Catalytic Transformation of Biomass-Based Platform Compounds to Pentanediols

Jiahui Deng, Yi Liu, Liangqing Zhang, Jiarong Qiu, Jianfeng Chen, Xianhai Zeng

Prog Chem ›› 2024, Vol. 36 ›› Issue (7) : 1061-1087.

PDF(11880 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(11880 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (7) : 1061-1087. DOI: 10.7536/PC231118
Review

Catalytic Transformation of Biomass-Based Platform Compounds to Pentanediols

Author information +
History +

Abstract

pentanediols(1,2-pentanediol,1,4-pentanediol,and 1,5-pentanediol,etc.)are significant pharmaceutical chemicals that are used extensively worldwide.in addition to serving as an intermediate for the fungicide propiconazole and in the production of cosmetic products,they are also employed as key components in the manufacture of surfactants,polyester fibers,and pharmaceutical products.With the development of domestic and foreign markets in recent years,there has been growing demand for pentanediols production.Conventionally,the industrial production of pentanediols relies on non-renewable fossil resources,posing significant environmental concerns.Hence,the catalytic conversion of renewable biomass-based feedstocks to produce pentanediols represents a green production process,promising a brighter application prospect and research significance.This article provides a comprehensive review of recent studies on the catalytic transformation of biomass-based feedstocks(such as xylose,furfural,furfuryl alcohol,tetrahydrofurfuryl alcohol,gamma-valerolactone,and levulinic acid)for pentanediols production.A detailed summary of the catalysts employed for pentanediols synthesis is presented,encompassing various catalytic systems(noble and non-noble metals),reaction mechanisms,pathways,reaction conditions,and catalyst stability.on This basis,perspectives are offered on refining the biomass-derived pentanediols production process,considering sustainability and economics,etc.This review aims to furnish theoretical guidance and beneficial references for further developing novel,efficient,green,and stable catalytic systems。

Contents

1 Introduction

2 Preparation of pentanediol by catalytic conversion with different substrates

2.1 Preparation of 1,2-pentanediol by catalytic conversion of xylose

2.2 Preparation of pentanediol by catalytic conversion of furfural

2.3 Preparation of pentanediol by catalytic conversion of furfuryl alcohol

2.4 Preparation of pentanediol by catalytic conversion of tetrahydrofurfuryl alcohol

2.5 Preparation of 1,4-pentanediol by catalytic conversion of levulinic acid

2.6 Preparation of 1,4-pentanediol by catalytic conversion of gamma-valerolactone

3 Prospects for biomass-based production routes for the preparation of pentanediols

4 Conclusion and outlook

Key words

furfural / furfuryl alcohol / tetrahydrofurfuryl alcohol / levulinic acid / catalyst / pentanediols

Cite this article

Download Citations
Jiahui Deng , Yi Liu , Liangqing Zhang , et al . Catalytic Transformation of Biomass-Based Platform Compounds to Pentanediols[J]. Progress in Chemistry. 2024, 36(7): 1061-1087 https://doi.org/10.7536/PC231118

