Recent Advances in Selective Oxidation of Glycerol to Lactic Acid over Noble Metal Catalysts

Haodong Xie, Zunlong Hu, Haobin Wei, Sida Ge, Zixuan Wang, Yuming Zhang, Zhijie Wu

Prog Chem ›› 2024, Vol. 36 ›› Issue (7) : 1088-1101.

PDF(10387 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(10387 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (7) : 1088-1101. DOI: 10.7536/PC231114
Review

Recent Advances in Selective Oxidation of Glycerol to Lactic Acid over Noble Metal Catalysts

Author information +
History +

Abstract

the problem of excess glycerol as a by-product of biodiesel production has become more and more prominent,and the catalytic conversion of glycerol to high-value-added chemicals is of great significance.in recent years,noble metal catalysts(Au,Pt,Pd,etc.)are often used to catalyze the conversion of glycerol to lactic acid,in which the improvement of lactic acid selectivity and catalyst stability are the key challenges for the catalysts.Here,we summarized the reaction mechanism of selective oxidation of glycerol to lactic acid over supported noble metal catalysts,revealing the role of different metal active sites.At the same time,the effects of metal particle size,support,and pH of the reaction system on the reaction performance are discussed based on the structure and electronic properties of noble metal active sites.Also,the role of metal in the promotion and support of strong interaction on the activation of the hydroxyl groups of glycerol was clarified.Finally,the main challenges and prospects for the selective oxidation of glycerol to lactic acid were clarified。

Contents

1 Introduction

2 Reaction mechanism of glycerol to lactic acid

2.1 Hydrothermal conversion of glycerol to lactic acid

2.2 Selective oxidation of glycerol to lactic acid

2.3 Electrocatalytic oxidation of glycerol to lactic acid

3 Noble metal catalyst

3.1 Au-based catalyst

3.2 Pt-based catalyst

3.3 Other noble metal catalyst

4 Catalyst supports and roles

4.1 Carbon materials

4.2 Zeolite

4.3 Metallic oxide

4.4 Other supports

5 Catalyst deactivation and reusability

6 Conclusion and outlook

Key words

glycerol / lactic acid / selective oxidation / noble metal / catalysts

Cite this article

Download Citations
Haodong Xie , Zunlong Hu , Haobin Wei , et al . Recent Advances in Selective Oxidation of Glycerol to Lactic Acid over Noble Metal Catalysts[J]. Progress in Chemistry. 2024, 36(7): 1088-1101 https://doi.org/10.7536/PC231114

