Construction of Polymer-Microorganism Hybrids for Catalysis

Yutai Zou, Wenshuo Wang, Jian Liu

Prog Chem ›› 2024, Vol. 36 ›› Issue (6) : 815-826.

PDF(25270 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(25270 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (6) : 815-826. DOI: 10.7536/PC231113
Review

Construction of Polymer-Microorganism Hybrids for Catalysis

Author information +
History +

Abstract

The design and development of material-microorganism hybrid systems that can use solar energy for green biosynthesis is expected to provide human society with a viable solution for addressing the global energy shortage and environmental crisis.in recent years,the construction of hybrid systems by coupling excellent physical and chemical features of artificial materials with the biosynthetic function of microorganisms has received extensive attention.polymeric materials,due to versatile functions,excellent designability and good biocompatibility,have been widely used to construct material-microorganism hybrid systems,and have shown broad application prospects In the field of bioenergy.Based on the functional features of Polymeric materials,this paper systematically summarizes different types of polymer-microorganism biohybrid systems,and discusses the augmentation of their catalytic performance by enhancing light utilization,accelerating electron transfer,and stabilizing biological activity.Finally,the challenges and future development of polymer-microorganism hybrid systems are discussed.

Contents

1 Introduction

2 Construction of polymer-microorganism biohybrids

2.1 Conjugated polymers

2.2 Polyelectrolytes and polyphenols

3 Polymer-microorganism biohybrids with enhanced biocatalysis

3.1 Enhance light utilization to strengthen microbial photosynthesis

3.2 Accelerate electron transfer to strengthen microbial electrosynthesis

3.3 Stabilize cell activity to strengthen microbial conversion of chemicals

4 Conclusion and outlook

Key words

polymer / biohybrid / biocatalysis / cell surface engineering / semi-artificial photosynthesis

Cite this article

Download Citations
Yutai Zou , Wenshuo Wang , Jian Liu. Construction of Polymer-Microorganism Hybrids for Catalysis[J]. Progress in Chemistry. 2024, 36(6): 815-826 https://doi.org/10.7536/PC231113