References

[1]
Gao F F, Chen J, Huang Z W, Xia C G. Journal of Molecular Catalysis, 2018, 32: 276.
(高芳芳, 陈静, 黄志威, 夏春谷. 分子催化, 2018, 32: 276.).
[2]
Zhang B, Zhu Y L, Ding G Q, Zheng H Y, Li Y W. Green Chem., 2012, 14(12): 3402.
[3]
Zhang L Q, Huang S C, Qiu J R, Wang B S, Yan B B, Zhang J W, Zhou B, Chen J F, Zeng X H. Ind. Crops Prod., 2023, 202: 116984.
[4]
Fan D N, Liu X R, Wang X C, Yu Y F, Chen A B. Chemical Industryand Engineering Progress, 2018, 37: 938.
(樊冬娜, 刘晓然, 王喜成, 于奕峰, 陈爱兵. 化工进展, 2018, 37: 938.).
[5]
Kuang B F, Jiang T, Yu Y L, Qiu S B, Qin Y L, Fang Y X, Wang T J. Fine Chem., 2019, 36(5): 781 (in Chinese).
[6]
Wang Z Q, Zhang C, Zhao F Y. Chin. Sci. Bull., 2019, 64(31): 3165.
(王庄清, 张弨, 赵凤玉. 科学通报, 2019, 64(31): 3165.).
[7]
Zheng M Y, Pang J F, Sun R Y, Wang A Q, Zhang T. ACS Catal., 2017, 7(3): 1939.
[8]
Ji N, Zhang T, Zheng M Y, Wang A Q, Wang H, Wang X D, Chen J. Angew. Chem. Int. Ed., 2008, 47(44): 8510.
[9]
Enjamuri N, Darbha S. Catal. Rev., 2020, 62(4): 566.
[10]
Liang Y. Master Thesis of University of Science and Technology of China, 2021.
(梁缘. 中国科学技术大学硕士论文, 2021.).
[11]
Kurniawan R G, Karanwal N, Park J, Verma D, Kwak S K, Kim S K, Kim J. Appl. Catal. B Environ., 2023, 320: 121971.
[12]
Liu Q. Master Thesis of Changchun University of Technology, 2020.
(刘强. 长春工业大学硕士论文, 2020.).
[13]
Luo Y. Master Thesis of Hubei University of Technology, 2011.
(罗岩. 湖北工业大学硕士论文, 2011.).
[14]
Kuang B F. Master Thesis of Guangdong University of Technology, 2020.
(匡碧锋. 广东工业大学硕士论文, 2020.).
[15]
Issler H, Maul R.US 4479021A, 1984.
[16]
Zhang Z K, Deng Y J, Luan Z Z. Fine Specialty Chem., 2004, 12(22): 18.
(张正凯, 邓一健, 栾振中. 精细与专用化学品, 2004, 12(22): 18.).
[17]
Yu X O.CN 1552684, 2004.
[18]
Luo Y, Xu B M, Tang G L, Chen K. Agrochemicals, 2010, 49: 161.
(罗岩, 徐保明, 汤国亮, 陈坤. 农药, 2010, 49: 161.).
[19]
Xu Y J. Master Thesis of Zhejiang University, 2014.
(许彦娟. 浙江大学硕士论文, 2014.).
[20]
Xi R. Master Thesis of Ningxia University, 2021.
(席荣. 宁夏大学硕士论文, 2021.).
[21]
Liang Y, Li Z J, Liu Q Y, Ma L L. Journal of Fuel Chemistry and Technology, 2021, 49: 1898.
(梁缘, 李志坚, 刘琪英, 马隆龙. 燃料化学学报, 2021, 49: 1898.).
[22]
Wang N L, Chen Z P, Liu L C. Appl. Catal. A Gen., 2018, 561: 41.
[23]
Lee J, Xu Y, Huber G W. Appl. Catal. B Environ., 2013, 140: 98.
[24]
Ordomsky V V, Schouten J C, van der Schaaf J, Nijhuis T A. Appl. Catal. A Gen., 2013, 451: 6.
[25]
Xu J, Yang Y L, Ma J P, Miao H, Lu F, Gao J.CN 105622347A. 2016.
[26]
Wang N L, Xi R, Guo Q J.CN 113262784A. 2021.
[27]
Bozell J J, Petersen G R. Green Chem., 2010, 12(4): 539.
[28]
Perez R F, Fraga M A. Green Chem., 2014, 16(8): 3942.
[29]
Tan J J, Su Y H, Gao K, Cui J L, Wang Y Z, Zhao Y X. Journal of Fuel Chemistry and Technology, 2021, 49: 780.
(谭静静, 苏以豪, 高宽, 崔静磊, 王永钊, 赵永祥. 燃料化学学报, 2021, 49: 780.).
[30]
Ma R F, Wu X P, Tong T, Shao Z J, Wang Y Q, Liu X H, Xia Q N, Gong X Q. ACS Catal., 2017, 7(1): 333.
[31]
Xu W J, Wang H F, Liu X H, Ren J W, Wang Y Q, Lu G Z. Chem. Commun., 2011, 47(13): 3924.
[32]
Tong T, Xia Q N, Liu X H, Wang Y Q. Catal. Commun., 2017, 101: 129.
