Gamma Ray Shielding Composite Material with High Z Number

Zuoyang Chen, Zhipeng Huo, Hong Zhang, Guoqiang Zhong

Prog Chem ›› 2024, Vol. 36 ›› Issue (7) : 1102-1116.

PDF(22894 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(22894 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (7) : 1102-1116. DOI: 10.7536/PC231105
Review

Gamma Ray Shielding Composite Material with High Z Number

Author information +
History +

Abstract

With the development of science and technology,nuclear technology is widely used in energy,medicine,aerospace,and other fields.However,the high-energy gamma ray produced by the application of nuclear technology has strong penetrating ability and can ionize human cells,which will cause damage to human health.Therefore,it is crucial to develop effective radiation shielding materials.Since the density and effective atomic number of materials have great influence on the gamma shielding properties of materials,fillers containing high atomic number(high Z)elements are introduced into various matrix materials by researchers to prepare composite shielding materials.This paper explains Three fundamental physical effects of the interaction between gamma photons and atoms.three kinds of high Z gamma ray composite shielding materials based on glass,polymer,and metal matrixes are introduced respectively,and the existing challenges and solutions are summarized。

Contents

1 Introduction

2 Interaction of gamma ray with matter

3 Research progress of gamma ray composite shielding material with high Z number

3.1 Glass-based gamma ray composite shielding materials with high Z number

3.2 Polymer-based gamma ray composite shielding materials with high Z number

3.3 Metal-based gamma ray composite shielding materials with high Z number

4 Conclusion and prospect

Key words

high Z number / radiation shielding / composite material / gamma ray

Cite this article

Download Citations
Zuoyang Chen , Zhipeng Huo , Hong Zhang , et al. Gamma Ray Shielding Composite Material with High Z Number[J]. Progress in Chemistry. 2024, 36(7): 1102-1116 https://doi.org/10.7536/PC231105