References

[1]
Arcanjo M R A, da Silva I J Jr, Cavalcante C L Jr, Iglesias J, Morales G, Paniagua M, Melero J A, Vieira R S. Biofuels Bioprod. Biorefin., 2020, 14(2): 357.
[2]
Liu Y J, Zhong B Q, Lawal A. RSC Adv., 2022, 12(43): 27997.
[3]
Koranian P, Huang Q, Dalai A K, Sammynaiken R. Catalysts, 2022, 12(8): 897.
[4]
Tang C, Li S M, Yu S S. Chinese J. Mol. Catal., 2022, 36(4): 398.
(唐成, 李双明, 于三三. 分子催化, 2022, 36(4): 398.)
[5]
Dodekatos G, Schünemann S, Tüysüz H. ACS Catal., 2018, 8(7): 6301.
[6]
Ghaffar T, Irshad M, Anwar Z, Aqil T, Zulifqar Z, Tariq A, Kamran M, Ehsan N, Mehmood S. J. Radiat. Res. Appl. Sci., 2014, 7(2): 222.
[7]
Wang K, Yang Z Y, Ma Y Y, Zhao W, Sun J Y, Lu T L, He H. Biofuels Bioprod. Biorefin., 2022, 16(5): 1428.
[8]
Dusselier M, Van Wouwe P, Dewaele A, Makshina E, Sels B F. Energy Environ. Sci., 2013, 6(5): 1415.
[9]
Zavrazhnov S A, Esipovich A L, Danov S M, Zlobin S Y, Belousov A S. Kinet. Catal., 2018, 59(4): 459.
[10]
Zhou C H C, Beltramini J N, Fan Y X, Max Lu G Q. Chem. Soc. Rev., 2008, 37(3): 527.
[11]
Demirel-Gülen S, Lucas M, Claus P. Catal. Today, 2005, 102: 166.
[12]
Gupta G, Roling L T. ChemCatChem, 2023, 15(2): e202201188.
[13]
Yang L H, Li X W, Chen P, Hou Z Y. Chin. J. Catal.-Eur. J., 2019, 40(7): 1020.
[14]
Akbulut D, Özkar S. RSC Adv., 2022, 12(29): 18864.
[15]
Shen Y H, Zhang S H, Li H J, Ren Y, Liu H C. Chem. - Eur. J., 2010, 16(25): 7368.
[16]
Lu T L, Fu X M, Zhou L P, Su Y L, Yang X M, Han L, Wang J F, Song C Y. ACS Catal., 2017, 7(10): 7274.
[17]
Kishida H, Jin F M, Zhou Z Y, Moriya T, Enomoto H. Chem. Lett., 2005, 34(11): 1560.
[18]
Shen Z, Jin F M, Zhang Y L, Wu B, Kishita A, Tohji K, Kishida H. Ind. Eng. Chem. Res., 2009, 48(19): 8920.
[19]
Sharninghausen L S, Campos J, Manas M G, Crabtree R H. Nat. Commun., 2014, 5: 5084.
[20]
Xu S G, Tian Q, Xiao Y, Zhang W Y, Liao S Q, Li J M, Hu C W. J. Catal., 2022, 413: 407.
[21]
Chen L, Ren S J, Ye X P. Fuel Process. Technol., 2014, 120: 40.
[22]
Tang Z C, Liu P, Cao H T, Bals S, Heeres H J, Pescarmona P P. ACS Catal., 2019, 9(11): 9953.
[23]
Lakshmanan P, Upare P P, Le N T, Hwang Y K, Hwang D W, Lee U H, Kim H R, Chang J S. Appl. Catal. A Gen., 2013, 468: 260.
[24]
Xu J L, Zhang H Y, Zhao Y F, Yu B, Chen S, Li Y B, Hao L D, Liu Z M. Green Chem., 2013, 15(6): 1520.
[25]
Cho H J, Chang C C, Fan W. Green Chem., 2014, 16(7): 3428.
[26]
Tao M L, Zhang D, Deng X, Li X Y, Shi J Y, Wang X H. Chem. Commun., 2016, 52(16): 3332.
[27]
Feng S X, Takahashi K, Miura H, Shishido T. Fuel Process. Technol., 2020, 197: 106202.
[28]
Komanoya T, Suzuki A, Nakajima K, Kitano M, Kamata K, Hara M. ChemCatChem, 2016, 8(6): 1094.
[29]
Kano E, Aihara T, Ghampson I T, Nogami T, Miura H, Shishido T. ACS Sustainable Chem. Eng., 2022, 10(37): 12072.
[30]
Pazhavelikkakath Purushothaman R K, Van Haveren J, Melián- Cabrera I, van Eck E R H, Heeres H J. ChemSusChem, 2014, 7(4): 1140.
[31]
Purushothaman R K P, van Haveren J, van Es D S, Melián-Cabrera I, Meeldijk J D, Heeres H J. Appl. Catal. B Environ., 2014, 147: 92.
[32]
Pescarmona P P, Janssen K P F, Delaet C, Stroobants C, Houthoofd K, Philippaerts A, De Jonghe C, Paul J S, Jacobs P A, Sels B F. Green Chem., 2010, 12(6): 1083.
[33]
Li L, Collard X, Bertrand A, Sels B F, Pescarmona P P, Aprile C. J. Catal., 2014, 314: 56.