[33]
Mizugaki T, Yamakawa T, Nagatsu Y, Maeno Z, Mitsudome T, Jitsukawa K, Kaneda K. ACS Sustainable Chem. Eng., 2014, 2(10): 2243.
[34]
Bai X W, Wang M F, Qiu T L, Guo L, Li J. Journal of Xinjiang University(Natural Science Edition., 2023, 40: 313.
(白小薇, 王梦菲, 邱腾龙, 郭丽, 李建. 新疆大学学报(自然科学版), 2023, 40: 313.).
[35]
Liu S B, Amada Y, Tamura M, Nakagawa Y, Tomishige K. Green Chem., 2014, 16(2): 617.
[36]
Date N S, La Parola V, Rode C V, Testa M L. Catalysts, 2018, 8(6): 252.
[37]
Date N S, Chikate R C, Roh H S, Rode C V. Catal. Today, 2018, 309: 195.
[38]
Liu S B, Amada Y, Tamura M, Nakagawa Y, Tomishige K. Catal. Sci. Technol., 2014, 4(8): 2535.
[39]
Pisal D S, Yadav G D. ACS Omega, 2019, 4(1): 1201.
[40]
Adkins H, Connor R. J. Am. Chem. Soc., 1931, 53(3): 1091.
[41]
Cui J, Cui X T.CN 102924232A, 2013.
[42]
Sulmonetti T P, Hu B, Lee S, Agrawal P K, Jones C W. ACS Sustainable Chem. Eng., 2017, 5(10): 8959.
[43]
Gavilà L, Lahde A, Jokiniemi J, Constanti M, Medina F, del Río E, Tichit D, Alvarez M G. ChemCatChem, 2019, 11(19): 4944.
[44]
Wijaya H W, Sato T, Tange H, Hara T, Ichikuni N, Shimazu S. Chem. Lett., 2017, 46(5): 744.
[45]
Tong T, Liu X H, Guo Y, Norouzi Banis M, Hu Y F, Wang Y Q. J. Catal., 2018, 365: 420.
[46]
Gotz D, Lucas M, Claus P. React. Chem. Eng., 2016, 1(2): 161.
[47]
Wang X L, Weng Y J, Zhao X L, Xue X X, Meng S H, Wang Z F, Zhang W B, Duan P G, Sun Q, Zhang Y L. Ind. Eng. Chem. Res., 2020, 59(39): 17210.
[48]
Yamaguchi A, Murakami Y, Imura T, Wakita K. ChemistryOpen, 2021, 10(8): 731.
[49]
Wang X C, Yang J F, Zheng Z Y, Huang L, Yi Y F, Gao L, Du S S. Industrial Catalysis, 2022, 30: 60.
(王新承, 杨靖丰, 郑枝源, 黄龙, 易玉峰, 高乐, 杜松松. 工业催化, 2022, 30: 60.).
[50]
Liu H L, Huang Z W, Zhao F, Cui F, Li X M, Xia C G, Chen J. Catal. Sci. Technol., 2016, 6(3): 668.
[51]
Liu H L, Huang Z W, Kang H X, Xia C G, Chen J. Chin. J. Catal., 2016, 37(5): 700.
[52]
Gotz D, Lucas M, Claus P. Catalysts, 2017, 7(2): 50.
[53]
Zhu Y, Li B L, Zhao C. J. Catal., 2022, 410: 42.
[54]
Lee J, Burt S P, Carrero C A, Alba-Rubio A C, Ro I, O’Neill B J, Kim H J, Jackson D H K, Kuech T F, Hermans I, Dumesic J A, Huber G W. J. Catal., 2015, 330: 19.
[55]
Wijaya H W, Kojima T, Hara T, Ichikuni N, Shimazu S. ChemCatChem, 2017, 9(14): 2869.
[56]
Gao F F, Liu H L, Hu X, Chen J, Huang Z W, Xia C G. Chin. J. Catal., 2018, 39(10): 1711.
[57]
Chatterjee M, Kawanami H, Ishizaka T, Sato M, Suzuki T, Suzuki A. Catal. Sci. Technol., 2011, 1(8): 1466.
[58]
Koso S, Furikado I, Shimao A, Miyazawa T, Kunimori K, Tomishige K. Chem. Commun., 2009(15): 2035.
[59]
Chen K Y, Koso S, Kubota T, Nakagawa Y, Tomishige K. ChemCatChem, 2010, 2(5): 547.
[60]
Chen K Y, Mori K, Watanabe H, Nakagawa Y, Tomishige K. J. Catal., 2012, 294: 171.
[61]
Koso S, Ueda N, Shinmi Y, Okumura K, Kizuka T, Tomishige K. J. Catal., 2009, 267(1): 89.
[62]
Guan J, Peng G M, Cao Q, Mu X D. J. Phys. Chem. C, 2014, 118(44): 25555.
[63]
Ding J, Zhao J Q, Cheng S B, Mu X H, Zong B N. Chem. Ind. Eng. Prog., 2015, 34(12): 4209.
(丁璟, 赵俊琦, 程时标, 慕旭宏, 宗保宁. 化工进展, 2015, 34: 4209.).