References

[1]
Nelson N, Ben-Shem A. Nat. Rev. Mol. Cell Biol., 2004, 5(12): 971.
[2]
Jia C C, Kan X N, Zhang X, Lin G, Liu W G, Wang Z Y, Zhu S Q, Ju D X, Liu J. Chem. Eng. J., 2022, 427: 131554.
[3]
Liu J, Antonietti M. Energy Environ. Sci., 2013, 6(5): 1486.
[4]
Liu W G, Hu W J, Yang L J, Liu J. Nano Energy, 2020, 73: 104750.
[5]
Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I, Nørskov J K, Jaramillo T F. Science, 2017, 355(6321): eaad4998.
[6]
Ross M B, De Luna P, Li Y F, Dinh C T, Kim D, Yang P D, Sargent E H. Nat. Catal., 2019, 2(8): 648.
[7]
Shan X Y, Liu J, Mu H R, Xiao Y, Mei B B, Liu W G, Lin G, Jiang Z, Wen L P, Jiang L. Angew. Chem. Int. Ed., 2020, 59(4): 1659.
[8]
Cestellos-Blanco S, Zhang H, Kim J M, Shen Y X, Yang P D. Nat. Catal., 2020, 3(3): 245.
[9]
Bell E L, Finnigan W, France S P, Green A P, Hayes M A, Hepworth L J, Lovelock S L, Niikura H, Osuna S, Romero E, Ryan K S, Turner N J, Flitsch S L. Nat. Rev. Meth. Primers, 2021, 1: 46.
[10]
Miller D C, Athavale S V, Arnold F H. Nat. Synth., 2022, 1(1): 18.
[11]
Kornienko N, Zhang J Z, Sakimoto K K, Yang P D, Reisner E. Nat. Nanotechnol., 2018, 13(10): 890.
[12]
Ko Y S, Kim J W, Lee J A, Han T, Kim G B, Park J E, Lee S Y. Chem. Soc. Rev., 2020, 49(14): 4615.
[13]
Liu Z H, Wang K, Chen Y, Tan T W, Nielsen J. Nat. Catal., 2020, 3(3): 274.
[14]
Lubitz W, Ogata H, Rüdiger O, Reijerse E. Chem. Rev., 2014, 114(8): 4081.
[15]
Zhang S W, Heyes D J, Feng L L, Sun W L, Johannissen L O, Liu H T, Levy C W, Li X M, Yang J, Yu X L, Lin M, Hardman S J O, Hoeven R, Sakuma M, Hay S, Leys D, Rao Z H, Zhou A W, Cheng Q, Scrutton N S. Nature, 2019, 574(7780): 722.
[16]
Tang T C, An B L, Huang Y Y, Vasikaran S, Wang Y Y, Jiang X Y, Lu T K, Zhong C. Nat. Rev. Mater., 2021, 6(4): 332.
[17]
Lin G, Zhang Y Y, Hua Y T, Zhang C H, Jia C C, Ju D X, Yu C M, Li P, Liu J. Angew. Chem. Int. Ed., 2022, 61: e202206283.
[18]
Atsumi S, Higashide W, Liao J C. Nat. Biotechnol., 2009, 27(12): 1177.
[19]
Liew F E, Nogle R, Abdalla T, Rasor B J, Canter C, Jensen R O, Wang L, Strutz J, Chirania P, De Tissera S, Mueller A P, Ruan Z H, Gao A, Tran L, Engle N L, Bromley J C, Daniell J, Conrado R, Tschaplinski T J, Giannone R J, Hettich R L, Karim A S, Simpson S D, Brown S D, Leang C, Jewett M C, Köpke M. Nat. Biotechnol., 2022, 40(3): 335.
[20]
Ro D K, Paradise E M, Ouellet M, Fisher K J, Newman K L, Ndungu J M, Ho K A, Eachus R A, Ham T S, Kirby J, Chang M C Y, Withers S T, Shiba Y, Sarpong R, Keasling J D. Nature, 2006, 440(7086): 940.
[21]
Sakimoto K K, Wong A B, Yang P D. Science, 2016, 351(6268): 74.
[22]
Hu G P, Li Z H, Ma D L, Ye C, Zhang L P, Gao C, Liu L M, Chen X L. Nat. Catal., 2021, 4(5): 395.
[23]
Wang X Y, Zhang J C, Li K, An B L, Wang Y Y, Zhong C. Sci. Adv., 2022, 8(18): eabm7665.
[24]
Ye J, Wang C, Gao C, Fu T, Yang C H, Ren G P, J, Zhou S G, Xiong Y J. Nat. Commun., 2022, 13: 6612.
[25]
Lin Y L, Shi J Y, Feng W, Yue J P, Luo Y Q, Chen S, Yang B, Jiang Y W, Hu H C, Zhou C K, Shi F Y, Prominski A, Talapin D V, Xiong W, Gao X, Tian B Z. Sci. Adv., 2023, 9(29): eadg5858.
[26]
Yu W, Zeng Y, Wang Z H, Xia S P, Yang Z W, Chen W J, Huang Y M, Lv F T, Bai H T, Wang S. Sci. Adv., 2023, 9(11): eadf6772.
[27]
Cao B C, Zhao Z P, Peng L L, Shiu H Y, Ding M N, Song F, Guan X, Lee C K, Huang J, Zhu D, Fu X Y, Wong G C L, Liu C, Nealson K, Weiss P S, Duan X F, Huang Y. Science, 2021, 373(6561): 1336.
[28]
Yu Y Y, Wang Y Z, Fang Z, Shi Y T, Cheng Q W, Chen Y X, Shi W D, Yong Y C. Nat. Commun., 2020, 11: 4087.
[29]
