Selective Hydrogenation of Acetylene: from Thermal Catalysis to Electrocatalysis, Photocatalysis and Photothermal Catalysis

Baisheng Pang, Yingying Xing, Ruihong Gao, Yaohua Fang, Haijun Zhang, Liang Huang

Prog Chem ›› 2024, Vol. 36 ›› Issue (8) : 1237-1253.

PDF(1686 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(1686 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (8) : 1237-1253. DOI: 10.7536/PC231104
Review

Selective Hydrogenation of Acetylene: from Thermal Catalysis to Electrocatalysis, Photocatalysis and Photothermal Catalysis

Author information +
History +

Abstract

ethylene is one of the most important raw materials in the modern petrochemical industry.the preparation of ethylene by steam cracking of petroleum hydrocarbons generates acetylene with a volume fraction about 0.3%to 3%.These trace amounts of acetylene can poison the catalyst of the ethylene polymerization reaction.selective catalytic hydrogenation of acetylene is considered to be one of the most effective methods for removing acetylene impurities.This paper reviews the research progress of acetylene selective hydrogenation in recent years,introduces the reaction mechanism of acetylene hydrogenation,and summarizes the effects of catalyst active components,additives and carriers on the performance of acetylene selective hydrogenation.the development trend of how to further improve the performance of acetylene selective hydrogenation is discussed from the perspectives of electrocatalysis,photocatalysis and photothermal catalysis.Finally,some suggestions are proposed for the subsequent research on the selective hydrogenation of acetylene。

Contents

1 Introduction

2 Reaction mechanism of acetylene hydrogenation

3 Research progress of catalysts for thermocatalytic selective hydrogenation of acetylene

3.1 Catalyst active components and additives

3.2 Catalyst carriers

4 Trends in selective hydrogenation of acetylene

4.1 Electrocatalytic selective hydrogenation of acetylene and alkynes

4.2 Photocatalytic hydrogenation of acetylene and alkynes

4.3 Photothermal catalyzed hydrogenation of acetylene and alkynes

5 Conclusion and outlook

Key words

selective hydrogenation of acetylene / catalyst / thermal catalysis / electrocatalysis / photocatalysis / photothermal catalysis

Cite this article

Download Citations
Baisheng Pang , Yingying Xing , Ruihong Gao , et al . Selective Hydrogenation of Acetylene: from Thermal Catalysis to Electrocatalysis, Photocatalysis and Photothermal Catalysis[J]. Progress in Chemistry. 2024, 36(8): 1237-1253 https://doi.org/10.7536/PC231104