[64]
Mei C A, Pagán-Torres Y J, Hibbitts D, Tan Q H, Pham H N, Datye A K, Neurock M, Davis R J, Dumesic J A. J. Am. Chem. Soc., 2011, 133(32): 12675.
[65]
Gondre C, Meille V, Ouali M, Postole G, Loridant S, Pinel C, Perret N. J. Catal., 2024, 430: 115305.
[66]
Wang Z Q, Pholjaroen B, Li M X, Dong W J, Li N, Wang A Q, Wang X D, Cong Y, Zhang T. J. Energy Chem., 2014, 23(4): 427.
[67]
Pholjaroen B, Li N, Huang Y Q, Li L, Wang A Q, Zhang T. Catal. Today, 2015, 245: 93.
[68]
Kuang B F, Zhang Q, Fang Y X, Bai Y, Qiu S B, Wu P, Qin Y L, Wang T J. Ind. Eng. Chem. Res., 2020, 59(20): 9372.
[69]
Feng S X, Nagao A, Aihara T, Miura H, Shishido T. Catal. Today, 2018, 303: 207.
[70]
Wang C, Lee J D, Ji Y C, Onn T M, Luo J, Murray C B, Gorte R J. Catal. Lett., 2018, 148(4): 1047.
[71]
Yang X, Chen C L. Journal of Nanjing Tech University(Natural Science Edition., 2019, 41: 149.
(杨晓, 陈长林. 南京工业大学学报(自然科学版), 2019, 41: 149.).
[72]
Wijaya H W, Hara T, Ichikuni N, Shimazu S. Chem. Lett., 2018, 47(1): 103.
[73]
Soghrati E, Kok Poh C, Du Y H, Gao F, Kawi S, Borgna A. ChemCatChem, 2018, 10(20): 4652.
[74]
Cui J L, Tan J J, Zhu Y L, Cheng F Q. ChemSusChem, 2018, 11(8): 1316.
[75]
Mizugaki T, Nagatsu Y, Togo K, Maeno Z, Mitsudome T, Jitsukawa K, Kaneda K. Green Chem., 2015, 17(12): 5136.
[76]
Li F W, Wu J, Gao G, Sun P, Xia C G.CN 107335436B, 2020.
[77]
Huang Z W, Li X M, Chen J, Xia C G.CN 110256198A, 2019.
[78]
Geilen F M A, Engendahl B, Holscher M, Klankermayer J, Leitner W. J. Am. Chem. Soc., 2011, 133(36): 14349.
[79]
Phanopoulos A, White A J P, Long N J, Miller P W. ACS Catal., 2015, 5(4): 2500.
[80]
Corbel-Demailly L, Ly B K, Minh D P, Tapin B, Especel C, Epron F, Cabiac A, Guillon E, Besson M, Pinel C. ChemSusChem, 2013, 6(12): 2388.
[81]
Lv J K. Doctoral Dissertation of Dalian University of Technology, 2018.
(吕金昆. 大连理工大学博士论文, 2018.)
[82]
Li M X, Li G Y, Li N, Wang A Q, Dong W J, Wang X D, Cong Y. Chem. Commun., 2014, 50(12): 1414.
[83]
Wang Z Q, Li G Y, Liu X Y, Huang Y Q, Wang A Q, Chu W, Wang X D, Li N. Catal. Commun., 2014, 43: 38.
[84]
Christian R V Jr, Brown H D, Hixon R M. J. Am. Chem. Soc., 1947, 69(8): 1961.
[85]
Zhao D, Chen B, Lian W J, Ding S M, Deng S J, Xiao W M, Chen C, Zhang N.CN 107597116B, 2020.
[86]
Ren D Z, Wan X Y, Jin F M, Song Z Y, Liu Y J, Huo Z B. Green Chem., 2016, 18(22): 5999.
[87]
Karanwal N, Sibi M G, Khan M K, Myint A A, Chan Ryu B, Kang J W, Kim J. ACS Catal., 2021, 11(5): 2846.
[88]
Shao Y W, Ba S J, Sun K, Gao G M, Fan M J, Wang J Z, Fan H L, Zhang L J, Hu X. Chem. Eng. J., 2022, 429: 132433.
[89]
Cen Y L, Zhu S H, Guo J, Chai J C, Jiao W Y, Wang J G, Fan W B. RSC Adv., 2018, 8(17): 9152.
[90]
Song H. Chemical Engineering Management, 2018, 72.
(宋会. 化工管理, 2018, 72.)
[91]
Sun D L, Saito T, Yamada Y, Chen X, Sato S. Appl. Catal. A Gen., 2017, 542: 289.
[92]
Du X L, Bi Q Y, Liu Y M, Cao Y, He H Y, Fan K N. Green Chem., 2012, 14(4): 935.
[93]
Xu Q, Li X L, Pan T, Yu C G, Deng J, Guo Q X, Fu Y. Green Chem., 2016, 18(5): 1287.
[94]
