Stability of Transition Metal Phosphide in Catalytic Reactions

Bo Yang, Gongxuan Lu, Jiantai Ma

Prog Chem ›› 2024, Vol. 36 ›› Issue (7) : 998-1013.

PDF(29989 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(29989 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (7) : 998-1013. DOI: 10.7536/PC231008
Review

Stability of Transition Metal Phosphide in Catalytic Reactions

Author information +
History +

Abstract

To take advantage of renewable energy such as solar energy to split water to hydrogen is an important solution to address the environmental pollution and energy shortage crisis.The development of highly efficient,robust,and low-cost catalysts is the key to the production of green and clean hydrogen energy.Transition metal phosphides(TMPs),as kinds of composites that can replace noble metal catalysts,have attracted wide attention in the field of solar hydrogen production.However,the poor stability of TMPs under harsh reaction condition limits their large-scale application at industrial level.In this paper,the physicochemical properties,preparation methods,stability in catalytic reactions and stability improvement strategies of TMPs are reviewed.The reason for the decline of stability of TMPs is that they could react with H2O or O2,and TMPs are oxidized to metal oxides or hydroxides,Meanwhile the low valence phosphorus is oxidized to phosphate and dissolved in the reaction medium,resulting in the loss of phosphorus in TMPs.The stability of TMPs could be improved by means of tuning the polarity of support surface,coating protective layer,and doping foreign elements 。

Contents

1 Introduction

2 Physicochemical properties of transition metal phosphide

3 Synthesis of transition metal phosphide

4 Stability and stability enhancement strategies of transition metal phosphide in catalytic reactions

4.1 Stability of transition metal phosphide in reactions

4.2 Stability enhancement strategies of transition metal phosphide in reactions

5 Conclusion and outlook

Key words

transition metal phosphide / physicochemical properties / preparation method / stability enhancement strategies

Cite this article

Download Citations
Bo Yang , Gongxuan Lu , Jiantai Ma. Stability of Transition Metal Phosphide in Catalytic Reactions[J]. Progress in Chemistry. 2024, 36(7): 998-1013 https://doi.org/10.7536/PC231008

