Research Progress of Ni-Rich Cathode Materials

Tianyu Wang, Li Wang, Wei Sun, Meirong Wu, Yue Yang

Prog Chem ›› 2024, Vol. 36 ›› Issue (7) : 1026-1045.

PDF(85792 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(85792 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (7) : 1026-1045. DOI: 10.7536/PC231120
Review

Research Progress of Ni-Rich Cathode Materials

Author information +
History +

Abstract

Benefiting from high energy density and low cost,Ni-rich LiNixCoyMn/Al1-x-yO2materials have received great attention as promising cathode candidates for next-generation high-energy lithium-ion batteries(LIBs)that are widely used in electric vehicles(EVs).However,with an increased Ni content,Ni-rich cathode materials suffer from severe structural,chemical,and mechanical instabilities,seriously restricting their industrially safe application in power LIBs of EVs.In this review,primarily,the synthesis methods of Ni-rich cathode materials are summarized in detail,which include solid-state method,sol-gel method,hydrothermal method,spray-drying method,and co-precipitation method.Subsequently,the key failure mechanisms,including ion mixing and irreversible phase transition,residual Li species and interface side reactions,mechanical microcracks,and transition metal dissolutions,are thoroughly analyzed throughout the preparation,storage,and service of Ni-rich cathode materials,thereby clarifying various performance decay behaviors of materials.The modification strategies that cover ion doping,surface coating,core-shell/gradient materials,and single-crystal materials are systematically discussed for Ni-rich cathode materials,aiming at presenting conspicuous research progress and current shortcomings for the stabilization of Ni-rich cathode materials.Finally,this review presents a perspective toward future development and optimization for Ni-rich cathode materials,aiming at delivering a theoretical guidance for propelling its industrial safe application in high-energy LIBs 。

Contents

1 Introduction

2 Synthetic method

2.1 Solid-state method

2.2 Sol-gel method

2.3 Hydrothermal method

2.4 Spray-drying method

2.5 Coprecipitation method

3 Failure mechanism

3.1 Ion mixing and irreversible phase transition

3.2 Surface residual Li species and interface side reaction

3.3 Microcracks induced by internal stress

3.4 Dissolution of transition metals

4 Modification method

4.1 Ion doping

4.2 Surface coating

4.3 Core-shell/gradient material design

4.4 Single-crystal material design

5 Conclusion and outlook

Key words

Ni-rich cathode materials / synthesis methods / failure mechanism / modification methods / synergistic modification

Cite this article

Download Citations
Tianyu Wang , Li Wang , Wei Sun , et al . Research Progress of Ni-Rich Cathode Materials[J]. Progress in Chemistry. 2024, 36(7): 1026-1045 https://doi.org/10.7536/PC231120