[34]
Lux S, Stehring P, Siebenhofer M. Sep. Sci. Technol., 2010, 4512-13: 1921.
[35]
Dai C C, Sun L B, Liao H B, Khezri B, Webster R D, Fisher A C, Xu Z J. J. Catal., 2017, 356: 14.
[36]
Yan Y F, Wang Q Y, Hao P J, Zhou H, Kong X G, Li Z H, Shao M F. ACS Appl. Mater. Interfaces, 2023, 15(19): 23265.
[37]
He Z Y, Ning X M, Yang G X, Wang H J, Cao Y H, Peng F, Yu H. Catal. Today, 2021, 365: 162.
[38]
Yang H L, Li G G, Jiang G X, Zhang Z S, Hao Z P. Appl. Catal. B Environ., 2023, 325: 122384.
[39]
Villa A, Dimitratos N, Chan-Thaw C E, Hammond C, Prati L, Hutchings G J. Acc. Chem. Res., 2015, 48(5): 1403.
[40]
Davis S E, Ide M S, Davis R J. Green Chem., 2013, 15(1): 17.
[41]
Della Pina C, Falletta E, Rossi M. Chem. Soc. Rev., 2012, 41(1): 350.
[42]
Hashmi A S K. Chem. Rev., 2007, 107(7): 3180.
[43]
Meng Y, Zou S H, Zhou Y H, Yi W Z, Yan Y, Ye B, Xiao L P, Liu J J, Kobayashi H, Fan J. Catal. Sci. Technol., 2018, 8(14): 3704.
[44]
Biella S, Prati L, Rossi M. J. Catal., 2002, 206(2): 242.
[45]
Bianchi C, Porta F, Prati L, Rossi M. Top. Catal., 2000, 13(3): 231.
[46]
Ketchie W C, Murayama M, Davis R J. J. Catal., 2007, 250(2): 264.
[47]
Redina E A, Kirichenko O A, Greish A A, Kucherov A V, Tkachenko O P, Kapustin G I, Mishin I V, Kustov L M. Catal. Today, 2015, 246: 216.
[48]
Zope B N, Hibbitts D D, Neurock M, Davis R J. Science, 2010, 330(6000): 74.
[49]
Purushothaman R K P, van Haveren J, Mayoral A, Melián-Cabrera I, Heeres H J. Top. Catal., 2014, 57(17): 1445.
[50]
Shen Y H, Li Y M, Liu H C. J. Energy Chem., 2015, 24(5): 669.
[51]
Tang Z C, Fiorilli S L, Heeres H J, Pescarmona P P. ACS Sustainable Chem. Eng., 2018, 6(8): 10923.
[52]
Tang Z C, Boer D G, Syariati A, Enache M, Rudolf P, Heeres H J, Pescarmona P P. Green Chem., 2019, 21(15): 4115.
[53]
Zhou L P, Xu Y Y, Yang X M, Lu T L, Han L. Energy Convers. Manag., 2019, 196: 277.
[54]
Bruno A M, Chagas C A, Souza M M V M, Manfro R L. Renew. Energy, 2018, 118: 160.
[55]
Ftouni J, Villandier N, Auneau F, Besson M, Djakovitch L, Pinel C. Catal. Today, 2015, 257: 267.
[56]
Checa M, Auneau F, Hidalgo-Carrillo J, Marinas A, Marinas J M, Pinel C, Urbano F J. Catal. Today, 2012, 196(1): 91.
[57]
Wu G D, Liu Y N, He Y F, Feng J T, Li D Q. Appl. Catal. B Environ., 2021, 291: 120061.
[58]
Zhang C, Wang T, Ding Y J. Catal. Lett., 2017, 147(5): 1197.
[59]
Oberhauser W, Evangelisti C, Tiozzo C, Vizza F, Psaro R. ACS Catal., 2016, 6(3): 1671.
[60]
An Z, Zhang Z L, Huang Z Y, Han H B, Song B B, Zhang J, Ping Q, Zhu Y R, Song H Y, Wang B, Zheng L R, He J. Nat. Commun., 2022, 13: 5467.
[61]
Li Y, Zaera F. J. Catal., 2015, 326: 116.
[62]
Lei J Q, Dong H, Duan X Z, Chen W Y, Qian G, Chen D, Zhou X G. Ind. Eng. Chem. Res., 2016, 55(2): 420.
[63]
Sun Y Y, Li X W, Wang J G, Ning W S, Fu J, Lu X Y, Hou Z Y. Appl. Catal. B Environ., 2017, 218: 538.
[64]
Zhang C, Wang T, Liu X, Ding Y J. J. Mol. Catal. A Chem., 2016, 424: 91.
[65]
Zhang G Y, Jin X, Guan Y N, Yin B, Chen X B, Liu Y B, Feng X, Shan H H, Yang C H. Ind. Eng. Chem. Res., 2019, 58(31): 14548.
[66]
Li Y B, Chen S, Xu J L, Zhang H Y, Zhao Y F, Wang Y B, Liu Z M. CLEAN, 2014, 42(8): 1140.
[67]
Rinaudo M G, Beltrán A M, Fernández A, Cadús L E, Morales M R. Results Eng., 2022, 16: 100737.