References

[1]
Ye Z, Luo H L, Jiang Z, Shangguan W F. J. Mol. Catal. (China), 2023, 37(02): 174.
(叶朕, 罗皓霖, 江治, 上官文峰. 分子催化, 2023, 37(02): 174.).
[2]
Zhang Z Y, Zhang X, Shi C C. J. Mol. Catal. (China), 2024, 38(01): 42.
(张志艳, 张潇, 石琛琛. 分子催化, 2024, 38(01):42.).
[3]
Jia M Z, Ning X F, Lu G X. Int. J. Hydrog. Energy, 2024, 51: 1366.
[4]
Han Z Z, Ning X F, Yin Z Q, Zhen W L, Lu G X, Su B T. Int. J. Hydrog. Energy, 2024, 59: 856.
[5]
Jia M Z, Lu G X. Appl. Catal. B-Environ., 2023, 338: 123045.
[6]
Zhang X Q, Lu G X, Ning X F, Wang C W. Appl. Catal. B-Environ., 2022, 300: 120690.
[7]
Zhang X Q, Lu G X, Wu Y Q, Dong J L, Wang C W. Catal. Sci. Technol., 2021, 11(16): 5505.
[8]
Zhen W L, Gao F, Tian B, Ding P, Deng Y B, Li Z, Gao H B, Lu G X. J. Catal., 2017, 348: 200.
[9]
Zhou F. J. Mol. Catal. (China), 2023, 37(4): 397.
(周飞. 分子催化, 2023, 37(4): 397.).
[10]
Yan W, Li Y. J. Mol. Catal. (China), 2023, 37(2): 187.
(鄢维, 李渊. 分子催化, 2023, 37(2): 187.).
[11]
Chen Y Y, Tian Y P, Liu Q C, Li F, Li Q M. J. Mol. Catal. (China), 2024, 38(01): 63.
(陈一莹, 田亚萍, 刘青翠, 李芳, 李其明. 分子催化, 2024, 38(01): 63.).
[12]
Wang M, Lu G X. Sol. RRL, 2021, 5(6): 2000619.
[13]
Tian B, Wu Y Q, Lu G X. Appl. Catal. B-Environ., 2021, 280: 119410.
[14]
Dong J L, Zhang X Q, Lu G X, Wang C W. Front. Energy, 2021, 15(3): 710.
[15]
Zhang X Q, Lu G X. Prog. Chem., 2020, 32(9): 1368.
(张旭强, 吕功煊. 化学进展, 2020, 32(9): 1368.).
[16]
Wang M, Liu H X, Ma J T, Lu G X. Appl. Catal. B-Environ., 2020, 266: 118647.
[17]
Ning X F, Lu G X. Nanoscale, 2020, 12(3): 1213.
[18]
Gao W, Wu Y Q, Lu G X. Catal. Sci. Technol., 2020, 10(8): 2389.
[19]
Tian B, Gao W, Ning X F, Wu Y Q, Lu G X. Appl. Catal. B-Environ., 2019, 249: 138.
[20]
Ning X F, Zhen W L, Zhang X Q, Lu G X. ChemSusChem, 2019, 12(7): 1410.
[21]
Gao W, Tian B, Zhang W Y, Zhang X Q, Wu Y Q, Lu G X. Appl. Catal. B-Environ., 2019, 257: 117908.
[22]
Ding S Y, Wang P L, Yin G L, Zhang X Q, Lu G X. Int. J. Hydrog. Energy, 2019, 44(23): 11872.
[23]
Wang P P, Wang H, An W J, Cui W Q, Han B X. J. Mol. Catal. (China), 2024, 38(01): 93.
(王盼盼, 王欢, 安伟佳, 崔文权, 韩炳旭. 分子催化, 2024, 38(01): 93.).
[24]
Zhang H Y, Guo J W, Gong J R, Xin X, Li H W, Yang J M, Huang S S. J. Mol. Catal. (China), 2022, 36(5): 433.
(张灏昱, 郭纪伟, 宫建仁, 辛昕, 李华伟, 杨佳敏, 黄姝姝. 分子催化, 2022, 36(5): 433.)
[25]
Yang B, Lu G X, Ma J T. J. Inorg. Mater., 2024, 39(04): 374.
(杨博, 吕功煊, 马建泰. 无机材料学报, 2024, 39(04): 374.).
[26]
Sun N N, Zhao Z C, Zhang Y, Zhao C L, Dong H Y. J. Mol. Catal. (China), 2022, 36(1): 12.
(孙楠楠, 赵志超, 张宇, 赵翠莲, 董海阳. 分子催化, 2022, 36(1):12.).
[27]
Li Z, Zhu X M, Yang Y T, Sun S H, Sun B. J. Mol. Catal. (China), 2023, 37(02): 202.
(李智, 朱小梅, 杨雨桐, 孙绍华, 孙冰. 分子催化, 2023, 37(02): 202.).
[28]
Hou H X, Zhang J Y, Cai P L, Lin J. J. Mol. Catal. (China), 2022, 36(2): 129.
(侯慧霞, 张靖怡, 蔡平龙, 林隽. 分子催化, 2022, 36(2): 129.).
[29]
Wang Y X, Liu Y J, Tao R, Fan X X. J. Mol. Catal. (China), 2022, 36(6): 561.
(王彦欣, 刘亚靖, 陶然, 范晓星. 分子催化, 2022, 36(6): 561.).
[30]