References

[1]
Thomas G A, Symonds P. Clin. Oncol-UK., 2016, 28(4): 231.
[2]
Lalkovičová M. Neural Regen. Res., 2022, 17(9): 1885.
[3]
Zhang X L, Yang M T, Zhang X M, Wu H, Guo S Y, Wang Y Z. Compos. Sci. Technol., 2017, 150: 16.
[4]
Nambiar S, Yeow J T W. ACS Appl. Mater. Inter., 2012, 4(11): 5717.
[5]
Ji Y S, Park E K, Kwon H C, Han W K, Nahm F S. J. Vasc. Interv. Radiol., 2022, 33(3): 225.
[6]
Kamislioglu M. J. Mater. Sci. Mater. El., 2021, 32(9): 12690.
[7]
Qi Z, Yang Z, Li J, Guo Y, Yang G, Yu Y, Zhang J. Materials, 2022, 15(9): 3255.
[8]
Wolf S T, Kenney L E, Kenney W L. Curr. Phys. Med. Rep., 2020, 19(4): 137.
[9]
Lee C M, Lee Y H, Lee K J. Prog. Nucl. Energy, 2007, 49(4): 303.
[10]
Ogawa M, Nakajima Y, Kubota R, Endo Y. Clin. Toxicol., 2008, 46(4): 332.
[11]
Hsiao C L, Wu K H, Wan K S. J. Immunotoxicol., 2011, 8(4): 284.
[12]
Eid A, Zawia N. NeuroToxicology, 2016, 56: 254.
[13]
Stalin S, Gaikwad D K, Al-Buriahi M S, Srinivasu C, Ahmed S A, Tekin H O, Rahman S. Ceram. Int., 2021, 47(4): 5286.
[14]
Yasaka P, Pattanaboonmee N, Kim H J, Limkitjaroenporn P, Kaewkhao J. Ann. Nucl. Energy, 2014, 68: 4.
[15]
D'Souza A N, Sharmila K, Sayyed M I, Somshekarappa H M, Khandaker M U, Bradley D A, Kamath S D. Radiat. Phys. Chem., 2021, 188: 109598.
[16]
Lin M Z, Zheng Z J, Yang L, Luo M S, Fu L H, Lin B F, Xu C H. Adv. Mater., 2022, 34(1): 2107309.
[17]
Cheng J G. Doctoral Dissertation of Guangxi University, 2023.
(程吉贵. 广西大学博士论文, 2023.).
[18]
Jia X B. Master Dissertation of Southwest University of Science and Technology, 2016.
(贾夏冰. 西南科技大学硕士论文, 2016.).
[19]
Mansouri E, Mesbahi A, Malekzadeh R, Mansouri A. Radiat. Environ. Biophys., 2020, 59(4): 583.
[20]
Alzahrani J S, Alothman M A, Eke C, Al-Ghamdi H, Aloraini D A, Al-Buriahi M S. Comput. Mater. Sci., 2021, 196: 110566.
[21]
Issa S A M, Rashad M, Hanafy T A, Saddeek Y B. J. Non Cryst. Solids, 2020, 544: 120207.
[22]
Temir A, Zhumadilov K S, Zdorovets M V, Korolkov I V, Kozlovskiy A, Trukhanov A V. Opt. Mater., 2021, 113: 110846.
[23]
Eshghi M. J. Mater. Sci. Mater. El., 2020, 31(19): 16479.
[24]
Kozlovskiy A, Shlimas D I, Zdorovets M V, Popova E, Elsts E, Popov A I. Materials, 2022, 15(17): 6071.
[25]
Tekin H O, Kassab L R P, Kilicoglu O, Magalhães E S, Issa S A M, da-Silva-Mattos G R. J. Non Cryst. Solids, 2020, 528: 119763.
[26]
Almuqrin A H, Sayyed M I. Appl. Sci., 2021, 11(12): 5697.
[27]
Japari S J, Sayyed M I, Yahya A K, Anis A L, Iskandar S M, Zaid M H M, Azlan M N, Hisam R. Results Phys., 2021, 22: 103946.
[28]
Gunha J V, Gonçalves A, Somer A, Chaves-de-Andrade A V, Dias D T, Novatski A. J. Mater. Sci. Mater. El., 2019, 30(18): 16695.
[29]
Kamislioglu M. Results Phys., 2021, 22: 103844.
[30]
Saleh E E, Algradee M A, El-Fiki S A, Youssef G M. Radiat. Phys. Chem., 2022, 193: 109939.
[31]
Zakaly H M H, Rashad M, Tekin H O, Saudi H A, Issa S A M, Henaish A M A. Opt. Mater., 2021, 114: 110942.
[32]