References

[1]
Liu J H, Li F K, Xi L, Sun Z Y, Yang Y, Shen J D, Yao S Y, Zhao J W, Zhu M, Liu J. Small, 2024, 20(2): 2305606.
[2]
Yang X L, Yuan S S, Yang W J, Liu C, Yang S C. Journal of Mechanical Engineering, 2023, 59: 239.
(杨续来, 袁帅帅, 杨文静, 刘闯, 杨世春. 机械工程学报, 2023, 59: 239.).
[3]
Wang C Y, Han L L, Zhang R, Cheng H, Mu L Q, Kisslinger K, Zou P C, Ren Y, Cao P H, Lin F, Xin H L. Matter, 2021, 4(6): 2013.
[4]
Yoon C S, Park K J, Kim U H, Kang K H, Ryu H H, Sun Y K. Chem. Mater., 2017, 29(24): 10436.
[5]
Li F K, Liu Z B, Shen J D, Xu X J, Zeng L Y, Zhang B H, Zhu H, Liu Q, Liu J, Zhu M. J. Mater. Chem. A, 2021, 9(5): 2830.
[6]
Sun Z Y, Li F K, Ding J Y, Lin Z Y, Xu M Q, Zhu M, Liu J. ACS Energy Lett., 2023, 8(6): 2478.
[7]
Sun L W, Zhang Z S, Hu X F, Tian H Y, Zhang Y B, Yang X G. J. Electrochem. Soc., 2019, 166(10): A1793.
[8]
Aishova A, Park G T, Yoon C S, Sun Y K. Adv. Energy Mater., 2020, 10(4): 1903179.
[9]
Lee W, Muhammad S, Sergey C, Lee H, Yoon J, Kang Y M, Yoon W S. Angew. Chem. Int. Ed., 2020, 59(7): 2578.
[10]
Ryu H H, Park K J, Yoon C S, Sun Y K. Chem. Mater., 2018, 30(3): 1155.
[11]
Park N Y, Park G T, Kim S B, Jung W, Park B C, Sun Y K. ACS Energy Lett., 2022, 7(7): 2362.
[12]
Noh H J, Youn S, Yoon C S, Sun Y K. J. Power Sources, 2013, 233: 121.
[13]
Liu L H, Li M C, Chu L H, Jiang B, Lin R X, Zhu X P, Cao G Z. Prog. Mater. Sci., 2020, 111: 100655.
[14]
Han Y, Wang T Y, Yin L K, Wu Z Y, Bi R, Li B K, Yang Y. J. Energy Storage, 2023, 67: 107541.
[15]
Jin S, Mu D Y, Lu Z A, Li R H, Liu Z, Wang Y, Tian S, Dai C S. J. Clean. Prod., 2022, 340: 130535.
[16]
Zhang C F, Wan J J, Li Y X, Zheng S Y, Zhou K, Wang D H, Wang D F, Hong C Y, Gong Z L, Yang Y. J. Mater. Chem. A, 2020, 8(14): 6893.
[17]
Zhang M L, Shen J T, Li J, Zhang D Y, Yan Y X, Huang Y X, Li Z M. Ceram. Int., 2020, 46(4): 4643.
[18]
Tung Mai Thanh, Luong V. D., Vietnam J. Chem. 2016, 54: 760.
[19]
Zhu J P, Xiao G S, Li X L. Synth. Met., 2021, 281: 116905.
[20]
Shi Y, Zhang M H, Fang C C, Meng Y S. J. Power Sources, 2018, 394: 114.
[21]
Huang B, Cheng L, Li X Z, Zhao Z W, Yang J W, Li Y W, Pang Y Y, Cao G Z. Small, 2022, 18(20): e2107697.
[22]
Ju X K, Huang H, He W, Zheng H F, Deng P, Li S Y, Qu B H, Wang T H. ACS Sustainable Chem. Eng., 2018, 6(5): 6312.
[23]
Yue P, Wang Z X, Peng W J, Li L J, Chen W, Guo H J, Li X H. Powder Technol., 2011, 214(3): 279.
[24]
Li T, Li X H, Wang Z X, Guo H J, Peng W J, Zeng K W. Mater. Lett., 2015, 159: 39.
[25]
Ju S H, Kang Y C. J. Power Sources, 2008, 178(1): 387.
[26]
Ding Y, Mu D B, Wu B R, Zhao Z K, Wang R. Ceram. Int., 2020, 46(7): 9436.
[27]
Qiu L, Zhang M K, Song Y, Wu Z G, Zhu Y F, Zhang J, Wang D, Hu H Y, Li H W, Liu H R, Jia X B, Peng J, Chen S Q, Yang Z G, Xiao Y, Guo X D. Carbon Energy, 2023, 5(7): e298.
[28]
Yang Y, Xu S M, Xie M, He Y H, Huang G Y, Yang Y C. J. Alloys Compd., 2015, 619: 846.
[29]
Qiu H F, Wang Y L, Ye S H. Energy Technol., 2018, 6(12): 2419.
[30]
Yang C K, Qi L Y, Zuo Z C, Wang R N, Ye M, Lu J, Zhou H H. J. Power Sources, 2016, 331: 487.
[31]
Zhang S S. Energy Storage Mater., 2020, 24: 247.
[32]
Yan P F, Zheng J M, Lv D P, Wei Y, Zheng J X, Wang Z G, Kuppan S, Yu J G, Luo L L, Edwards D, Olszta M, Amine K, Liu J, Xiao J, Pan F, Chen G Y, Zhang J G, Wang C M. Chem. Mater., 2015, 27(15): 5393.
[33]
Xiao Y G, Liu T C, Liu J J, He L H, Chen J, Zhang J R, Luo P, Lu H L, Wang R, Zhu W M, Hu Z X, Teng G F, Xin C, Zheng J X, Liang T J, Wang F W, Chen Y B, Huang Q Z, Pan F, Chen H S. Nano Energy, 2018, 49: 77.
[34]
Li H H, Yabuuchi N, Meng Y S, Kumar S, Breger J, Grey C P, Shao-Horn Y. Chem. Mater., 2007, 19(10): 2551.
[35]
Park H, Park H, Song K, Song S H, Kang S, Ko K H, Eum D, Jeon Y, Kim J, Seong W M, Kim H, Park J, Kang K. Nat. Chem., 2022, 14(6): 614.
