Synthesis and Modification of Single-Crystal High-Nickel Ternary Cathode Materials

Hanfeng Wu, Jiushuai Deng, Jinli Liu, Yingqiang Wu, Li Wang, Xiangming He

Prog Chem ›› 2024, Vol. 36 ›› Issue (6) : 827-239.

PDF(9639 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(9639 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (6) : 827-239. DOI: 10.7536/PC231112
Review

Synthesis and Modification of Single-Crystal High-Nickel Ternary Cathode Materials

Author information +
History +

Abstract

With the rapid development of portable electronic products and electric vehicles,the demand for high energy density lithium-ion batteries is increasing.High-nickel ternary materials with nickel content higher than 0.6(include)(e.g.,LiNi0.6Co0.2Mn0.2O2,LiNi0.8Co0.1Mn0.1O2and LiNi0.9Co0.05Mn0.05O2),which can deliver a high reversible specific capacity of more than 200 mAh·g-1at an upper cut-off voltage of 4.3 V vs Li+/Li,are an important development direction of cathode material with high specific capacity.However,the weak mechanical strength,low compaction density of polycrystal ternary materials and the anisotropy of primary grains lead to intergranular cracks in the polycrystal particles during the charging and discharging process.The electrolyte will penetrate into the polycrystal particles along the intergranular cracks,thus aggravating the side reaction between the electrode and electrolyte and deteriorating the cycle performance and safety of the battery.The design of single crystal material without grain boundary can reduce the formation of intergranular cracks,effectively suppress the side reaction at the interfaces and improve the cycle stability.In this study,the advantages and problems of single-crystal high-nickel ternary materials are reviewed,and their synthesis methods and modification strategies are analyzed.Finally,the application prospects and challenges of single-crystal high-nickel ternary materials are reviewed and prospected.

Contents

1 Introduction

2 Performance difference between monocrystalline and polycrystalline materials

3 Synthesis methods of single-crystal high-nickel ternary materials

3.1 Coprecipitation method

3.2 Molten salt synthesis

3.3 Corrosion method

3.4 Spray pyrolysis

3.5 Hydrothermal method

4 Modification strategies of single-crystal high-nickel ternary materials

4.1 Problems in single-crystal materials

4.2 Surface coating

4.3 Ion doping

5 Conclusion and outlook

Key words

lithium-ion battery / high-nickel ternary cathode material / single crystal / polycrystalline

Cite this article

Download Citations
Hanfeng Wu , Jiushuai Deng , Jinli Liu , et al . Synthesis and Modification of Single-Crystal High-Nickel Ternary Cathode Materials[J]. Progress in Chemistry. 2024, 36(6): 827-239 https://doi.org/10.7536/PC231112