Saddeek Y B, Issa S A M, Alharbi T, Elsaman R, Abd elfadeel G, Mostafa A M A, Aly K, Ahmad M. Mater. Chem. Phys., 2020, 242: 122510.
[33]
Al-Buriahi M S, Sriwunkum C, Arslan H, Tonguc B T, Bourham M A. Appl. Phys. A, 2020, 126(1): 68.
[34]
Susoy G, Altunsoy Guclu E E, Kilicoglu O, Kamislioglu M, Al-Buriahi M S, Abuzaid M M, Tekin H O. Mater. Chem. Phys., 2020, 242: 122481.
[35]
Ibrahim A, Farag M A, Sadeq M S. Ceram. Int., 2022, 48(9): 12079.
[36]
Kaky K M, Sayyed M I, Khammas A, Kumar A, Şakar E, Abdalsalam A H, Cevi̇z Şakar B, Alim B, Mhareb M H A. Mater. Chem. Phys., 2020, 242: 122504.
[37]
Dimitrov V, Sakka S. J. Appl. Phys., 1996, 79(3): 1736.
[38]
Kilic G, Ilik E, Mahmoud K A, El-Agawany F I, Alomairy S, Rammah Y S. Appl. Phys. A, 2021, 127(4): 265.
[39]
Shaaban K S, Zahran H Y, Yahia I S, Elsaeedy H I, Shaaban E R, Makhlouf S A, Abdel Wahab E A, Yousef E S. Appl. Phys. A, 2020, 126(10): 804.
[40]
Sayyed M I, Albarzan B, Almuqrin A H, El-Khatib A M, Kumar A, Tishkevich D I, Trukhanov A V, Elsafi M. Materials, 2021, 14(14): 3772.
[41]
Kothan S, Kaewkhao J, Kim H J, Muangmala W, Kiatwattanacharoen S, Jumpee C, Kaewjaeng S. J. Phys.: Conf. Ser., 2020, 1428(1): 012016.
[42]
Al-Omari S, Alsaif N A M, Khattari Z Y, Al-Ghamdi H, Abdelghany A M, Rammah Y S. Appl. Phys. A, 2023, 129(4): 256.
[43]
Mostafa A M A, Uosif M A M, Alrowaili Z A, Elsaman R, Showahy A A, Saddeek Y B, Issa S A M, Ene A, Zakaly H M H. Materials, 2021, 14(21): 6632.
[44]
Sobhanachalam P, Ravi Kumar V, Raghavaiah B V, Ravi Kumar V, Sahaya Baskaran G, Gandhi Y, Syam Prasad P, Veeraiah N. Opt. Mater., 2017, 73: 628.
[45]
Tekin H O, ALMisned G, Rammah Y S, Ahmed E M, Ali F T, Baykal D S, Elshami W, Zakaly H M H, Issa S A M, Kilic G, Ene A. Optik, 2022, 267: 169643.
[46]
Aktas B, Yalcin S, Dogru K, Uzunoglu Z, Yilmaz D. Radiat. Phys. Chem., 2019, 156: 144.
[47]
Yalcin S, Aktas B, Yilmaz D. Radiat. Phys. Chem., 2019, 160: 83.
[48]
Al-Yousef H A, Sayyed M I, Alotiby M, Kumar A, Alghamdi Y S, Alotaibi B M, Alsaif N A M, Mahmoud K A, Al-Hadeethi Y. Optik, 2021, 242: 167220.
[49]
Almuqrin A H, Kumar A, Jecong J F M, Al-Harbi N, Hannachi E, Sayyed M I. Optik, 2021, 247: 167792.
[50]
Al-Harbi F F, Prabhu N S, Sayyed M I, Almuqrin A H, Kumar A, Kamath S D. Optik, 2021, 248: 168074.
[51]
Bashter I I. Ann. Nucl. Energy, 1997, 24(17): 1389.
[52]
Almurayshid M, Alssalim Y, Aksouh F, Almsalam R, ALQahtani M, Sayyed M I, Almasoud F. Materials, 2021, 14(17): 4957.
[53]
Cinan Z M, Erol B, Baskan T, Mutlu S, Ortac B, Savaskan Yilmaz S, Yilmaz A H. Nanomaterials, 2022, 12(3): 297.
[54]
Knott J C, Khakbaz H, Allen J, Wu L, Mole R A, Baldwin C, Nelson A, Sokolova A, Beirne S, Innis P C, Frost D G, Cortie D, Rule K C. Compos. Sci. Technol., 2023, 233: 109876.
[55]
Kalkornsurapranee E, Kothan S, Intom S, Johns J, Kaewjaeng S, Kedkaew C, Chaiphaksa W, Sareein T, Kaewkhao J. Radiat. Phys. Chem., 2021, 179: 109261.