References

[1]
Bond G C, Borodziński A. Catal. Rev. Sci. Eng., 2008, 50(3): 379.
[2]
Bridier B, López N, Pérez-Ramírez J. Dalton Trans., 2010, 39(36): 8412.
[3]
Qiu B, Wang D Q, Lu A H, Sheng J, Yan B. Sci. Sin.-Chim, 2020, 50(7): 832.
[4]
Ravindran K, Madhu G, Renjith V R, Rugmini S. J. Indian Chem. Soc., 2023, 100(2): 100884.
[5]
Chai M Q, Liu X Y, Li L, Pei G X, Ren Y J, Su Y, Cheng H K, Wang A Q, Zhang T. Chin. J. Catal., 2017, 38(8): 1338.
[6]
Stytsenko V D, Melnikov D P, Glotov A P, Vinokurov V A. Mol. Catal., 2022, 533: 112750.
[7]
Osswald J, Giedigkeit R, Jentoft R E, Armbrüster M, Girgsdies F, Kovnir K, Ressler T, Grin Y, Schlögl R. J. Catal., 2008, 258(1): 210.
[8]
Kim W J, Moon S H. Catal. Today, 2012, 185(1): 2.
[9]
Li B, Cui X, O'Nolan D, Wen H M, Jiang M, Krishna R, Wu H, Lin R B, Chen Y S, Yuan D, Xing H, Zhou W, Ren Q, Qian G, Zaworotko M J, Chen B. Adv. Mater., 2017, 29(47):1704210.
[10]
Takht Ravanchi M, Sahebdelfar S, Komeili S. Rev. Chem. Eng., 2018, 34(2): 215.
[11]
Wang J, Zhang Y, Zhang P X, Hu J B, Lin R B, Deng Q, Zeng Z L, Xing H B, Deng S G, Chen B L. J. Am. Chem. Soc., 2020, 142(21): 9744.
[12]
Li H Z, Li Q H, Yao M S, Han Y P, Otake K I, Kitagawa S, Wang F, Zhang J. ACS Appl. Mater. Interfaces, 2022, 14(40): 45451.
[13]
Yang L N, Guo Y S, Long J, Xia L X, Li D, Xiao J P, Liu H Y. Chem. Commun., 2019, 55(97): 14693.
[14]
Lu Y, Feng X J, Takale B S, Yamamoto Y, Zhang W, Bao M. ACS Catal., 2017, 7(12): 8296.
[15]
Ball M R, Rivera-Dones K R, Gilcher E B, Ausman S F, Hullfish C W, Lebrón E A, Dumesic J A. ACS Catal., 2020, 10(15): 8567.
[16]
Mattson B, Foster W, Greimann J, Hoette T, Le N, Mirich A, Wankum S, Cabri A, Reichenbacher C, Schwanke E. J. Chem. Educ., 2013, 90(5): 613.
[17]
Rahimpour M R, Dehghani O, Gholipour M R, Shokrollahi Yancheshmeh M S, Seifzadeh Haghighi S, Shariati A. Chem. Eng. J., 2012, 198: 491.
[18]
Shao X X, Wang B J, Fan M H, Ling L X, Zhang R G. Appl. Surf. Sci., 2023, 611: 155720.
[19]
Glyzdova D V, Afonasenko T N, Khramov E V, Leont’eva N N, Trenikhin M V, Kremneva A M, Shlyapin D A. Mol. Catal., 2021, 511: 111717.
[20]
Qi Y M, Shao X X, Wang B J, Li D B, Ling L X, Zhang R G. Chem. Eng. Sci., 2021, 245: 116941.
[21]
Maligal-Ganesh R V, Pei Y C, Xiao C X, Chen M D, Goh T W, Sun W J, Wu J S, Huang W Y. ChemCatChem, 2020, 12(11): 3022.
[22]
Wang Q T, Zhao J Y, Xu L Y, Yu L, Yao Z H, Lan G J, Guo L L, Zhao J, Lu C S, Pan Z Y, Wang J G, Zhang Q F, Li X N. Appl. Surf. Sci., 2021, 562: 150141.
[23]
Zhang R G, Xue M F, Wang B J, Ling L X. Appl. Surf. Sci., 2019, 481: 421.
[24]
Sun M S, Wang F M, Lv G J, Zhang X B. Appl. Surf. Sci., 2022, 589: 153021.
[25]
Sharma A K, Mehara P, ACS Catal., 2022, 12(11): 6672.
[26]
Li Y N, Jang B W L. Top. Catal., 2017, 60(12): 997.
[27]