Gao W, Zhang W Y, Tian B, Zhen W L, Wu Y Q, Zhang X Q, Lu G X. Appl. Catal. B-Environ., 2018, 224: 553.
[31]
Ning X F, Zhen W L, Wu Y Q, Lu G X. Appl. Catal. B-Environ., 2018, 226: 373.
[32]
Tian B, Gao W, Zhang X Q, Wu Y Q, Lu G X. Appl. Catal. B-Environ., 2018, 221: 618.
[33]
Wang M, Zhen W L, Tian B, Ma J T, Lu G X. Appl. Catal. B-Environ., 2018, 236: 240.
[34]
Zhang W Y, Gao W, Zhang X Q, Li Z, Lu G X. Appl. Surf. Sci., 2018, 434: 643.
[35]
Zhang X Q, Luo D, Zhang W Y, Gao W, Ning X F, Liu H X, Tian B, Yang B J, Lu G X. Appl. Catal. B-Environ., 2018, 232: 371.
[36]
Zhen W L, Ning X F, Wang M, Wu Y Q, Lu G X. J. Catal., 2018, 367: 269.
[37]
Zhen W L, Ning X F, Yang B J, Wu Y Q, Li Z, Lu G X. Appl. Catal. B-Environ., 2018, 221: 243.
[38]
Wang C Y, Wu W H, Shi X M, Zhao Y Y, Wang Q Q. J. Mol. Catal. (China), 2021, 35(2): 141.
(王春艳, 武文慧, 史晓敏, 赵莹莹, 王倩倩. 分子催化, 2021, 35(2): 141. ).
[39]
Zheng H Q, Fan Y T. J. Mol. Catal. (China), 2023, 37(4): 331.
(郑会勤, 樊耀亭. 分子催化, 2023, 37(4): 331.)
[40]
Zhang Z Y, Shi C C, Zhang X, Mi Y. J. Mol. Catal. (China), 2023, 37(4): 367.
(张志艳, 石琛琛, 张潇, 米裕. 分子催化, 2023, 37(4): 367.)
[41]
Li B Y, He F G, Zhang M H, Abdukader A. J. Mol. Catal. (China), 2023, 37(1): 94.
(李博远, 何凤贵, 张明慧, 阿不都卡德尔·阿不都克尤木. 分子催化, 2023, 37(1): 94. ).
[42]
Ding S Y, Cui X H, Feng J, Lu G X, Wang W. Chem. Commun., 2017, 53(87): 11956.
[43]
Gao H B, Zhen W L, Ma J T, Lu G X. Appl. Catal. B-Environ., 2017, 206: 353.
[44]
Gao W, Zhang W Y, Lu G X. Appl. Catal. B-Environ., 2017, 212: 23.
[45]
Li Z, Tian B, Zhang W Y, Zhang X Q, Wu Y Q, Lu G X. Appl. Catal. B-Environ., 2017, 204: 33.
[46]
Li Z, Tian B, Zhen W L, Wu Y Q, Lu G X. Appl. Catal. B-Environ., 2017, 203: 408.
[47]
Li Z, Tian B, Zhen W L, Zhang W Y, Zhang X Q, Wu Y Q, Lu G X. Appl. Catal. B-Environ., 2017, 219: 501.
[48]
Min S X, Hou J H, Lei Y G, Ma X H, Lu G X. Appl. Surf. Sci., 2017, 396: 1375.
[49]
Ning X F, Li J, Yang B J, Zhen W L, Li Z, Tian B, Lu G X. Appl. Catal. B-Environ., 2017, 212: 129.
[50]
Tian B, Li Z, Zhen W L, Zhang X Q, Lu G X. J. Catal., 2017, 352: 572.
[51]
Tian B, Yang B J, Li J, Li Z, Zhen W L, Wu Y Q, Lu G X. J. Catal., 2017, 350: 189.
[52]
Tian B, Zhen W L, Gao H B, Zhang X Q, Li Z, Lu G X. Appl. Catal. B-Environ., 2017, 203: 789.
[53]
Wang M, Li Z, Wu Y Q, Ma J T, Lu G X. J. Catal., 2017, 353: 162.
[54]
Zhang W Y, Yang S L, Li J, Gao W, Deng Y B, Dong W P, Zhao C J, Lu G X. Appl. Catal. B- Environ., 2017, 206: 89.
[55]
Zhang X Q, Tian B, Zhen W L, Li Z, Wu Y Q, Lu G X. J. Catal., 2017, 354: 258.
[56]
Nocera D G. Accounts Chem. Res., 2012, 45(5): 767.
[57]
Zhen W L, Guo Y P, Wu Y Q, Lu G X. New J. Chem., 2017, 41(22): 13804.
[58]
Zhen W L, Jiao W J, Wu Y Q, Jing H W, Lu G X. Catal. Sci. Technol., 2017, 7(21): 5028.
[59]
Zhen W L, Ma J T, Lu G X. Appl. Catal. B-Environ., 2016, 190: 12.
[60]
Zhen W L, Gao H B, Tian B, Ma J T, Lu G X. ACS Appl. Mater. Interfaces, 2016, 8(17): 10808.
[61]
Zhang X Q, Lu G X. Carbon, 2016, 108: 215.
[62]