References

[1]
Wu F X, Maier J, Yu Y. Chem. Soc. Rev., 2020, 49(5): 1569.
[2]
Xiao X, Wang L, Wu Y Q, Song Y Z, Chen Z H, He X M. Energy Environ. Sci., 2023, 16(7): 2856.
[3]
Amici J, Asinari P, Ayerbe E, Barboux P, Bayle-Guillemaud P, Behm R J, Berecibar M, Berg E, Bhowmik A, Bodoardo S, Castelli I E, Cekic-Laskovic I, Christensen R, Clark S, Diehm R, Dominko R, Fichtner M, Franco A A, Grimaud A, Guillet N, Hahlin M, Hartmann S, Heiries V, Hermansson K, Heuer A, Jana S, Jabbour L, Kallo J, Latz A, Lorrmann H, Løvvik O M, Lyonnard S, Meeus M, Paillard E, Perraud S, Placke T, Punckt C, Raccurt O, Ruhland J, Sheridan E, Stein H, Tarascon J M, Trapp V, Vegge T, Weil M, Wenzel W, Winter M, Wolf A, Edström K. Adv. Energy Mater., 2022, 12(17): 2102785.
[4]
Zhan R M, Wang X C, Chen Z H, Seh Z W, Wang L, Sun Y M. Adv. Energy Mater., 2021, 11(35): 2170138.
[5]
Li Q, Yu X Q, Li H. eTransportation, 2022, 14: 100201.
[6]
Ren Y Y, Shen Y, Lin Y H, Nan C W. Electrochem. Commun., 2015, 57: 27.
[7]
Schweikert N, Hofmann A, Schulz M, Scheuermann M, Boles S T, Hanemann T, Hahn H, Indris S. J. Power Sources, 2013, 228: 237.
[8]
Mizushima K, Jones P C, Wiseman P J, Goodenough J B. Mater. Res. Bull., 1980, 15(6): 783.
[9]
Fujimoto M, Yoshinaga N, Ueno K, Furukawa N, Nohma T, Takahashi M. US-5686138-A, 1997.
[10]
Manthiram A. Nat. Commun., 2020, 11: 1550.
[11]
Li W D, Erickson E M, Manthiram A. Nat. Energy, 2020, 5(1): 26.
[12]
Zhao H, Lam W Y A, Sheng L, Wang L, Bai P, Yang Y, Ren D S, Xu H, He X M. Adv. Energy Mater., 2022, 12(16): 2103894.
[13]
Kim J M, Chung H T. Electrochim. Acta, 2004, 49(6): 937.
[14]
Li J G, Li J J, Luo J, Wang L, He X M. Int. J. Electrochem. Sci., 2011, 6(5): 1550.
[15]
Ohzuku T, Makimura Y. Chem. Lett., 2001, 30(7): 642.
[16]
MacNeil D D, Lu Z, Dahn J R. J. Electrochem. Soc., 2002, 149(10): A1332.
[17]
Li D C, Muta T, Zhang L Q, Yoshio M, Noguchi H. J. Power Sources, 2004, 132(1/2): 150.
[18]
Wu Y Q, Xie L Q, He X M, Zhuo L H, Wang L M, Ming J. Electrochim. Acta, 2018, 265: 115.
[19]
Sun Y C, Ouyang C Y, Wang Z X, Huang X J, Chen L Q. J. Electrochem. Soc., 2004, 151(4): A504.
[20]
Wang T S, Yang J, Wang H L, Ma W, He M, He Y F, He X M. Adv. Energy Mater., 2023, 13(12): 2204241.
[21]
Liu Z L, Yu A S, Lee J Y. J. Power Sources, 1999, 81/82: 416.
[22]
Li J G, Wang L, Zhang Q, He X M. J. Power Sources, 2009, 189(1): 28.
[23]
Huang Z L, Gao J, He X M, Li J J, Jiang C Y. J. Power Sources, 2012, 202: 284.
[24]
Li J G, He X M, Fan M S, Zhao R S, Jiang C Y, Wan C R. Ionics, 2006, 12(1): 77.
[25]
Liu Z B, Li J G, Zhu M J, Wang L, Kang Y Q, Dang Z H, Yan J S, He X M. Materials, 2021, 14(8): 1816.
[26]
Gao J, Li J J, Song F, Lin J X, He X M, Jiang C Y. Mater. Chem. Phys., 2015, 152: 177.
[27]
Manthiram A, Song B H, Li W D. Energy Storage Mater., 2017, 6: 125.
[28]
Li H, Wang L, Song Y Z, Wu Y Q, Zhang H, Du A M, He X M. Small, 2023, 19(32): 2370244.
[29]
Deng Z C, Liu Y, Wang L, Fu N, Li Y, Luo Y X, Wang J K, Xiao X, Wang X Y, Yang X K, He X M, Zhang H. Mater. Today, 2023, 69: 236.
[30]
Zhang H, Wang L, He X M. Battery Energy, 2021, 1(1): 20210011.
[31]
Sun Y, Ren D S, Liu G J, Mu D B, Wang L, Wu B R, Liu J H, Wu N N, He X M. Int. J. Energy Res., 2021, 45(15): 20867.
[32]
