 12017.
[98]
Chen W, Pan X L, Bao X H. J. Am. Chem. Soc., 2007, 129(23): 7421.
[99]
Kapteijn F, Singoredjo L, Andreini A, Moulijn J A. Appl. Catal. B, 1994, 3(2): 173.
[100]
Zhao T, Huang X S, Cui R J, Zhang G D, Tang Z C. Nanoscale, 2023, 15(30): 12540.
[101]
Xu W Q, He H, Yu Y B. J. Phys. Chem. C, 2009, 113(11): 4426.
[102]
Yan R, Lin S X, Li Y L, Liu W M, Mi Y Y, Tang C J, Wang L, Wu P, Peng H G. J. Hazard. Mater., 2020, 396: 122592.
[103]
Shi Y R, Yi H H, Gao F Y, Zhao S Z, Xie Z L, Tang X L. Sep. Purif. Technol., 2021, 265: 118517.
[104]
Xu Z Q, Impeng S, Jia X Y, Wang F L, Shen Y J, Wang P L, Zhang D S. Environ. Sci.: Nano, 2022, 9(6): 2121.
[105]
Huang X S, Fang N J, Wu S L, Dong F, Chu Y H, Tang Z C. Appl. Catal. B Environ., 2024, 343: 123518.
[106]
Su Y X, Fan B X, Wang L S, Liu Y F, Huang B C, Fu M L, Chen L M, Ye D Q. Catal. Today, 2013, 201: 115.
[107]
Li M Q, Huang X S, Zhang G D, Tang Z C, Hu D C. Sep. Purif. Technol., 2023, 324: 124555.

Funding

National Natural Science Foundation of China(52006016)
Hunan Natural Science Foundation(2023JJ30047)
Hunan Natural Science Foundation(2021JJ40573)
Hunan Natural Science Foundation(2020JJ4098)
Key Project of Scientific Research Project of Hunan Provincial Department of Education(21A0216)
Excellent Youth Project of Hunan Provincial Department of Education(202B041)
Excellent Youth Project of Hunan Provincial Department of Education(22B0291)
Changsha Natural Science Foundation(kq2014104)
Young Teachers' Growth Plan Project of Changsha University of Science and Technology(2019QJCZ044)
PDF(12539 KB)

Accesses

Citation

Detail

Sections
Recommended

/