Enhanced Mechanism of Supercapacitance by Regulating the Surface Interface of Transition Metal Compounds

Xing Chen, Demin Jiang, Kun Xie, Lijun Liu, Yin Wang, Yuqiao Wang

Prog Chem ›› 2024, Vol. 36 ›› Issue (7) : 961-974.

PDF(52401 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(52401 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (7) : 961-974. DOI: 10.7536/PC231016
Review

Enhanced Mechanism of Supercapacitance by Regulating the Surface Interface of Transition Metal Compounds

Author information +
History +

Abstract

the development of supercapacitors with high efficiency and good stability is of great significance in alleviating the energy crisis and environmental pollution issues.transition metal compounds store charge through Faraday redox reactions,leading to higher specific capacities.However,transition metal compounds suffer from poor electrical conductivity,slow reaction kinetics,and few exposed electroactive sites,thus leading to a definite difficulty in practical applications.in This paper,We have summarized the research progress of surface-interface modulation strategies in enhancing the electrochemical performance of supercapacitors to address the problems of transition metal compounds,such as morphology modulation,heterojunction,elemental doping,and vacancy engineering.this paper focuses on the mechanism of the above-mentioned methods from the perspective of morphological and electronic structure modulation on the physical and chemical properties of active materials.we aim to clarify the performance enhancement mechanism of supercapacitors and provide an important theoretical basis for developing high-performance and high-stability supercapacitors.Finally,the reasons for structural design and electronic modulation to improve the performance of supercapacitors are summarized,and the challenges faced by structural design and electronic modulation in constructing high-performance supercapacitors are outlined。

Contents

1 Introduction

2 Surface-interface modulation strategies for transition metal compound electrode materials

2.1 Structural regulation

2.2 Heterostructure

2.3 Elemental doping

2.4 Vacancy engineering

3 Conclusion and outlook

Key words

surface interface / supercapacitance / electronic structure / morphology / mechanism

Cite this article

Download Citations
Xing Chen , Demin Jiang , Kun Xie , et al . Enhanced Mechanism of Supercapacitance by Regulating the Surface Interface of Transition Metal Compounds[J]. Progress in Chemistry. 2024, 36(7): 961-974 https://doi.org/10.7536/PC231016