Tian B, Li Z, Zhen W L, Lu G X. J. Phys. Chem. C, 2016, 120(12): 6409.
[63]
Li Z, Wu Y Q, Lu G X. Appl. Catal. B-Environ., 2016, 188: 56.
[64]
Li Z, Kong C, Lu G X. J. Phys. Chem. C, 2016, 120(1): 56.
[65]
Zhang W Y, Kong C, Gao W, Lu G X. Chem. Commun., 2016, 52(14): 3038.
[66]
Zhang W Y, Lu G X. Catal. Sci. Technol., 2016, 6(21): 7693.
[67]
Gao Q S, Zhang W B, Shi Z P, Yang L C, Tang Y. Adv. Mater., 2019, 31(2): 1802880.
[68]
Wang Y, Kong B, Zhao D Y, Wang H T, Selomulya C. Nano Today, 2017, 15: 26.
[69]
Wang Y Z, Liang Z Z, Zheng H Q, Cao R. Chem.-Asian J., 2020, 15(22): 3717.
[70]
Fu Q, Han J C, Wang X J, Xu P, Yao T, Zhong J, Zhong W W, Liu S W, Gao T L, Zhang Z H, Xu L L, Song B. Adv. Mater., 2021, 33(6): 1907818.
[71]
Bai H W, Chen D, Ma Q L, Qin R, Xu H W, Zhao Y F, Chen J X, Mu S C. Electrochem. Energy Rev., 2022, 5(2): 24.
[72]
Liu D, Xu G Y, Yang H, Wang H T, Xia B Y. Adv. Funct. Mater., 2023, 33(7): 19.
[73]
Marggraf A. Chymische Schriften; Arnold Web.: Berlin, 1761.
[74]
Sweeny N P, Rohrer C S, Brown O W. J. Am. Chem. Soc., 1958, 80(4): 799.
[75]
Muetterties E L, Sauer J C. J. Am. Chem. Soc., 1974, 96(11): 3410.
[76]
Nozaki F, Adachi R. J. Catal., 1975, 40(2): 166.
[77]
Robinson W, VanGestel J N M, Koranyi T I, Eijsbouts S, VanderKraan A M, VanVeen J A R, DeBeer V H J. J. Catal., 1996, 161(2): 539.
[78]
Clark P, Li W, Oyama S T. J. Catal., 2001, 200(1): 140.
[79]
Kupka J, Budniok A. J. Appl. Electrochem., 1990, 20(6): 1015.
[80]
Pralong V, Souza D C S, Leung K T, Nazar L F. Electrochem. Commun., 2002, 4(6): 516.
[81]
Callejas J F, McEnaney J M, Read C G, Crompton J C, Biacchi A J, Popczun E J, Gordon T R, Lewis N S, Schaak R E. ACS Nano, 2014, 8(11): 11101.
[82]
Li J, Ni Y H, Liao K M, Hong J M. J. Colloid Interface Sci., 2009, 332(1): 231.
[83]
Blaugher R D, Hulm J K, Yocom P N. J. Phys. Chem. Solids, 1965, 26(12): 2037.
[84]
Callejas J F, Read C G, Roske C W, Lewis N S, Schaak R E. Chem. Mat., 2016, 28(17): 6017.
[85]
Rundqvist S., Acta Chem. Scand., 1960, 14(9): 1961.
[86]
Owens-Baird B, Kolen’ko Y V, Kovnir K. Chem.-Eur. J., 2018, 24(29): 7298.
[87]
Rundqvist S., Acta Chem. Scand., 1962, 16(2), 287.
[88]
Larsson E. Ark. Mat., 1965, 23(3-4): 335.
[89]
Donohue P C, Bither T A, Young H S. Inorg. Chem., 1968, 7(5): 998.
[90]
Blanchard P E R, Grosvenor A P, Cavell R G, Mar A. Chem. Mat., 2008, 20(22): 7081.
[91]
Shi Y M, Zhang B. Chem. Soc. Rev., 2016, 45(6): 1529.
[92]
Grosvenor A P, Wik S D, Cavell R G, Mar A. Inorg. Chem., 2005, 44(24): 8988.
[93]
Wang X G, Li W, Xiong D H, Petrovykh D Y, Liu L F. Adv. Funct. Mater., 2016, 26(23): 4067.
[94]
Pan Y, Liu Y R, Zhao J C, Yang K, Liang J L, Liu D, Hu W H, Liu D P, Liu Y Q, Liu C G. J. Mater. Chem. A, 2015, 3(4): 1656.
[95]
Li Q X, Hu X. Phys. Rev. B, 2006, 74(3): 035414.
[96]
Wexler R B, Martirez J M P, Rappe A M. Chem. Mat., 2016, 28(15): 5365.
[97]
Hernandez A B, Ariga H, Takakusagi S, Kinoshita K, Suzuki S, Otani S, Oyama S T, Asakura K. Chem. Phys. Lett., 2011, 513(1-3): 48.