[56]
Tijani S A, Al-Hadeethi Y. Mater. Res. Express, 2019, 6(5): 055323.
[57]
Almuqrin A H, Elsafi M, Yasmin S, Sayyed M I. Materials, 2022, 15(18): 6410.
[58]
Yu L, Yap P L, Santos A, Tran D, Losic D. ACS Appl. Nano Mater., 2021, 4(7): 7471.
[59]
Kim S, Ahn Y, Song S H, Lee D J. Compos. Sci. Technol., 2022, 221: 109353.
[60]
Nikeghbal K, Zamanian Z, Shahidi S, Spagnuolo G, Soltani P. Materials, 2020, 13(19): 4371.
[61]
El-Khatib A M, Shalaby T I, Antar A, Elsafi M. Materials, 2022, 15(11): 3908.
[62]
El-Khatib A M, Doma A S, Badawi M S, Abu-Rayan A E, Aly N S, Alzahrani J S, Abbas M I. Mater. Res. Express, 2020, 7(10): 105309.
[63]
Akman F, Kaçal M R, Polat H, Aktas G, Gultekin A, Agar O. J. Phys. Chem. Solids, 2021, 152: 109978.
[64]
Toyen D, Paopun Y, Changjan D, Wimolmala E, Mahathanabodee S, Pianpanit T, Anekratmontree T, Saenboonruang K. Polymers, 2021, 13(19): 3390.
[65]
Toyen D, Wimolmala E, Sombatsompop N, Markpin T, Saenboonruang K. Radiat. Phys. Chem., 2019, 164: 108366.
[66]
Wang P, Tang X B, Chai H, Chen D, Qiu Y L. Fusion Eng. Des., 2015, 101: 218.
[67]
Huo Z P, Zhao S, Zhong G Q, Zhang H, Hu L Q. Nucl. Mater. Energy, 2021, 29: 101095.
[68]
Zhao S, Huo Z P, Zhong G Q, Zhang H, Hu L Q. Chem. J. Chinese. U., 2022, 43(6): 20220039.
[69]
Wang Y, Liu Q, Bai Y, Liu H B, He T, Jia H, Chang Z D, Liu X, Su H X, Ma Y S. Crystals, 2021, 11(7): 778.
[70]
Kremer T, Schürmann H. Materialwiss Werkst., 2008, 39(6): 385.
[71]
Avcioğlu S. J. Alloy. Compd., 2022, 927: 166900.
[72]
Rojas K, Canales D, Amigo N, Montoille L, Cament A, Rivas L M, Gil-Castell O, Reyes P, Ulloa M T, Ribes-Greus A, Zapata P A. Compos. Part B Eng., 2019, 172: 173.
[73]
Yildirir E, Miskolczi N, Onwudili J A, Németh K E, Williams P T, Sója J. Compos. Part B Eng., 2015, 78: 393.
[74]
Saeed A, Alaqab A, Banoqitah E, Damoom M M, Salah N. Polym. Test., 2022, 115: 107739.
[75]
Muthamma M V, Prabhu S, Bubbly S G, Gudennavar S B. Appl. Radiat. Isot., 2021, 174: 109780.
[76]
Mai F H, Zhang Q P, Wang R, Meng L C, Zhang Y, Li J L, Liu P Q, Li Y T, Zhou Y L. ACS Appl. Polym. Mater., 2022, 4(9): 6394.
[77]
Xu X Z, Uddin A J, Aoki K, Gotoh Y, Saito T, Yumura M. Carbon, 2010, 48(7): 1977.
[78]
Ni P L, Bi H Y, Zhao G, Han Y C, Wickramaratne M N, Dai H L, Wang X Y. Colloid. Surf. B, 2019, 173: 171.
[79]
Abd El-aziz A M, El-Maghraby A, Taha N A. Arab. J. Chem., 2017, 10(8): 1052.
[80]
Yihun F A, Ifuku S, Saimoto H, Yihun D A. Cellulose, 2021, 28(5): 2965.
[81]
Roohani M, Shabanian M, Kord B, Hajibeygi M, Ali Khonakdar H. Thermochim. Acta, 2016, 635: 17.
[82]
Gouda M M, Abbas M I, Hammoury S I, Zard K, El-Khatib A M. Sci. Rep., 2023, 13: 210.
[83]
Al-Ghamdi H, Hemily H M, Saleh I H, Ghataas Z F, Abdel-Halim A A, Sayyed M I, Yasmin S, Almuqrin A H, Elsafi M. Materials, 2022, 15(16): 5706.
[84]
Zhu H L, Holmes R, Hanley T, Davis J, Short K, Edwards L, Li Z J. Corros. Sci., 2017, 125: 184.
[85]
