
Stability of Transition Metal Phosphide in Catalytic Reactions
Bo Yang, Gongxuan Lu, Jiantai Ma
Prog Chem ›› 2024, Vol. 36 ›› Issue (7) : 998-1013.
Stability of Transition Metal Phosphide in Catalytic Reactions
To take advantage of renewable energy such as solar energy to split water to hydrogen is an important solution to address the environmental pollution and energy shortage crisis.The development of highly efficient,robust,and low-cost catalysts is the key to the production of green and clean hydrogen energy.Transition metal phosphides(TMPs),as kinds of composites that can replace noble metal catalysts,have attracted wide attention in the field of solar hydrogen production.However,the poor stability of TMPs under harsh reaction condition limits their large-scale application at industrial level.In this paper,the physicochemical properties,preparation methods,stability in catalytic reactions and stability improvement strategies of TMPs are reviewed.The reason for the decline of stability of TMPs is that they could react with H2O or O2,and TMPs are oxidized to metal oxides or hydroxides,Meanwhile the low valence phosphorus is oxidized to phosphate and dissolved in the reaction medium,resulting in the loss of phosphorus in TMPs.The stability of TMPs could be improved by means of tuning the polarity of support surface,coating protective layer,and doping foreign elements 。
1 Introduction
2 Physicochemical properties of transition metal phosphide
3 Synthesis of transition metal phosphide
4 Stability and stability enhancement strategies of transition metal phosphide in catalytic reactions
4.1 Stability of transition metal phosphide in reactions
4.2 Stability enhancement strategies of transition metal phosphide in reactions
5 Conclusion and outlook
transition metal phosphide / physicochemical properties / preparation method / stability enhancement strategies
[1] |
(叶朕, 罗皓霖, 江治, 上官文峰. 分子催化, 2023, 37(02): 174.).
|
[2] |
(张志艳, 张潇, 石琛琛. 分子催化, 2024, 38(01):42.).
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
(周飞. 分子催化, 2023, 37(4): 397.).
|
[10] |
(鄢维, 李渊. 分子催化, 2023, 37(2): 187.).
|
[11] |
(陈一莹, 田亚萍, 刘青翠, 李芳, 李其明. 分子催化, 2024, 38(01): 63.).
|
[12] |
|
[13] |
|
[14] |
|
[15] |
(张旭强, 吕功煊. 化学进展, 2020, 32(9): 1368.).
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
(王盼盼, 王欢, 安伟佳, 崔文权, 韩炳旭. 分子催化, 2024, 38(01): 93.).
|
[24] |
(张灏昱, 郭纪伟, 宫建仁, 辛昕, 李华伟, 杨佳敏, 黄姝姝. 分子催化, 2022, 36(5): 433.)
|
[25] |
(杨博, 吕功煊, 马建泰. 无机材料学报, 2024, 39(04): 374.).
|
[26] |
(孙楠楠, 赵志超, 张宇, 赵翠莲, 董海阳. 分子催化, 2022, 36(1):12.).
|
[27] |
(李智, 朱小梅, 杨雨桐, 孙绍华, 孙冰. 分子催化, 2023, 37(02): 202.).
|
[28] |
(侯慧霞, 张靖怡, 蔡平龙, 林隽. 分子催化, 2022, 36(2): 129.).
|
[29] |
(王彦欣, 刘亚靖, 陶然, 范晓星. 分子催化, 2022, 36(6): 561.).
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
(王春艳, 武文慧, 史晓敏, 赵莹莹, 王倩倩. 分子催化, 2021, 35(2): 141. ).
|
[39] |
(郑会勤, 樊耀亭. 分子催化, 2023, 37(4): 331.)
|
[40] |
(张志艳, 石琛琛, 张潇, 米裕. 分子催化, 2023, 37(4): 367.)
|
[41] |
(李博远, 何凤贵, 张明慧, 阿不都卡德尔·阿不都克尤木. 分子催化, 2023, 37(1): 94. ).
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
|
[73] |
|
[74] |
|
[75] |
|
[76] |
|
[77] |
|
[78] |
|
[79] |
|
[80] |
|
[81] |
|
[82] |
|
[83] |
|
[84] |
|
[85] |
|
[86] |
|
[87] |
|
[88] |
|
[89] |
|
[90] |
|
[91] |
|
[92] |
|
[93] |
|
[94] |
|
[95] |
|
[96] |
|
[97] |
|
[98] |
|
[99] |
|
[100] |
|
[101] |
|
[102] |
|
[103] |
|
[104] |
|
[105] |
|
[106] |
|
[107] |
|
[108] |
|
[109] |
|
[110] |
|
[111] |
|
[112] |
|
[113] |
|
[114] |
|
[115] |
|
[116] |
|
[117] |
(孙福侠, 魏昭彬, 应品良, 孙秀萍, 蒋宗轩, 田福平, 杨永兴, 李灿. 催化学报, 2004, 25(9): 685. ).
|
[118] |
|
[119] |
|
[120] |
|
[121] |
|
[122] |
|
[123] |
|
[124] |
|
[125] |
|
[126] |
|
[127] |
|
[128] |
|
[129] |
|
[130] |
|
[131] |
|
[132] |
|
[133] |
|
[134] |
|
[135] |
|
[136] |
|
[137] |
|
[138] |
|
[139] |
|
[140] |
|
[141] |
|
[142] |
|
[143] |
|
[144] |
|
[145] |
|
[146] |
|
[147] |
|
[148] |
|
[149] |
|
[150] |
|
[151] |
|
[152] |
|
[153] |
|
[154] |
|
[155] |
(王祖民, 孟程, 于然波. 高等学校化学学报, 2022, 43(11): 25.).
|
[156] |
|
[157] |
(王安杰, 王瑶, 遇治权, 董婷, 李翔, 陈永英. 大连理工大学学报, 2016, 56(3): 321.).
|
[158] |
|
[159] |
|
[160] |
|
[161] |
|
[162] |
|
[163] |
|
[164] |
|
[165] |
|
[166] |
|
[167] |
|
[168] |
|
[169] |
|
[170] |
|
[171] |
|
[172] |
|
[173] |
|
[174] |
|
[175] |
|
[176] |
|
[177] |
|
[178] |
|
[179] |
(张利君, 郝旭强, 李俊柯, 汪远鹏, 靳治良. 催化学报, 2020, 41(1): 82.).
|
[180] |
|
[181] |
|
[182] |
|
[183] |
|
[184] |
(杨博, 吕功煊, 张旭强, 马建泰. 无机化学学报, 2022, 38(7): 1337.).
|
[185] |
|
[186] |
|
[187] |
|
[188] |
|
[189] |
|
[190] |
|
[191] |
|
[192] |
|
[193] |
|
[194] |
|
[195] |
|
[196] |
|
[197] |
|
[198] |
|
[199] |
|
[200] |
|
[201] |
|
[202] |
|
[203] |
|
[204] |
|
[205] |
|
[206] |
|
[207] |
|
[208] |
|
/
〈 |
|
〉 |