[98]
Yuan Q Y, Ariga H, Asakura K. Top. Catal., 2015, 58(4-6): 194.
[99]
Henkes A E, Vasquez Y, Schaak R E. J. Am. Chem. Soc., 2007, 129(7): 1896.
[100]
Li D, Senevirathne K, Aquilina L, Brock S L. Inorg. Chem., 2015, 54(16): 7968.
[101]
Huang Z P, Chen Z B, Chen Z Z, Lv C C, Meng H, Zhang C. ACS Nano, 2014, 8(8): 8121.
[102]
Chiang R K, Chiang R T. Inorg. Chem., 2007, 46(2): 369.
[103]
Li H M, Lu S Q, Sun J Y, Pei J J, Liu D, Xue Y R, Mao J J, Zhu W, Zhuang Z B. Chem.-Eur. J, 2018, 24(45): 11748.
[104]
Wang J W, Johnston-Peck A C, Tracy J B. Chem. Mat., 2009, 21(19): 4462.
[105]
Muthuswamy E, Savithra G H L, Brock S L. ACS Nano, 2011, 5(3): 2402.
[106]
Park J, Koo B, Yoon K Y, Hwang Y, Kang M, Park J G, Hyeon T. J. Am. Chem. Soc., 2005, 127(23): 8433.
[107]
Ni Y H, Jin L N, Hong J M. Nanoscale, 2011, 3(1): 196.
[108]
Liu Z Y, Huang X, Zhu Z B, Dai J H. Ceram. Int., 2010, 36(3): 1155.
[109]
Liu S L, Liu X Z, Xu L Q, Qian Y T, Ma X C. J. Cryst. Growth, 2007, 304(2): 430.
[110]
Zhu Y P, Liu Y P, Ren T Z, Yuan Z Y. Adv. Funct. Mater., 2015, 25(47): 7337.
[111]
Saadi F H, Carim A I, Verlage E, Hemminger J C, Lewis N S, Soriaga M P. J. Phys. Chem. C, 2014, 118(50): 29294.
[112]
Oh S, Kim H, Kwon Y, Kim M, Cho E, Kwon H. J. Mater. Chem. A, 2016, 4(47): 18272.
[113]
Pei Y, Yang Y, Zhang F F, Dong P, Baines R, Ge Y C, Chu H, Ajayan P M, Shen J F, Ye M X. ACS Appl. Mater. Interfaces, 2017, 9(37): 31887.
[114]
Darband G B, Aliofkhazraei M, Hyun S, Rouhaghdam A S, Shanmugam S. J. Power Sources, 2019, 429: 156.
[115]
Gopalakrishnan J, Pandey S, Rangan K K. Chem. Mat., 1997, 9(10): 2113.
[116]
Bai Y J, Zhang H J, Fang L, Liu L, Qiu H J, Wang Y. J. Mater. Chem. A, 2015, 3(10): 5434.
[117]
Sun F X, Wei Z B, Ying P L, Sun X P, Jiang Z X, Tian F P, Yang Y X, Li C. Chin. J. Catal., 2004, 25(9): 685.
(孙福侠, 魏昭彬, 应品良, 孙秀萍, 蒋宗轩, 田福平, 杨永兴, 李灿. 催化学报, 2004, 25(9): 685. ).
[118]
Bai J, Li X, Wang A J, Prins R, Wang Y. J. Catal., 2013, 300: 197.
[119]
Shi G J, Shen J Y. J. Mater. Chem., 2009, 19(16): 2295.
[120]
Zhou R Q, Zhang J F, Chen Z L, Han X P, Zhong C, Hu W B, Deng Y D. Electrochim. Acta, 2017, 258: 866.
[121]
Tian J Q, Liu Q, Asiri A M, Sun X P. J. Am. Chem. Soc., 2014, 136(21): 7587.
[122]
Tian J Q, Liu Q, Cheng N Y, Asiri A M, Sun X P. Angew. Chem.-Int. Edit, 2014, 53(36): 9577.
[123]
Jiang P, Liu Q, Liang Y H, Tian J Q, Asiri A M, Sun X P. Angew. Chem.-Int. Edit, 2014, 53(47): 12855.
[124]
Jiang P, Liu Q, Sun X P. Nanoscale, 2014, 6(22): 13440.
[125]
Qiu B C, Cai L J, Wang Y, Lin Z Y, Zuo Y P, Wang M Y, Chai Y. Adv. Funct. Mater., 2018, 28(17): 1706008.
[126]
Li S, Hua M H, Yang Y, Huang W, Lin X H, Ci L J, Lou J, Si P C. J. Mater. Chem. A, 2019, 7(29): 17386.
[127]
Balamurugan J, Nguyen T T, Aravindan V, Kim N H, Lee S H, Lee J H. Nano Energy, 2019, 65: 103999.
[128]
Zhang P, Lu X F, Nai J W, Zang S Q, Lou X W. Adv. Sci., 2019, 6(17): 1900576.
[129]