Li Y, Liu X, Wang L, Feng X N, Ren D S, Wu Y, Xu G L, Lu L G, Hou J X, Zhang W F, Wang Y L, Xu W Q, Ren Y, Wang Z F, Huang J Y, Meng X F, Han X B, Wang H W, He X M, Chen Z H, Amine K, Ouyang M. Nano Energy, 2021, 85: 105878.
[33]
Han B H, Key B, Lapidus S H, Garcia J C, Iddir H, Vaughey J T, Dogan F. ACS Appl. Mater. Interfaces, 2017, 9(47): 41291.
[34]
Xie Q, Li W D, Manthiram A. Chem. Mater., 2019, 31(3): 938.
[35]
Schipper F, Bouzaglo H, Dixit M, Erickson E M, Weigel T, Talianker M, Grinblat J, Burstein L, Schmidt M, Lampert J, Erk C, Markovsky B, Major D T, Aurbach D. Adv. Energy Mater., 2018, 8(4): 1701682.
[36]
Xia Y, Zheng J M, Wang C M, Gu M. Nano Energy, 2018, 49: 434.
[37]
Li J Y, Manthiram A. Adv. Energy Mater., 2019, 9(45): 1902731.
[38]
Zou L F, Zhao W G, Jia H P, Zheng J M, Li L Z, Abraham D P, Chen G Y, Croy J R, Zhang J G, Wang C M. Chem. Mater., 2020, 32(7): 2884.
[39]
Li H Y, Liu A, Zhang N, Wang Y Q, Yin S, Wu H H, Dahn J R. Chem. Mater., 2019, 31(18): 7574.
[40]
Song Y Z, Wang X Q, Cui H, Huang J Q, Hu Q, Xiao X, Liang H M, Yang K, Wang A P, Liu J H, Huo H, Wang L, Gao Y Z, He X M. eTransportation, 2023, 16: 100223.
[41]
Lu Y, Zhang Y D, Zhang Q, Cheng F Y, Chen J. Particuology, 2020, 53: 1.
[42]
Li H Y, Li J, Ma X W, Dahn J R. J. Electrochem. Soc., 2018, 165(5): A1038.
[43]
Tsai P C, Wen B H, Wolfman M, Choe M J, Pan M S, Su L, Thornton K, Cabana J, Chiang Y M. Energy Environ. Sci., 2018, 11(4): 860.
[44]
Zhu J, Chen G Y. J. Mater. Chem. A, 2019, 7(10): 5463.
[45]
Zhang H, He X Z, Chen Z H, Yang Y, Xu H, Wang L, He X M. Adv. Energy Mater., 2022, 12(45): 2270192.
[46]
Bi Y J, Tao J H, Wu Y Q, Li L Z, Xu Y B, Hu E Y, Wu B B, Hu J T, Wang C M, Zhang J G, Qi Y, Xiao J. Science, 2020, 370(6522): 1313.
[47]
Wang H F, Jang Y I, Huang B Y, Sadoway D R, Chiang Y M. J. Electrochem. Soc., 1999, 146(2): 473.
[48]
Lim J M, Hwang T, Kim D, Park M S, Cho K, Cho M. Sci. Rep., 2017, 7: 39669.
[49]
Liu W, Oh P, Liu X E, Lee M J, Cho W, Chae S, Kim Y, Cho J. Angew. Chem. Int. Ed., 2015, 54(15): 4440.
[50]
Liu Y, Lin X J, Sun Y G, Xu Y S, Chang B B, Liu C T, Cao A M, Wan L J. Small, 2019, 15(32): 1901019.
[51]
Yan P F, Zheng J M, Gu M, Xiao J, Zhang J G, Wang C M. Nat. Commun., 2017, 8: 14101.
[52]
Zhu J, Zheng J C, Cao G L, Li Y J, Zhou Y, Deng S Y, Hai C X. J. Power Sources, 2020, 464: 228207.
[53]
Hu Q, Wu Y Z, Ren D S, Liao J Y, Song Y Z, Liang H M, Wang A P, He Y F, Wang L, Chen Z H, He X M. Energy Storage Mater., 2022, 50: 373.
[54]
Zhang Z, Bai M H, Fan X M, Yi M Y, Zhao Y F, Zhang J J, Hong B, Zhang Z A, Hu G R, Lai Y Q. J. Power Sources, 2021, 503: 230028.
[55]
Pang P P, Tan X X, Wang Z, Cai Z J, Nan J M, Xing Z Y, Li H. Electrochim. Acta, 2021, 365: 137380.
[56]
Xu X, Huo H, Jian J Y, Wang L G, Zhu H, Xu S, He X S, Yin G P, Du C Y, Sun X L. Adv. Energy Mater., 2019, 9(15): 1803963.
[57]
Kim J, Lee H, Cha H, Yoon M, Park M, Cho J. Adv. Energy Mater., 2018, 8(6): 1702028.
[58]
Kong X B, Zhang Y G, Li J Y, Yang H Y, Dai P P, Zeng J, Zhao J B. Chem. Eng. J., 2022, 434: 134638.
[59]
Shen J X, Li H, Qi H Y, Lin Z, Li Z H, Zheng C B, Du W T, Chen H, Zhang S Q. J. Energy Chem., 2024, 88: 428.
[60]
Zeng W H, Xia F J, Tian W X, Cao F, Chen J X, Wu J S, Song R G, Mu S C. Curr. Opin. Electrochem., 2022, 31: 100831.
[61]
Zhong Z Q, Chen L Z, Huang S Z, Shang W L, Kong L Y, Sun M, Chen L, Ren W B. J. Mater. Sci., 2020, 55(7): 2913.