References

[1]
Peng J, Zhang W, Wang J S, Li L, Lai W H, Yang Q R, Zhang B W, Li X N, Du Y M, Liu H W, Wang J L, Cheng Z X, Wang L Z, Wang S W, Wang J Z, Chou S L, Liu H K, Dou S X. Adv. Energy Mater., 2021, 11(44): 2102356.
[2]
Schütter C, Pohlmann S, Balducci A. Adv. Energy Mater., 2019, 9(25): 1900334.
[3]
Wang F X, Wu X W, Yuan X H, Liu Z C, Zhang Y, Fu L J, Zhu Y S, Zhou Q M, Wu Y P, Huang W. Chem. Soc. Rev., 2017, 46(22): 6816.
[4]
Wang Y G, Song Y F, Xia Y Y. Chem. Soc. Rev., 2016, 45(21): 5925.
[5]
Wang C G, Sun P X, Qu G M, Yin J M, Xu X J. Chin. Chemical Lett., 2018, 29(12): 1731.
[6]
Wang T, Chen H C, Yu F, Zhao X S, Wang H X. Energy Storage Mater., 2019, 16: 545.
[7]
Zhang S, Pan N. Adv. Energy Mater., 2015, 5(6): 1401401.
[8]
Lu W, Yang M, Jiang X, Yu Y, Liu X C, Xing Y. Chem. Eng. J., 2020, 382: 122943.
[9]
Liu S D, Jun S C. J. Power Sources, 2017, 342: 629.
[10]
Mahadik S, Surendran S, Kim J Y, Janani G, Lee D K, Kim T H, Kim J K, Sim U. J. Mater. Chem. A, 2022, 10(28): 14655.
[11]
Liang H F, Xia C, Jiang Q, Gandi A N, Schwingenschlögl U, Alshareef H N. Nano Energy, 2017, 35: 331.
[12]
Chen H C, Jiang S P, Xu B H, Huang C H, Hu Y Z, Qin Y L, He M X, Cao H J. J. Mater. Chem. A, 2019, 7(11): 6241.
[13]
Liu B, Liu B Y, Wang Q F, Wang X F, Xiang Q Y, Chen D, Shen G Z. ACS Appl. Mater. Interfaces, 2013, 5(20): 10011.
[14]
Xu Y N, Wang X F, An C H, Wang Y J, Jiao L F, Yuan H T. J. Mater. Chem. A, 2014, 2(39): 16480.
[15]
Shen L F, Che Q, Li H S, Zhang X G. Adv. Funct. Mater., 2014, 24(18): 2630.
[16]
Liu B, Kong D Z, Huang Z X, Mo R W, Wang Y, Han Z J, Cheng C W, Yang H Y. Nanoscale, 2016, 8(20): 10686.
[17]
Chen X, Jiang D M, Li H Y, Xie K, Jiang Y H, Wang Y Q. J. Colloid Interface Sci., 2020, 575: 168.
[18]
Chen H C, Jiang J J, Zhang L, Qi T, Xia D D, Wan H Z. J. Power Sources, 2014, 248: 28.
[19]
Xiao Z Y, Mei Y J, Yuan S, Mei H, Xu B, Bao Y X, Fan L L, Kang W P, Dai F N, Wang R, Wang L, Hu S Q, Sun D F, Zhou H C. ACS Nano, 2019, 13(6): 7024.
[20]
Ma F X, Yu L, Xu C Y, Lou X W D. Energy Environ. Sci., 2016, 9(3): 862.
[21]
Guan B Y, Kushima A, Yu L, Li S, Li J, Lou X W D. Adv. Mater., 2017, 29(17): 1605902.
[22]
Guan B Y, Yu L, Wang X, Song S Y, Lou X W D. Adv. Mater., 2017, 29(6): 1605051.
[23]
Rajpurohit A S, Punde N S, Rawool C R, Srivastava A K. Chem. Eng. J., 2019, 371: 679.
[24]
Santhosh R, Sitaa Raman S R, Krishna S M, Ravuri S S, Sandhya V, Ghosh S, Sahu N K, Punniyakoti S, Karthik M, Kollu P, Jeong S K, Grace A N. Electrochim. Acta, 2018, 276: 284.
[25]
Jiang B, Ban X H, Wang Q, Cheng K, Zhu K, Ye K, Wang G L, Cao D X, Yan J. J. Mater. Chem. A, 2019, 7(42): 24374.
[26]
Wang X Z, Wang S J, Su D C, Xu S G, Cao S K, Xiao Y H. J. Alloys Compd., 2022, 902: 163784.
[27]
Zhang H F, Lu C X, Hou H, Ma Y Y, Yuan S X. Chem. Eng. J., 2019, 370: 400.
[28]
Gao Z Y, Chen C, Chang J L, Chen L M, Wang P Y, Wu D P, Xu F, Jiang K. Chem. Eng. J., 2018, 343: 572.
[29]
Liang H Y, Lin J H, Jia H N, Chen S L, Qi J L, Cao J, Lin T S, Fei W D, Feng J C. J. Power Sources, 2018, 378: 248.
[30]
Zhang A T, Zheng W, Yuan Z, Tian J M, Yue L J, Zheng R K, Wei D, Liu J Q. Chem. Eng. J., 2020, 380: 122486.
[31]
Yun X R, Lu T, Zhou R Y, Lu Z H, Li J Y, Zhu Y R. Chem. Eng. J., 2021, 426: 131328.
[32]
Wang W D, Jiang D M, Chen X, Xie K, Jiang Y H, Wang Y Q. Appl. Surf. Sci., 2020, 515: 145982.
[33]
Lu C X, Li A R, Zhai T F, Niu C R, Duan H P, Guo L, Zhou W. Energy Storage Mater., 2020, 26: 472.
[34]