Yan L, Zhang B, Zhu J L, Zhao S Z, Li Y Y, Zhang B, Jiang J J, Ji X, Zhang H Y, Shen P K. J. Mater. Chem. A, 2019, 7(23): 14271.
[130]
Dong T, Zhang X, Wang P, Chen H S, Yang P. Carbon, 2019, 149: 222.
[131]
Wang Y, Lim Y V, Huang S Z, Ding M, Kong D Z, Pei Y Y, Xu T T, Shi Y M, Li X J, Yang H Y. Nanoscale, 2020, 12(7): 4341.
[132]
Li J G, Xie K F, Sun H C, Li Z S, Ao X, Chen Z H, Ostrikov K K, Wang C D, Zhang W J. ACS Appl. Mater. Interfaces, 2019, 11(40): 36649.
[133]
Yan L T, Dai P C, Wang Y, Gu X, Li L J, Cao L, Zhao X B. ACS Appl. Mater. Interfaces, 2017, 9(13): 11642.
[134]
Yang L J, Zhang L. Appl. Catal. B-Environ., 2019, 259: 118053.
[135]
Lu Y D, Deng Y Y, Lu S L, Liu Y Y, Lang J P, Cao X Q, Gu H W. Nanoscale, 2019, 11(44): 21259.
[136]
Dong J Q, Han X, Liu Y, Li H Y, Cui Y. Angew. Chem.-Int. Edit., 2020, 59(33): 13722.
[137]
Martínez-Garcia R, Knobel M, Reguera E. J. Phys. Chem. B, 2006, 110(14): 7296.
[138]
Yu X Y, Feng Y, Guan B Y, Lou X W, Paik U. Energy Environ. Sci., 2016, 9(4): 1246.
[139]
Guo Y N, Tang J, Wang Z L, Sugahara Y, Yamauchi Y. Small, 2018, 14(44): 1802442.
[140]
Zhang H J, Hagen D J, Li X P, Graff A, Heyroth F, Fuhrmann B, Kostanovskiy I, Schweizer S L, Caddeo F, Maijenburg A W, Parkin S, Wehrspohn R B. Angew. Chem.-Int. Edit, 2020, 59(39): 17172.
[141]
Lin J H, Yan Y T, Xu T X, Cao J, Zheng X H, Feng J C, Qi J L. J. Colloid Interface Sci., 2020, 564: 37.
[142]
Song S Y, Guo M J, Zhang S S, Zhan K, Yan Y, Yang J H, Zhao B, Xu M. Electrochim. Acta, 2020, 331: 135431.
[143]
Goryachev A, Gao L, Zhang Y, Rohling R Y, Vervuurt R H J, Bol A A, Hofmann J P, Hensen E J M. ChemElectroChem, 2018, 5(8): 1230.
[144]
Wang D, Kong L B, Liu M C, Luo Y C, Kang L. Chem.-Eur. J.., 2015, 21(49): 17897.
[145]
Ihsan-Ul-Haq M, Huang H, Cui J, Yao S S, Wu J X, Chong W G, Huang B L, Kim J K. J. Mater. Chem. A, 2018, 6(41): 20184.
[146]
Li W J, Yang Q R, Chou S L, Wang J Z, Liu H K. J. Power Sources, 2015, 294: 627.
[147]
Zhang Z S, Yang J, Nuli Y, Wang B F, Xu J Q. Solid State Ion., 2005, 176(7-8): 693.
[148]
Wang H T, Wang W, Xu Y Y, Asif M, Liu H F, Xia B Y. J. Mater. Chem. A, 2017, 5(33): 17563.
[149]
Li W J, Chou S L, Wang J Z, Liu H K, Dou S X. Chem. Commun., 2015, 51(17): 3682.
[150]
He Z M, Zheng W D, Li M X, Liu W B, Zhang Y K, Wang Y B. Chem. Eng. J., 2022, 427: 130928.
[151]
Shi Y M, Zhang B. Dalton Trans., 2017, 46(48): 16770.
[152]
Weng C C, Ren J T, Yuan Z Y. ChemSusChem, 2020, 13(13): 3357.
[153]
Ray A, Sultana S, Paramanik L, Parida K M. J. Mater. Chem. A, 2020, 8(37): 19196.
[154]
Laursen A B, Wexler R B, Whitaker M J, Izett E J, Calvinho K U D, Hwang S, Rucker R, Wang H, Ji J, Garfunkel E, Greenblatt M, Rappe A M, Dismukes G C. ACS Catal., 2018, 8(5): 4408.
[155]
Wang Z M, Meng C, Yu R B. Chem. J. Chin. Univ., 2022, 43(11): 25.
(王祖民, 孟程, 于然波. 高等学校化学学报, 2022, 43(11): 25.).
[156]
Al-Ali L I, Elmutasim O, Al Ali K, Singh N, Polychronopoulou K. Nanomaterials, 2022, 12(9): 1435.