Zhou H R, Yang X F, Li L, Liu X Y, Huang Y Q, Pan X L, Wang A Q, Li J, Zhang T. ACS Catal., 2016, 6(2): 1054.
[28]
Zheng X B, Li B B, Wang Q S, Wang D S, Li Y D. Nano Res., 2022, 15(9):7806.
[29]
Zhou H R, Yang X F, Wang A Q, Miao S, Liu X Y, Pan X L, Su Y, Li L, Tan Y, Zhang T. Chin. J. Catal., 2016, 37(5): 692.
[30]
Hu M C, Wu Z Y, Yao Z H, Young J, Luo L L, Du Y G, Wang C M, Iqbal Z, Wang X Q. J. Catal., 2021, 395: 46.
[31]
Guo Y L, Li Y Y, Du X R, Li L, Jiang Q K, Qiao B T. Nano Res., 2022, 15(12): 10037.
[32]
Li R Z, Wang D S. Nano Res., 2022, 15(8): 6888.
[33]
Liu F, Xia Y J, Xu W L, Cao L N, Guan Q Q, Gu Q Q, Yang B, Lu J L. Angew. Chem. Int. Ed., 2021, 60(35): 19324.
[34]
Takht Ravanchi M, Rahimi Fard M, Sahebdelfar S, Bigdeli P. Res. Chem. Intermed., 2022, 48(2): 817.
[35]
Pei G X, Liu X Y, Wang A Q, Su Y, Li L, Zhang T. Appl. Catal. A Gen., 2017, 545: 90.
[36]
Abdollahi T, Farmanzadeh D. J. Alloys Compd., 2018, 735: 117.
[37]
Hu M Z, Zhao S, Liu S J, Chen C, Chen W X, Zhu W, Liang C, Cheong W C, Wang Y, Yu Y, Peng Q, Zhou K B, Li J, Li Y D. Adv Mater., 2018, 30(33): 1801878.
[38]
Liu D. Appl. Surf. Sci., 2016, 386: 125.
[39]
Ma L L, Lv C Q, Wang G C. Appl. Surf. Sci., 2017, 410: 154.
[40]
Dodangeh F, Rashidi A, Aghaie H, Zare K. J. Phys. Chem. Solids, 2021, 158: 110219.
[41]
Yang T X, Feng Y L, Ma R, Li Q, Yan H, Liu Y N, He Y F, Miller J T, Li D Q. ACS Appl. Mater. Interfaces, 2021, 13(1): 706.
[42]
Jiang K Z, Wang P T, Guo S J, Zhang X, Shen X, Lu G, Su D, Huang X Q. Angew. Chem. Int. Ed., 2016, 55(31): 9030.
[43]
Cai X T, Wang A, Wang J W, Wang R X, Zhong S X, Zhao Y L, Wu L J, Chen J R, Bai S. J. Mater. Chem. A, 2018, 6(36): 17444.
[44]
Liu H, Chai M Q, Pei G X, Liu X Y, Li L, Kang L L, Wang A Q, Zhang T. Chin. J. Catal., 2020, 41(7): 1099.
[45]
Zhang Y, Xu C J, Wu Y T, Li S. J. Nanoelectron. Optoelectron., 2021, 16(3): 380.
[46]
Zou Z D, Chen C, Hu Z, Shen Y, Fu Z, Li W C, Zhang Y X, Zhang H M, Zhao H J, Wang G Z. Fuel, 2022, 318: 123694.
[47]
Chen Y J, Chen J X. Appl. Surf. Sci., 2016, 387: 16.
[48]
Wang L, Li F X, Chen Y J, Chen J X. J. Energy Chem., 2019, 29: 40.
[49]
Teschner D, Borsodi J, Wootsch A, Révay Z, Hävecker M, Knop-Gericke A, Jackson S D, Schlögl R. Science, 2008, 320(5872): 86.
[50]
Studt F, Abild-Pedersen F, Bligaard T, Sørensen R, Christensen C, Nørskov J. Angew. Chem. Int. Ed., 2008, 47(48): 9299.
[51]
Shao L D, Zhang B S, Zhang W, Teschner D, Girgsdies F, Schlögl R, Su D S. Chem., 2012, 18(47): 14962.
[52]
Kim S K, Kim C, Lee J H, Kim J, Lee H, Moon S H. J. Catal., 2013, 306: 146.
[53]
Yang B, Burch R, Hardacre C, Hu P, Hughes P. Surf. Sci., 2016, 646: 45.
[54]
Niu Y M, Huang X, Wang Y Z, Xu M, Chen J N, Xu S L, Willinger M G, Zhang W, Wei M, Zhang B S. Nat. Commun., 2020, 11: 3324.
[55]
Wang Y, Liu B Y, Lan X C, Wang T F. ACS Catal., 2021, 11(16): 10257.
[56]