Rice P M, Zinkle S J. J. Nucl. Mater., 1998, 258: 1414.
[86]
Bergner F, Gillemot F, Hernández-Mayoral M, Serrano M, Török G, Ulbricht A, Altstadt E. J. Nucl. Mater., 2015, 461: 37.
[87]
Trukhanov A V, Kozlovskiy A L, Ryskulov A E, Uglov V V, Kislitsin S B, Zdorovets M V, Trukhanov S V, Zubar T I, Astapovich K A, Tishkevich D I. Ceram. Int., 2019, 45(12): 15412.
[88]
Liu K, Zhang K B, Deng T, Li W W, Zhang H B. Ceram. Int., 2020, 46(10): 16987.
[89]
Ye C, Xue J X, Liu T, Shu R, Yan Y, Liao Y H, Ren Q S, Ran G, Sun K, Jiang L, Xiu P Y, Wang L M. Ceram. Int., 2020, 46(6): 8165.
[90]
Byun T S, Farrell K. Acta Mater., 2004, 52(6): 1597.
[91]
Tishkevich D I, Zubar T I, Zhaludkevich A L, Razanau I U, Vershinina T N, Bondaruk A A, Zheleznova E K, Dong M G, Hanfi M Y, Sayyed M I, Silibin M V, Trukhanov S V, Trukhanov A V. Nanomaterials, 2022, 12(10): 1642.
[92]
Tekin H O, Kilicoglu O. J. Alloy. Compd., 2020, 815: 152484.
[93]
Yang X Y, Song L L, Chang B, Yang Q, Mao X D, Huang Q Y. Nucl. Mater. Energy, 2020, 23: 100739.
[94]
Sun C, Zheng S, Wei C C, Wu Y, Shao L, Yang Y, Hartwig K T, Maloy S A, Zinkle S J, Allen T R, Wang H, Zhang X. Sci. Rep., 2015, 5: 7801.
[95]
Odette G R. JOM, 2014, 66(12): 2427.
[96]
Han W Z, Demkowicz M J, Mara N A, Fu E G, Sinha S, Rollett A D, Wang Y Q, Carpenter J S, Beyerlein I J, Misra A. Adv. Mater., 2013, 25(48): 6975.
[97]
Zou Y, Ma H, Spolenak R. Nat. Commun., 2015, 6: 7748.
[98]
Otto F, Yang Y, Bei H, George E P. Acta Mater., 2013, 61(7): 2628.
[99]
Kumar N A P K, Li C, Leonard K J, Bei H, Zinkle S J. Acta Mater., 2016, 113: 230.
[100]
Gul A O, Kavaz E, Basgoz O, Guler O, ALMisned G, Bahceci E, Albayrak M G, Tekin H O. Intermetallics, 2022, 146: 107593.
[101]
Janot R, Guérard D. Prog. Mater. Sci., 2005, 50(1): 1.
[102]
Zakeri A, Tahvili P, Bahmani E, Sabour Rouh Aghdam A. J. Compos. Compd., 2021, 3(6): 9.
[103]
Zakeri A, Ghadami F, Sabour Rouhaghdam A, Saeedi B. Mater. Res. Express, 2020, 7(1): 015030.
[104]
Kaur T, Vermani Y K, Al-Buriahi M S, Alzahrani J S, Singh T. Phys. Scr., 2022, 97(5): 055009.
[105]
Rani N, Vermani Y K, Singh T. J. Radiol. Prot., 2020, 40(1): 296.
[106]
Hamad R M, Hamad M K, Dwaikat N, Ziq K A. Appl. Phys. A, 2022, 128(7): 574.

Funding

Anhui Province Ecological Environment Research Project(2023hb0017)
University Synergy Innovation Program of Anhui Province(GXXT-2022-001)
Comprehensive Research Facility for Fusion Technology Program of China(2018-000052-73-01-001228)
Institute of Energy, Hefei Comprehensive National Science Center(21KZL401)
Institute of Energy, Hefei Comprehensive National Science Center(21KHH105)
Institute of Energy, Hefei Comprehensive National Science Center(21KZS205)
Institute of Energy, Hefei Comprehensive National Science Center(24JYZL01)
Institute of Energy, Hefei Comprehensive National Science Center(24JYJB01)
PDF(22894 KB)

Accesses

Citation

Detail

Sections
Recommended

/