[157]
Wang A J, Wang Y, Yu Z Q, Dong T, Li X, Chen Y Y. J. Dalian Univ. Technol., 2016, 56(3): 321
(王安杰, 王瑶, 遇治权, 董婷, 李翔, 陈永英. 大连理工大学学报, 2016, 56(3): 321.).
[158]
Moon J S, Lee Y K. Top. Catal., 2015, 58(4-6): 211.
[159]
Li K L, Wang R J, Chen J X. Energy Fuels, 2011, 25(3): 854.
[160]
Zheng N C, He X, Hu R T, Guo W Q, Hu Z F. Appl. Catal. B-Environ., 2021, 298: 120505.
[161]
Kim H, Lim J, Lee S, Kim H H, Lee C, Lee J, Choi W. Environ. Sci. Technol., 2019, 53(5): 2918.
[162]
Wang X H, Li W G, Wang S C, Zhang J Y, Zhao Q. Chem. Eng. J., 2023, 478: 147273.
[163]
Wang X H, Li W G, Yang L, Zhao G S, Zhang J Y, Zhao Q. Chem. Eng. J., 2023, 472: 144897.
[164]
Jin H W, Li L, Luo N, Niu H Y, Han J L, Xu L, Hao Z E, Cao D, Cai Y Q. Chem. Eng. J., 2023, 465: 142727.
[165]
Ahnt H S, Bard A J. Anal. Chem., 2017, 89(16): 8574.
[166]
Zhang Y, Gao L, Hensen E J M, Hofmann J P. ACS Energy Lett., 2018, 3(6): 1360.
[167]
Ha D H, Han B H, Risch M, Giordano L, Yao K P C, Karayaylali P, Shao-Horn Y. Nano Energy, 2016, 29: 37.
[168]
Liu C L, Zhang G, Yu L, Qu J H, Liu H J. Small, 2018, 14(22): 1800421.
[169]
Kucernak A R J, Sundaram V N. J. Mater. Chem. A, 2014, 2(41): 17435.
[170]
Costa J D, Lado J L, Carbo-Argibay E, Paz E, Gallo J, Cerqueira M F, Rodríguez-Abreu C, Kovnir K, Kolen’ko Y V. J. Phys. Chem. C, 2016, 120(30): 16537.
[171]
Ryu J, Jung N, Jang J H, Kim H J, Yoo S J. ACS Catal., 2015, 5(7): 4066.
[172]
Li D, Baydoun H, Verani C N, Brock S L. J. Am. Chem. Soc., 2016, 138(12): 4006.
[173]
Lian Y B, Sun H, Wang X B, Qi P W, Mu Q Q, Chen Y J, Ye J, Zhao X H, Deng Z, Peng Y. Chem. Sci., 2019, 10(2): 464.
[174]
He H, Cao J, Guo M N, Lin H L, Zhang J F, Chen Y, Chen S F. Appl. Catal. B-Environ., 2019, 249: 246.
[175]
Liu E Z, Jin C Y, Xu C H, Fan J, Hu X Y. Int. J. Hydrog. Energy, 2018, 43(46): 21355.
[176]
Reddy D A, Kim H K, Kim Y, Lee S, Choi J, Islam M J, Kumar D P, Kim T K. J. Mater. Chem. A, 2016, 4(36): 13890.
[177]
Shen R C, Xie J, Ding Y N, Liu S Y, Adamski A, Chen X B, Li X. ACS Sustain. Chem. Eng., 2019, 7(3): 3243.
[178]
Shen R C, Xie J, Zhang H D, Zhang A P, Chen X B, Li X. ACS Sustain. Chem. Eng., 2018, 6(1): 816.
[179]
Zhang L J, Hao X Q, Li J K, Wang Y P, Jin Z L. Chin. J. Catal., 2020, 41(1): 82.
(张利君, 郝旭强, 李俊柯, 汪远鹏, 靳治良. 催化学报, 2020, 41(1): 82.).
[180]
Zhang L J, Wang G R, Hao X Q, Jin Z L, Wang Y B. Chem. Eng. J., 2020, 395: 125113.
[181]
Zong S C, Tian L, Guan X J, Cheng C, Shi J W, Guo L J. J. Colloid Interface Sci., 2022, 606: 491.
[182]
Ding L, Yang S R, Liang Z Q, Qian X, Chen X Y, Cui H Z, Tian J. J. Colloid Interface Sci., 2020, 567: 181.
[183]
Dong Y J, Tian T, Xu C J, Ma K W, Sun W J, Ding Y. J. Catal., 2020, 382: 13.
[184]
Yang B, G X, Zhang X Q, Ma J T. Chin. J. Inorg. Chem., 2022, 38(7): 1337.
(杨博, 吕功煊, 张旭强, 马建泰. 无机化学学报, 2022, 38(7): 1337.).
[185]
Yang B, Zhen W L, Ma J T, Lu G X. Int. J. Hydrog. Energy, 2023, 48(94): 36784.
[186]
Zheng Z, Li M F, Chu Y, Chen J X. Fuel Process. Technol., 2015, 134: 259.