Kang J L, Hirata A, Kang L J, Zhang X M, Hou Y, Chen L Y, Li C, Fujita T, Akagi K, Chen M W. Angew. Chem. Int. Ed., 2013, 52(6): 1664.
[35]
Guo Y Q, Hong X F, Wang Y, Li Q, Meng J S, Dai R T, Liu X, He L, Mai L Q. Adv. Funct. Mater., 2019, 29(24): 1809004.
[36]
Li G F, Cui X, Song B, Ouyang H Z, Wang K L, Sun Y M, Wang Y Q. Chem. Eng. J., 2020, 388: 124319.
[37]
Chen X, Song L L, Zeng M Y, Tong L, Zhang C X, Xie K, Wang Y Q. J. Colloid Interface Sci., 2022, 610: 70.
[38]
Li L, Song L L, Zhang X Y, Zhu S F, Wang Y Q. ACS Appl. Energy Mater., 2022, 5(2): 2505.
[39]
Singu B S, Hong S E, Yoon K R. J. Ind. Eng. Chem., 2018, 62: 321.
[40]
Gao X C, Bi J Q, Gao J, Meng L J, Xie L L, Liu C. Electrochim. Acta, 2022, 426: 140739.
[41]
Liu F F, Cheng X L, Xu R, Wu Y, Jiang Y, Yu Y. Adv. Funct. Mater., 2018, 28(18): 1800394.
[42]
Elshahawy A M, Guan C, Li X, Zhang H, Hu Y T, Wu H J, Pennycook S J, Wang J. Nano Energy, 2017, 39: 162.
[43]
Yang D S, Bhattacharjya D, Inamdar S, Park J, Yu J S. J. Am. Chem. Soc., 2012, 134(39): 16127.
[44]
Gu H H, Fan W, Liu T X. Nanoscale Horiz., 2017, 2(5): 277.
[45]
Wang Z C, Liu H L, Ge R X, Ren X, Ren J, Yang D J, Zhang L X, Sun X P. ACS Catal., 2018, 8(3): 2236.
[46]
Lin J H, Wang Y H, Zheng X H, Liang H Y, Jia H N, Qi J L, Cao J, Tu J C, Fei W D, Feng J C. Dalton Trans., 2018, 47(26): 8771.
[47]
Su S W, Sun L, Xie F, Qian J L, Zhang Y H. Front. Chem. Sci. Eng., 2023, 17(5): 491.
[48]
Chu W J, Shi Z J, Hou Y D, Ma D N, Bai X, Gao Y F, Yang N J. ACS Appl. Mater. Interfaces, 2020, 12(2): 2763.
[49]
Miao W K, Han Q H, Zhang H M, Chen K L, Zhang L, Li Y, Han S M. J. Alloys Compd., 2021, 877: 160301.
[50]
Li S, Hua M H, Yang Y, Zheng X W, Huang W, Si P C, Ci L J, Lou J. Sci. China Mater., 2021, 64(10): 2439.
[51]
Yu J Y, Zhou W J, Xiong T L, Wang A L, Chen S W, Chu B L. Nano Res., 2017, 10(8): 2599.
[52]
Li Q, Zheng S S, Xu Y X, Xue H G, Pang H. Chem. Eng. J., 2018, 333: 505.
[53]
Zhao Z, Zhang X Y, Zhang G Q, Liu Z Y, Qu D, Miao X, Feng P Y, Sun Z C. Nano Res., 2015, 8(12): 4061.
[54]
Yang S H, Liu Y Y, Hao Y F, Yang X P, Goddard W A III, Zhang X L, Cao B Q. Adv. Sci., 2018, 5(4): 1700659.
[55]
Tan S W, Xue Z G, Tao K, Han L. Chem. Commun., 2022, 58(42): 6243.
[56]
Zhang J, Li Y, Liang X, Liu Q, Chen Q, Chen M. Small, 2022, 18(7): 2106074.
[57]
Kang L, Zhang M Y, Zhang J, Liu S D, Zhang N, Yao W J, Ye Y, Luo C, Gong Z W, Wang C L, Zhou X F, Wu X, Jun S C. J. Mater. Chem. A, 2020, 8(45): 24053.
[58]
Liu R Q, Xu S S, Shao X X, Wen Y, Shi X R, Huang L P, Hong M, Hu J, Yang Z. ACS Appl. Mater. Interfaces, 2021, 13(40): 47717.
[59]
Zhang Y Q, Tao L, Xie C, Wang D D, Zou Y Q, Chen R, Wang Y Y, Jia C K, Wang S Y. Adv. Mater., 2020, 32(7): 1905923.
[60]
Wei S, Wan C C, Zhang L Y, Liu X Y, Tian W Y, Su J H, Cheng W J, Wu Y Q. Chem. Eng. J., 2022, 429: 132242.
[61]
Chen X, Tao H J, Jiang Y H, Li S S, Liu Y X, Xie K, Wang Y Q. J. Energy Storage, 2023, 68: 107721.

Funding

National Natural Science Foundation of China(61774033)
Science and Technology Research Program of Chongqing Municipal Education Commission(KJZD-K202201206)
Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202101238)
Natural Science Foundation of Chongqing(cstc2021jcyj-msxmX1016)
Science and Technology Innovation Program of Wanzhou(wzstc20220302)
National Undergraduate Training Program of Innovation and Entrepreneurship(202310643004)
National Undergraduate Training Program of Innovation and Entrepreneurship(202310643009)
PDF(52401 KB)

Accesses

Citation

Detail

Sections
Recommended

/