Zhai X J, Li C, Di X, Yin D D, Liang C H. J. Fuel Chem. Technol., 2017, 45(5): 537.
[95]
Wu J, Gao G, Li Y, Sun P, Wang J, Li F W. Appl. Catal. B Environ., 2019, 245: 251.
[96]
Liang C H, D X, Li C.CN 106582666B, 2019.
[97]
Simakova I, Demidova Y, Simonov M, Prikhod’ko S, Niphadkar P, Bokade V, Dhepe P, Murzin D Y. Reactions, 2020, 1(2): 54.
[98]
Liu Q, Zhao Z B, Zhang C, Zhao F Y. Chinese Journal of Applied Chemistry, 2020, 37: 1285.
(刘强, 赵振波, 张弨, 赵凤玉. 应用化学, 2020, 37: 1285.).
[99]
Zhang G C, Li W, Fan G L, Yang L, Li F. J. Catal., 2019, 379: 100.
[100]
Srimani D, Mukherjee A, Goldberg A F G, Leitus G, Diskin-Posner Y, Shimon L J W, Ben David Y, Milstein D. Angew. Chem. Int. Ed., 2015, 54(42): 12357.
[101]
Zhu Y, Li Y, Zhao S P, Jing R, Zhang H Q, Sun D L, Sato S. Chem. Lett., 2022, 51(4): 395.
[102]
Fan M J, Shao Y W, Sun K, Li Q Y, Zhang S, Wang Y, Xiang J, Hu S, Wang S, Hu X. Mol. Catal., 2021, 510: 111680.
[103]
Al-Yusufi M, Steinfeldt N, Eckelt R, Atia H, Lund H, Bartling S, Rockstroh N, Köckritz A. ACS Sustainable Chem. Eng., 2022, 10(15): 4954.
[104]
Liu F, Liu Q Y, Xu J M, Li L, Cui Y T, Lang R, Li L, Su Y, Miao S, Sun H, Qiao B T, Wang A Q, Jérôme F, Zhang T. Green Chem., 2018, 20(8): 1770.
[105]
Putrakumar B, Seelam P K, Rao G S, Pethan Rajan N, Bhanuchander P, Raveendra G, Vijayanand P, Lassi U, Bakhsh E M, Khan S B, Kim S. Mater. Today Sustain., 2023, 22: 100406.
[106]
Huang K F, Brentzel Z J, Barnett K J, Dumesic J A, Huber G W, Maravelias C T. ACS Sustainable Chem. Eng., 2017, 5(6): 4699.
[107]
Liu Q, Zhao Z B, Arai M, Zhang C, Liu K, Shi R H, Wu P X, Wang Z Q, Lin W W, Cheng H Y, Zhao F Y. Catal. Sci. Technol., 2020, 10(13): 4412.
[108]
Mounguengui-Diallo M, Sadier A, Noly E, Da Silva Perez D, Pinel C, Perret N, Besson M. Catalysts, 2019, 9(9): 740.
[109]
Tan J, Su Y, Hai X, Huang L, Cui J, Zhu Y, Wang Y, Zhao Y. Mol. Catal., 2022, 526.
[110]
Yang M, Jiao Y X, Duan J L, Wu K Y, Song H L, Sun S D, Ren Y J. ACS Sustainable Chem. Eng., 2023, 11(34): 12494.
[111]
Grillo G, Manzoli M, Bucciol F, Tabasso S, Tabanelli T, Cavani F, Cravotto G. Ind. Eng. Chem. Res., 2021, 60(46): 16756.
[112]
Cavuoto D, Ardemani L, Ravasio N, Zaccheria F, Scotti N. Catalysts, 2023, 13(4): 697.
[113]
Lv J K, Rong Z M, Sun L M, Liu C Y, Lu A H, Wang Y, Qu J P. Catal. Sci. Technol., 2018, 8(4): 975.
[114]
Ragauskas A J, Williams C K, Davison B H, Britovsek G, Cairney J, Eckert C A, Frederick W J Jr, Hallett J P, Leak D J, Liotta C L, Mielenz J R, Murphy R, Templer R, Tschaplinski T. Science, 2006, 311(5760): 484.

Funding

National Natural Science Foundation of China(22108038)
National Natural Science Foundation of China(21978248)
Foundation of State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences(GZKF202308)
Science and Technology Plan Project of Quanzhou City(2022N030)
Natural Science Foundation of FujianProvince of China(2022J01573)
National Key R&D Program of China(2021YFC2101604)
Guangdong Provincial Key Research and Development Program(2020B0101070001)
PDF(11880 KB)

Accesses

Citation

Detail

Sections
Recommended

/