[187]
Shit S C, Koley P, Joseph B, Marini C, Nakka L, Tardio J, Mondal J. ACS Appl. Mater. Interfaces, 2019, 11(27): 24140.
[188]
Song H, Gong J, Song H L, Li F, Zhang J, Chen Y G. Catal. Commun., 2016, 85: 1.
[189]
Dierks M, Cao Z W, Manayil J C, Akilavasan J, Wilson K, Schüth F, Rinaldi R. ChemCatChem, 2018, 10(10): 2119.
[190]
Cheng S, Zheng H, Shen C, Jiang B C, Liu F Q, Li A M. Adv. Funct. Mater., 2021, 31(48): 2106311.
[191]
Chen L, Xie Y X, Yu C G, Huang R Y, Du Q Y, Zhao J W, Sun W Z, Wang W W. J. Colloid Interface Sci., 2021, 595: 129.
[192]
Li X Y, Hu J Y, Deng Y P, Li T, Liu Z Q, Wang Z. Appl. Catal. B-Environ., 2023, 324: 122243.
[193]
Wang F L, Zhou Y N, Lv J Y, Dong B, Zhang X Y, Yu W L, Chi J Q, Wu Z X, Wang L, Chai Y M. Int. J. Hydrog. Energy, 2022, 47(2): 1016.
[194]
Su L, Cui X Z, He T, Zeng L M, Tian H, Song Y L, Qi K, Xia B Y. Chem. Sci., 2019, 10(7): 2019.
[195]
Mai W S, Cui Q, Zhang Z Q, Zhang K K, Li G Q, Tian L H, Hu W. ACS Appl. Energ. Mater., 2020, 3(8): 8075.
[196]
Zhang X Y, Guo B Y, Chen Q W, Dong B, Zhang J Q, Qin J F, Xie J Y, Yang M, Wang L, Chai Y M, Liu C G. Int. J. Hydrog. Energy, 2019, 44(29): 14908.
[197]
Li G X, Yu J Y, Jia J, Yang L J, Zhao L L, Zhou W J, Liu H. Adv. Funct. Mater., 2018, 28(40): 1801332.
[198]
Kim I S, Cho H S, Kim M, Oh H J, Lee S Y, Lee Y K, Lee C, Lee J H, Cho W C, Kim S K, Joo J H, Kim C H. J. Mater. Chem. A, 2021, 9(31): 16713.
[199]
Chu H Q, Feng P P, Jin B W, Ye G, Cui S S, Zheng M, Zhang G X, Yang M. Chem. Eng. J., 2022, 433: 133523.
[200]
Wu L B, Yu L, McElhenny B, Xing X X, Luo D, Zhang F H, Bao J M, Chen S, Ren Z F. Appl. Catal. B-Environ., 2021, 294: 120256.
[201]
Zhou L, Jiang S, Liu Y K, Shao M F, Wei M, Duan X. ACS Appl. Energ. Mater., 2018, 1(2): 623.
[202]
Yang X X, Mi H W, Ren X Z, Zhang P X, Li Y L. Nanoscale Res. Lett., 2020, 15(1): 82.
[203]
Shanmugam S, Sivanantham A, Matsunaga M, Simon U, Osaka T. Electrochim. Acta, 2019, 297: 749.
[204]
Wang K, Zhang R M, Guo Y, Liu Y J, Tian Y, Wang X J, Wang P, Liu Z M. Energies, 2023, 16(1): 478.
[205]
Li C M, Wu H H, Du Y H, Xi S B, Dong H J, Wang S H, Wang Y. ACS Sustain. Chem. Eng., 2020, 8(34): 12934.
[206]
Huang L M, Wang D K, Zeng H H, Zheng L L, Lai S Q, Zou J P. Nanoscale, 2022, 14(48): 18209.
[207]
Zhang Y Z, Dai Y R, Yin L F, Li H H, Chen X, Chen B. Catal. Sci. Technol., 2020, 10(11): 3654.
[208]
Iqbal S. Appl. Catal. B-Environ., 2020, 274: 119097.

Funding

National Key R&D Program of China(2022YFB3803600)
National Natural Science Foundation of China(22272189)
National Natural Science Foundation of China(22102200)
National Natural Science Foundation of China(22302212)
Gansu Natural Science Foundation(22JR5RA105)
LICP Cooperation Foundation for Young Scholars(HZJJ23-01)
Chinese Academy of Sciences Talent Program youth Project B(E40149YB)
LICP Special Talent Program(E101A7SY)
PDF(29989 KB)

Accesses

Citation

Detail

Sections
Recommended

/