Song R B, Wu Y C, Lin Z Q, Xie J, Tan C H, Loo J S C, Cao B, Zhang J R, Zhu J J, Zhang Q C. Angew. Chem. Int. Ed., 2017, 56(35): 10516.
[30]
Wang R W, Li H D, Sun J Z, Zhang L, Jiao J, Wang Q Q, Liu S Q. Adv. Mater., 2021, 33: 2004051.
[31]
Xiong W, Zhao X H, Zhu G X, Shao C Y, Li Y L, Ma W M, Xu X R, Tang R K. Angew. Chem. Int. Ed., 2015, 54(41): 11961.
[32]
Su D Y, Qi J R, Liu X M, Wang L, Zhang H, Xie H, Huang X. Angew. Chem. Int. Ed., 2019, 58(12): 3992.
[33]
Xu Z J, Qi J R, Wang S L, Liu X M, Li M, Mann S, Huang X. Nat. Commun., 2023, 14: 1872.
[34]
Sakkos J K, Wackett L P, Aksan A. Sci. Rep., 2019, 9: 3158.
[35]
Wang L, Hu Z Y, Yang X Y, Zhang B B, Geng W, Van Tendeloo G, Su B L. Chem. Commun., 2017, 53(49): 6617.
[36]
Wang W S, Wang S T. Lab a Chip, 2022, 22(6): 1042.
[37]
Pan C, Li J J, Hou W L, Lin S S, Wang L, Pang Y, Wang Y F, Liu J Y. Adv. Mater., 2021, 33(13): 2007379.
[38]
Niu J, Lunn D J, Pusuluri A, Yoo J I, O’Malley M A, Mitragotri S, Soh H T, Hawker C J. Nat. Chem., 2017, 9(6): 537.
[39]
Geng J, Li W S, Zhang Y C, Thottappillil N, Clavadetscher J, Lilienkampf A, Bradley M. Nat. Chem., 2019, 11(6): 578.
[40]
Lin J C, Chien C Y, Lin C L, Yao B Y, Chen Y I, Liu Y H, Fang Z S, Chen J Y, Chen W Y, Lee N N, Chen H W, Hu C M J. Nat. Commun., 2019, 10: 1057.
[41]
Yang S H, Ko E H, Jung Y H, Choi I S. Angew. Chem. Int. Ed., 2011, 50(27): 6115.
[42]
Wang W S, Gan Q, Zhang Y Q, Lu X, Wang H X, Zhang Y K, Hu H, Chen L N, Shi L X, Wang S T, Zheng Z J. Adv. Mater., 2021, 33(34): 2102348.
[43]
Guo J L, Suástegui M, Sakimoto K K, Moody V M, Xiao G, Nocera D G, Joshi N S. Science, 2018, 362(6416): 813.
[44]
Lin J C, Hsu C Y, Chen J Y, Fang Z S, Chen H W, Yao B Y, Shiau G H M, Tsai J S, Gu M, Jung M, Lee T Y, Hu C M J. Adv. Mater., 2021, 33: 2101190.
[45]
Liu J, Kim Y S, Richardson C E, Tom A, Ramakrishnan C, Birey F, Katsumata T, Chen S C, Wang C, Wang X, Joubert L M, Jiang Y W, Wang H L, Fenno L E, Tok J B H, Pașca S P, Shen K, Bao Z N, Deisseroth K. Science, 2020, 367(6484): 1372.
[46]
Sessler C D, Zhou Y M, Wang W B, Hartley N D, Fu Z Y, Graykowski D, Sheng M, Wang X, Liu J. Sci. Adv., 2022, 8(49): eade1136.
[47]
Gai P P, Yu W, Zhao H, Qi R L, Li F, Liu L B, Lv F T, Wang S. Angew. Chem. Int. Ed., 2020, 59(18): 7224.
[48]
Zeng Y, Zhou X, Qi R L, Dai N, Fu X C, Zhao H, Peng K, Yuan H T, Huang Y M, Lv F T, Liu L B, Wang S. Adv. Funct. Mater., 2021, 31(8): 2007814.
[49]
Zeng Y, Bai H T, Yu W, Xia S P, Shen Q, Huang Y M, Lv F T, Bazan G C, Wang S. Angew. Chem. Int. Ed., 2023, 60: e202303877.
[50]
Quek G, McCuskey S R, Vázquez R J, Cox-Vázquez S J, Bazan G C. Adv. Electron. Mater., 2023, 9(7): 2370035.
[51]
Du Q, Li T, Li N, Wang X. Environ. Sci. Technol. Lett., 2017, 4(8): 345.
[52]
Sun Z Y, Hübner R, Li J, Wu C Z. Nat. Commun., 2022, 13: 3142.
[53]
Ding L, Yu Z D, Wang X Y, Yao Z F, Lu Y, Yang C Y, Wang J Y, Pei J. Chem. Rev., 2023, 123(12): 7421.
[54]
Zeglio E, Rutz A L, Winkler T E, Malliaras G G, Herland A. Adv. Mater., 2019, 31(22): 1806712.
[55]
Zhou X, Zeng Y, Tang Y Y, Huang Y M, Lv F T, Liu L B, Wang S. Sci. Adv., 2020, 6(35): eabc5237.
[56]
Qi R L, Zhao H, Zhou X, Liu J, Dai N, Zeng Y, Zhang E D, Lv F T, Huang Y M, Liu L B, Wang Y L, Wang S. Angew. Chem. Int. Ed., 2021, 60(11): 5759.
[57]
Xu M Y, Tremblay P L, Jiang L L, Zhang T. Green Chem., 2019, 21(9): 2392.
[58]
Tremblay P L, Xu M Y, Chen Y M, Zhang T. iScience, 2020, 23(1): 100784.
[59]
Ye J, Chen Y P, Gao C, Wang C, Hu A D, Dong G W, Chen Z, Zhou S G, Xiong Y J. Angew. Chem. Int. Ed., 2022, 61(52): e202217507.