[62]
Kong X B, Zhang Y G, Peng S Y, Zeng J, Zhao J B. ACS Sustainable Chem. Eng., 2020, 8(39): 14938.
[63]
Ma X T, Vanaphuti P, Fu J Z, Hou J H, Liu Y T, Zhang R H, Bong S, Yao Z Y, Yang Z Z, Wang Y. Nano Energy, 2021, 87: 106194.
[64]
Lv F, Zhang Y M, Wu M T, Gu Y Z. Small, 2022, 18(28): 2201946.
[65]
Wang J P, Lu X B, Zhang Y C, Zhou J H, Wang J X, Xu S M. J. Energy Chem., 2022, 65: 681.
[66]
Guo F Y, Xie Y F, Zhang Y X. Nano Res., 2022, 15(3): 2052.
[67]
Jo C H, Voronina N, Myung S T. Energy Storage Mater., 2022, 51: 568.
[68]
Huang B, Wang M, Zhang X W, Xu G D, Gu Y J. Ionics, 2020, 26(6): 2689.
[69]
Zhu H, Tang Y, Wiaderek K M, Borkiewicz O J, Ren Y, Zhang J, Ren J C, Fan L L, Li C C, Li D F, Wang X L, Liu Q. Nano Lett., 2021, 21(23): 9997.
[70]
Sun G, Yin X C, Yang W, Song A L, Jia C X, Yang W, Du Q H, Ma Z P, Shao G J. Phys. Chem. Chem. Phys., 2017, 19(44): 29886.
[71]
Pritzl D, Teufl T, Freiberg A T S, Strehle B, Sicklinger J, Sommer H, Hartmann P, Gasteiger H A. J. Electrochem. Soc., 2019, 166(16): A4056.
[72]
Hamam I, Zhang N, Liu A, Johnson M B, Dahn J R. J. Electrochem. Soc., 2020, 167(13): 130521.
[73]
Xu Y H, Feng Q, Kajiyoshi K, Yanagisawa K, Yang X J, Makita Y, Kasaishi S, Ooi K. Chem. Mater., 2002, 14(9): 3844.
[74]
Zeng T B, Zhang C H. J. Mater. Sci., 2020, 55(25): 11535.
[75]
Hou A L, Liu Y X, Ma L B, Zhang L, Li J J, Zhang P F, Chai F T, Ren B Z. Ceram. Int., 2019, 45(15): 19420.
[76]
Berkes B B, Schiele A, Sommer H, Brezesinski T, Janek J. J. Solid State Electrochem., 2016, 20(11): 2961.
[77]
Xu G L, Liu X, Daali A, Amine R, Chen Z H, Amine K. Adv. Funct. Mater., 2020, 30(46): 2004748.
[78]
Ma B, Huang X, Liu Z F, Tian X H, Zhou Y K. J. Mater. Sci., 2022, 57(4): 2857.
[79]
Zou Y G, Meng F Q, Xiao D D, Sheng H, Chen W P, Meng X H, Du Y H, Gu L, Shi J L, Guo Y G. Nano Energy, 2021, 87: 106172.
[80]
Du Y H, Sheng H, Meng X H, Zhang X D, Zou Y G, Liang J Y, Fan M, Wang F Y, Tang J L, Cao F F, Shi J L, Cao X F, Guo Y G. Nano Energy, 2022, 94: 106901.
[81]
Li X L, Peng W X, Tian R Z, Song D W, Wang Z Y, Zhang H Z, Zhu L Y, Zhang L Q. Electrochim. Acta, 2020, 363: 137185.
[82]
Fan X M, Ou X, Zhao W G, Liu Y, Zhang B, Zhang J F, Zou L F, Seidl L, Li Y Z, Hu G R, Battaglia C, Yang Y. Nat. Commun., 2021, 12: 5320.
[83]
Zhang Q M, Chu Y Q, Wu J X, Dong P Y, Deng Q, Chen C D, Huang K, Yang C H, Lu J. Adv. Energy Mater., 2024, 14(12): 2303764.
[84]
Dong J, He H H, Zhang D Y, Chang C K. J. Mater. Sci. Mater. Electron., 2019, 30(19): 18200.
[85]
Zhang D K, Liu Y, Feng L W, Qin W C. J. Solid State Chem., 2022, 306: 122796.
[86]
Zhao Z Y, Huang B, Wang M, Yang X W, Gu Y J. Solid State Ion., 2019, 342: 115065.
[87]
Liu Z F, Zheng S, Zhou Y K, Tian X H. Chem. Eng. Sci., 2024, 285: 119627.
[88]
Zhang P F, Liu Z F, Ma B, Li P, Zhou Y K, Tian X H. Ceram. Int., 2021, 47(23): 33843.
[89]
Zhang B, Cheng L, Deng P, Xiao Z M, Ming L, Zhao Y, Xu B H, Zhang J F, Wu B, Ou X. J. Alloys Compd., 2021, 872: 159619.
[90]
Bao W D, Qian G N, Zhao L Q, Yu Y, Su L X, Cai X C, Zhao H J, Zuo Y Q, Zhang Y, Li H Y, Peng Z J, Li L S, Xie J. Nano Lett., 2020, 20(12): 8832.

Funding

National Natural Science Foundation of China(U21A20170)
PDF(9639 KB)

Accesses

Citation

Detail

Sections
Recommended

/