Takht Ravanchi M, Sahebdelfar S, Komeili S. Rev. Chem. Eng., 2018, 34(2): 215.
[57]
Guo Z L, Liu Y F, Liu Y, Chu W. Appl. Surf. Sci., 2018, 442: 736.
[58]
Chesnokov V V, Kriventsov V V, Malykhin S E, Svintsitskiy D A, Podyacheva O Y, Lisitsyn A S, Richards R M. Diam. Relat. Mater., 2018, 89: 67.
[59]
Chen X L, Xu Q Q, Zhao B, Ren S B, Wu Z H, Wu J P, Yue Y X, Han D M, Li R R. Catal. Lett., 2021, 151(11): 3372.
[60]
Gao X P, Guo Z L, Zhou Y N, Jing F L, Chu W. Acta Phys.-Chim. Sin., 2017, 33(3): 602.
[61]
Sun X, Li F F, Shi J J, Zheng Y H, Su H J, Sun L B, Peng S, Qi C X. Appl. Surf. Sci., 2019, 487: 625.
[62]
Sun L B, Jiang L, Hua X Y, Zheng Y H, Sun X, Zhang M, Su H J, Qi C X. J. Alloys Compd., 2019, 811: 152052.
[63]
Miao C L, Cai L Y, Wang Y F, Xu X J, Yang J R, He Y F, Li D Q, Feng J T. Ind. Eng. Chem. Res., 2021, 60(23): 8362.
[64]
Zhang Y, Sun X, Zhao Y L, Su H J, Murayama T, Qi C X. Top. Catal., 2021, 64(3): 197.
[65]
Sun X, Su H J, Lin Q Q, Han C, Zheng Y H, Sun L B, Qi C X. Appl. Catal. A Gen., 2016, 527: 19.
[66]
Gao X P, Zhou Y N, Jing F L, Luo J J, Huang Q S, Chu W. Chin. J. Chem., 2017, 35(6): 1009.
[67]
Gong T, Huang Y, Qin L J, Zhang W L, Li J G, Hui L F, Feng H. Appl. Surf. Sci., 2019, 495: 143495.
[68]
Wang S H, Uwakwe K, Yu L, Ye J Y, Zhu Y Z, Hu J T, Chen R X, Zhang Z, Zhou Z Y, Li J F, Xie Z X, Deng D H. Nat. Commun., 2021, 12(1):7072.
[69]
Wu Y M, Liu C B, Wang C H, Yu Y F, Shi Y M, Zhang B. Nat. Commun., 2021, 12(1): 3881.
[70]
Shi R, Wang Z P, Zhao Y X, Waterhouse G I N, Li Z H, Zhang B K, Sun Z M, Xia C, Wang H T, Zhang T R. Nat. Catal., 2021, 4(7): 565.
[71]
Song H, Im M, Song J T, Lim J A, Kim B S, Kwon Y, Ryu S, Oh J. Appl. Catal. B Environ., 2018, 232: 391.
[72]
Huang B B, Li J, Cao X K, Zhu Y Y, Chen W Q, Lei C. Electrochim. Acta, 2019, 296: 980.
[73]
Liu Z P, Zhang L, Ren Z P, Zhang J. Chem. Eur. J., 2023, 29(15): e202202979.
[74]
Liu Z P, Chen Z, Bu J, Ma W X, Zhang L, Zhong H, Cheng L, Li S M, Wang T, Zhang J. Chem. Eng. J., 2022, 431: 134129.
[75]
Fu B A, McCue A J, Liu Y N, Weng S X, Song Y F, He Y F, Feng J T, Li D Q. ACS Catal., 2022, 12(1): 607.
[76]
Bu J, Liu Z P, Ma W X, Zhang L, Wang T, Zhang H P, Zhang Q Y, Feng X L, Zhang J. Nat. Catal., 2021, 4(7): 557.
[77]
Hauwert P, Dunsford J J, Tromp D S, Weigand J J, Lutz M, Cavell K J, Elsevier C J. Organometallics, 2013, 32(1): 131.
[78]
Ernst J B, Muratsugu S, Wang F, Tada M, Glorius F. J. Am. Chem. Soc., 2016, 138(34): 10718.
[79]
Kaeffer N, Mance D N, Copéret C. Angew. Chem. Int. Ed., 2020, 59(45): 19999.
[80]
Zhang L, Chen Z, Liu Z P, Bu J, Ma W X, Yan C, Bai R, Lin J, Zhang Q Y, Liu J Z, Wang T, Zhang J. Nat. Commun., 2021, 12: 6574.
[81]
Ma W X, Chen Z, Bu J, Liu Z P, Li J J, Yan C, Cheng L, Zhang L, Zhang H P, Zhang J C, Wang T, Zhang J. J. Mater. Chem. A, 2022, 10(11): 6122.
[82]