[60]
Sheng Y K, Guo F, Guo B C, Wang N, Sun Y Y, Liu H, Feng X D, Han Q, Yu Y, Li C. ACS Synth. Biol., 2023, 12(9): 2715.
[61]
Wu D, Zhang W M, Fu B H, Zhang Z H. Joule, 2022, 6(10): 2293.
[62]
Zhang P B, Zhou X, Wang X Y, Li Z P. Colloids Surf. B Biointerfaces, 2023, 228: 113383.
[63]
Luo H P, Qi J X, Zhou M Z, Liu G L, Lu Y B, Zhang R D, Zeng C P. Bioresour. Technol., 2020, 309: 123322.
[64]
Wang Z J, Gao D, Zhan Y, Xing C F. ACS Appl. Bio Mater., 2020, 3(5): 3423.
[65]
Yu W, Pavliuk M V, Liu A J, Zeng Y, Xia S P, Huang Y M, Bai H T, Lv F T, Tian H N, Wang S. ACS Appl. Mater. Interfaces, 2023, 15(1): 2183.
[66]
Yu W, Bai H T, Zeng Y, Zhao H, Xia S P, Huang Y M, Lv F T, Wang S. Research, 2022, 2022: 9834093.
[67]
Wang D L, Pan J Y, Xu M, Liu B C, Hu J P, Hu S G, Hou H J, Elmaadawy K, Yang J K, Xiao K K, Liang S. J. Power Sources, 2021, 483: 229220.
[68]
Zhou X, Zeng Y, Lv F T, Bai H T, Wang S. Acc. Chem. Res., 2022, 55(2): 156.
[69]
Driks A. Trends Microbiol., 2002, 10(6): 251.
[70]
Hildebrand M. Chem. Rev., 2008, 108(11): 4855.
[71]
Hong D, Park M, Yang S H, Lee J, Kim Y G, Choi I S. Trends Biotechnol., 2013, 31(8): 442.
[72]
Lei Q, Guo J M, Kong F H, Cao J F, Wang L, Zhu W, Brinker C J. J. Am. Chem. Soc., 2021, 143(17): 6305.
[73]
Chen Z W, Ji H W, Zhao C Q, Ju E G, Ren J S, Qu X G. Angew. Chem. Int. Ed., 2015, 54(16): 4904.
[74]
Wei W, Sun P Q, Li Z, Song K S, Su W Y, Wang B, Liu Y Z, Zhao J. Sci. Adv., 2018, 4(2): eaap9253.
[75]
Konnova S A, Lvov Y M, Fakhrullin R F. Langmuir, 2016, 32(47): 12552.
[76]
Lee H, Dellatore S M, Miller W M, Messersmith P B. Science, 2007, 318(5849): 426.
[77]
Guo J L, Tardy B L, Christofferson A J, Dai Y L, Richardson J J, Zhu W, Hu M, Ju Y, Cui J W, Dagastine R R, Yarovsky I, Caruso F. Nat. Nanotechnol., 2016, 11(12): 1105.
[78]
Blankenship R E, Tiede D M, Barber J, Brudvig G W, Fleming G, Ghirardi M, Gunner M R, Junge W, Kramer D M, Melis A, Moore T A, Moser C C, Nocera D G, Nozik A J, Ort D R, Parson W W, Prince R C, Sayre R T. Science, 2011, 332(6031): 805.
[79]
Galloway J N, Townsend A R, Erisman J W, Bekunda M, Cai Z C, Freney J R, Martinelli L A, Seitzinger S P, Sutton M A. Science, 2008, 320(5878): 889.
[80]
Tan C L, Xu P, Tao F. Trends Biotechnol., 2022, 40(12): 1488.
[81]
Zhang S S, Sun J H, Feng D D, Sun H L, Cui J Y, Zeng X X, Wu Y N, Luan G D, Lu X F. Nat. Commun., 2023, 14: 3425.
[82]
Kumar A, Hsu L H H, Kavanagh P, Barrière F, Lens P N L, Lapinsonnière L, Lienhard V J H, Schröder U, Jiang X C, Leech D. Nat. Rev. Chem., 2017, 1(3): 24.
[83]
Rabaey K, Rozendal R A. Nat. Rev. Microbiol., 2010, 8(10): 706.
[84]
Fang Z, Tang Y J, Koffas M A. Curr. Opin. Biotechnol., 2022, 75: 102687.
[85]
Zhang T, Nie H R, Bain T S, Lu H Y, Cui M M, Snoeyenbos-West O L, Franks A E, Nevin K P, Russell T P, Lovley D R. Energy Environ. Sci., 2013, 6(1): 217.
[86]
Kaneko M, Ishihara K, Nakanishi S. Small, 2020, 16(34): 2001849.
[87]
McCuskey S R, Su Y D, Leifert D, Moreland A S, Bazan G C. Adv. Mater., 2020, 32(24): 2070181.
[88]
Rugbjerg P, Sommer M O A. Nat. Biotechnol., 2019, 37(8): 869.
[89]
Wehrs M, Tanjore D, Eng T, Lievense J, Pray T R, Mukhopadhyay A. Trends Microbiol., 2019, 27(6): 524.

Funding

National Natural Science Foundation of China(22175104)
National Natural Science Foundation of China(22205253)
Natural Science Foundation of Shandong Province(ZR2019ZD47)
Shandong Excellent Young Scientists Fund Program(2023HWYQ-105)
Taishan Scholars Program
PDF(25270 KB)

Accesses

Citation

Detail

Sections
Recommended

/