[68]
Marques F L, Oliveira A C, Mendes Filho J, Rodríguez-Castellón E, Cavalcante C L, Vieira R S. Fuel Process. Technol., 2015, 138: 228.
[69]
Arcanjo M R A, Silva I J, Rodríguez-Castellón E, Infantes-Molina A, Vieira R S. Catal. Today, 2017, 279: 317.
[70]
Shen L Q, Yu Z Y, Zhang D, Yin H B, Wang C T, Wang A L. J. Chem. Technol. Biotechnol., 2019, 94(1): 204.
[71]
Ten S A, Kurmanova M D, Kurmanbayeva K, Torbina V V, Stonkus O A, Vodyankina O V. Appl. Catal. A Gen., 2024, 674: 119603.
[72]
Li Y, Nielsen M, Li B, Dixneuf P H, Junge H, Beller M. Green Chem., 2015, 17(1): 193.
[73]
Wang S, Yin K H, Zhang Y C, Liu H C. ACS Catal., 2013, 3(9): 2112.
[74]
Jiang Z W, Zhang Z R, Wu T B, Zhang P, Song J L, Xie C, Han B X. Chem., 2017, 12(13): 1598.
[75]
Pemmana H R, Barnwal P K, Uppaluri R V, Peela N R. J. Ind. Eng. Chem., 2023, 124: 224.
[76]
Lari G M, García-Muelas R, Mondelli C, López N, Pérez-Ramírez J. Green Chem., 2016, 18(17): 4682.
[77]
Tao M L, Zhang D, Guan H Y, Huang G H, Wang X H. Sci. Rep., 2016, 6: 29840.
[78]
Gong Y T, Xie L, Chen C H, Liu J R, Antonietti M, Wang Y. Prog. Mater. Sci., 2023, 132: 101048.
[79]
Zhang M Y, Liang D, Nie R F, Lu X Y, Chen P, Hou Z Y. Chin. J. Catal., 2012, 33(7-8): 1340.
[80]
Schiros T, Nordlund D, Pálová L, Prezzi D, Zhao L Y, Kim K S, Wurstbauer U, Gutiérrez C, Delongchamp D, Jaye C, Fischer D, Ogasawara H, Pettersson L G M, Reichman D R, Kim P, Hybertsen M S, Pasupathy A N. Nano Lett., 2012, 12(8): 4025.
[81]
Chen S S, Qi P Y, Chen J, Yuan Y Z. RSC Adv., 2015, 5(40): 31566.
[82]
Zhang M Y, Shi J J, Sun Y Y, Ning W S, Hou Z Y. Catal. Commun., 2015, 70: 72.
[83]
Sun Q M, Wang N, Yu J H. Adv. Mater., 2021, 33(51): 2104442.
[84]
Suib S L, Přech J, Szaniawska E, Čejka J. Chem. Rev., 2023, 123(3): 877.
[85]
Xia Y Q, Wu K Y, Liu C, Zhao X J, Wang J, Cao J X, Chen Z X, Fang M C, Yu J, Zhu C, Zhang X H, Wang Z L. Adv. Sci., 2024, 11(10): 2306533.
[86]
Asgar Pour Z, Boer D G, Fang S, Tang Z C, Pescarmona P P. Catalysts, 2021, 11(11): 1346.
[87]
Tang B, Wang D, Li A, Tang H M, Yang E C, Dai W L. Microporous Mesoporous Mater., 2023, 347: 112348.
[88]
Cho H J, Dornath P, Fan W. ACS Catal., 2014, 4(6): 2029.
[89]
Douthwaite M, Powell N, Taylor A, Ford G, López J M, Solsona B, Yang N T, Sanahuja-Parejo O, He Q, Morgan D J, Garcia T, Taylor S H. ChemCatChem, 2020, 12(11): 3097.
[90]
Ide M S, Davis R J. Acc. Chem. Res., 2014, 47(3): 825.
[91]
Pan Y N, Wu G D, He Y F, Feng J T, Li D Q. J. Catal., 2019, 369: 222.
[92]
Evans C D, Kondrat S A, Smith P J, Manning T D, Miedziak P J, Brett G L, Armstrong R D, Bartley J K, Taylor S H, Rosseinsky M J, Hutchings G J. Faraday Discuss., 2016, 188: 427.
[93]
An Z, Ma H H, Han H B, Huang Z Y, Jiang Y T, Wang W L, Zhu Y R, Song H Y, Shu X, Xiang X, He J. ACS Catal., 2020, 10(21): 12437.
[94]
Wang C Y, Zhang X Q, Li J F, Qi X Y, Guo Z Y, Wei H, Chu H B. ACS Appl. Mater. Interfaces, 2021, 13(1): 522.
[95]
Gándara F, Perles J, Snejko N, Iglesias M, Gómez-Lor B, Gutiérrez-Puebla E, Monge M Á. Angew. Chem. Int. Ed., 2006, 45(47): 7998.
[96]
Razali N, Abdullah A Z. Appl. Catal. A Gen., 2017, 543: 234.

Funding

National Key Research and Development Program of China(2022YFB3805602)
PDF(10387 KB)

Accesses

Citation

Detail

Sections
Recommended

/