Zhang L L, Zhou M X, Wang A Q, Zhang T. Chem. Rev., 2020, 120(2): 683.
[83]
Kuo C T, Lu Y B, Kovarik L, Engelhard M, Karim A M. ACS Catal., 2019, 9(12): 11030.
[84]
Liu S Y, Niu Y M, Wang Y Z, Chen J N, Quan X P, Zhang X, Zhang B S. Chem. Commun., 2020, 56(47): 6372.
[85]
Liu Y W, Wang B X, Fu Q, Liu W, Wang Y, Gu L, Wang D S, Li Y D. Angew. Chem. Int. Ed., 2021, 60(41): 22522.
[86]
Jiang X L, Tang L, Dong L, Sheng X D, Zhang W F, Liu Z, Shen J H, Jiang H L, Li C Z. Angew. Chem. Int. Ed., 2023, 135(33): e202307848.
[87]
An S Y, Liu Z P, Bu J, Lin J, Yao Y, Yan C, Tian W, Zhang J. Angew. Chem. Int. Ed., 2022, 61(12): 2116370.
[88]
Wang T T, Sang X H, Zheng W Z, Yang B, Yao S Y, Lei C J, Li Z J, He Q G, Lu J G, Lei L C, Dai L M, Hou Y. Adv. Mater., 2020, 32(29): 2002430.
[89]
Yan S, Peng C, Yang C, Chen Y S, Zhang J B, Guan A X, Lv X M, Wang H Z, Wang Z Q, Sham T K, Han Q, Zheng G F. Angew. Chem. Int. Ed., 2021, 133(49): 25945.
[90]
Zeng Z P, Gan L Y, Yang H B, Su X Z, Gao J J, Liu W, Matsumoto H, Gong J, Zhang J M, Cai W Z, Zhang Z Y, Yan Y B, Liu B, Chen P. Nat. Commun., 2021, 12: 4088.
[91]
Zheng W Z, Wang Y, Shuai L, Wang X Y, He F, Lei C J, Li Z J, Yang B, Lei L C, Yuan C, Qiu M, Hou Y, Feng X L. Adv. Funct. Mater., 2021, 31(15): 2008146.
[92]
Chen Y, Mei Y X, Li M L, Dang C Y, Huang L, Wu W G, Wu Y Y, Yu X H, Wang K, Gu L, Liu L J, Cao X B. Green Chem., 2021, 23(20): 8138.
[93]
Gao S S, Jin M M, Sun J Q, Liu X J, Zhang S S, Li H Y, Luo J, Sun X P. J. Mater. Chem. A, 2021, 9(37): 21024.
[94]
Hao X Q, An X W, Patil A M, Wang P F, Ma X L, Du X, Hao X G, Abudula A, Guan G Q. ACS Appl. Mater. Interfaces, 2021, 13(3): 3738.
[95]
Gao S S, Liu Y F, Xie Z Y, Qiu Y, Zhuo L C, Qin Y J, Ren J Q, Zhang S S, Hu G Z, Luo J, Liu X J. Small Meth., 2021, 5(4): 2001039.
[96]
Lian J H, Chai Y C, Qi Y, Guo X Y, Guan N J, Li L D, Zhang F X. Chin. J. Catal., 2020, 41(4): 598.
[97]
Arcudi F, Ðorđević L, Schweitzer N, Stupp S I, Weiss E A. Nat. Chem., 2022, 14(9): 1007.
[98]
Wei Q C, Chen Y, Wang Z, Yu D Z, Wang W H, Li J Q, Chen L H, Li Y, Su B L. Angew. Chem. Int. Ed., 2022, 61(38):e202210573.
[99]
Song C Q, Wang Z H, Yin Z, Xiao D Q, Ma D. Chem Catal., 2022, 2(1): 52.
[100]
Zhou S Q, Shang L, Zhao Y X, Shi R, Waterhouse G I N, Huang Y C, Zheng L R, Zhang T R. Adv. Mater., 2019, 31(18): 1900509.
[101]
Guo Y L, Huang Y K, Zeng B, Han B, Akri M, Shi M, Zhao Y, Li Q H, Su Y, Li L, Jiang Q K, Cui Y T, Li L, Li R G, Qiao B T, Zhang T. Nat. Commun., 2022, 13(1): 2648.
[102]
Zhao Y F, Gao W, Li S W, Williams G R, Mahadi A H, Ma D. Joule, 2019, 3(4): 920.

Funding

National Natural Science Foundation of China(52372030)
National Natural Science Foundation of China(U23A20559)
National Natural Science Foundation of China(52272021)
PDF(1686 KB)

Accesses

Citation

Detail

Sections
Recommended

/