[36]
Hua W B, Wang K, Knapp M, Schwarz B, Wang S N, Liu H, Lai J, Müller M, Schökel A, Missyul A, Ferreira Sanchez D, Guo X D, Binder J R, Xiong J, Indris S, Ehrenberg H. Chem. Mater., 2020, 32(12): 4984.
[37]
Duan Y D, Yang L Y, Zhang M J, Chen Z H, Bai J M, Amine K, Pan F, Wang F. J. Mater. Chem. A, 2019, 7(2): 513.
[38]
Yu Z L, Qu X Y, Wan T, Dou A C, Zhou Y, Peng X Q, Su M R, Liu Y J, Chu D W. ACS Appl. Mater. Interfaces, 2020, 12(36): 40393.
[39]
Qiu L, Song Y, Zhang M K, Liu Y H, Yang Z W, Wu Z G, Zhang H, Xiang W, Liu Y X, Wang G K, Sun Y, Zhang J, Zhang B, Guo X D. Adv. Energy Mater., 2022, 12(19): 2200022.
[40]
Kim Y, Park H, Shin K, Henkelman G, Warner J H, Manthiram A. Adv. Energy Mater., 2021, 11(38): 2101112.
[41]
Wang X M, Ruan X P, Du C F, Yu H. Chem. Rec., 2022, 22(10): e202200119.
[42]
Lin F, Markus I M, Nordlund D, Weng T C, Asta M D, Xin H L, Doeff M M. Nat. Commun., 2014, 5: 3529.
[43]
Liu W, Oh P, Liu X E, Lee M J, Cho W, Chae S, Kim Y, Cho J. Angew. Chem. Int. Ed., 2015, 54(15): 4440.
[44]
Li T Y, Yuan X Z, Zhang L, Song D T, Shi K Y, Bock C. Electrochem. Energy Rev., 2020, 3(1): 43.
[45]
Butt A, Ali G, Tul Kubra K, Sharif R, Salman A, Bashir M, Jamil S. Energy Technol., 2022, 10(3): 2100775.
[46]
Lee E, Muhammad S, Kim T, Kim H, Lee W, Yoon W S. Adv. Sci., 2020, 7(12):1902413.
[47]
Xia Y, Zheng J M, Wang C M, Gu M. Nano Energy, 2018, 49: 434.
[48]
Kim N Y, Yim T, Song J H, Yu J S, Lee Z. J. Power Sources, 2016, 307: 641.
[49]
Jiang M, Danilov D L, Eichel R A, Notten P H L. Adv. Energy Mater., 2021, 11(48): 2103005.
[50]
Cui J X, Ding X K, Luo D, Xie H X, Zhang Z H, Zhang B Y, Tan F L, Liu C Y, Lin Z. Energy Fuels, 2021, 35(2): 1842.
[51]
You Y, Celio H, Li J Y, Dolocan A, Manthiram A. Angew. Chem. Int. Ed., 2018, 57(22): 6480.
[52]
Seong W M, Cho K H, Park J W, Park H, Eum D, Lee M H, Kim I S S, Lim J, Kang K. Angew. Chem. Int. Ed., 2020, 59(42): 18662.
[53]
Seong W M, Kim Y, Manthiram A. Chem. Mater., 2020, 32(22): 9479.
[54]
Huang B H, Liu D Q, Qian K, Zhang L H, Zhou K, Liu Y X, Kang F Y, Li B H. ACS Appl. Mater. Interfaces, 2019, 11(15): 14076.
[55]
Li W D, Dolocan A, Oh P, Celio H, Park S, Cho J, Manthiram A. Nat. Commun., 2017, 8: 14589.
[56]
Zheng X B, Li X H, Wang Z X, Guo H J, Huang Z J, Yan G C, Wang D. Electrochim. Acta, 2016, 191: 832.
[57]
Xu S, Du C Y, Xu X, Han G K, Zuo P J, Cheng X Q, Ma Y L, Yin G P. Electrochim. Acta, 2017, 248: 534.
[58]
Guo Y J, Zhang C H, Xin S, Shi J L, Wang W P, Fan M, Chang Y X, He W H, Wang E H, Zou Y G, Yang X A, Meng F Q, Zhang Y Y, Lei Z Q, Yin Y X, Guo Y G. Angew. Chem. Int. Ed., 2022, 61(21): e202116865.
[59]
Su Y F, Chen G, Chen L, Li L W, Li C, Ding R, Liu J H, Lv Z, Lu Y, Bao L Y, Tan G Q, Chen S, Wu F. Front. Chem., 2020, 8: 573.
[60]
Su Y F, Zhang Q Y, Chen L, Bao L Y, Lu Y, Shi Q, Wang J, Chen S, Wu F. ACS Appl. Mater. Interfaces, 2020, 12(33): 37208.
[61]
Li W D, Asl H Y, Xie Q, Manthiram A. J. Am. Chem. Soc., 2019, 141(13): 5097.
[62]
Lee W, Muhammad S, Kim T, Kim H, Lee E, Jeong M, Son S, Ryou J H, Yoon W S. Adv. Energy Mater., 2018, 8(4): 1701788.
[63]
Sun H H, Manthiram A. Chem. Mater., 2017, 29(19): 8486.
[64]
Zhu C Q, Cao M Y, Zhang H Y, Lv G P, Zhang J, Meng Y, Shu C Z, Fan W F, Zuo M H, Xiang W, Guo X D. ACS Appl. Mater. Interfaces, 2021, 13(41): 48720.
[65]
Park K J, Hwang J Y, Ryu H H, Maglia F, Kim S J, Lamp P, Yoon C S, Sun Y K. ACS Energy Lett., 2019, 4(6): 1394.
[66]
Li F K, Liu Z B, Liao C J, Xu X J, Zhu M, Liu J. ACS Energy Lett., 2023, 8(11): 4903.
[67]
Mu L Q, Lin R Q, Xu R, Han L L, Xia S H, Sokaras D, Steiner J D, Weng T C, Nordlund D, Doeff M M, Liu Y J, Zhao K J, Xin H L, Lin F. Nano Lett., 2018, 18(5): 3241.
[68]
Yan P F, Zheng J M, Chen T W, Luo L L, Jiang Y Y, Wang K, Sui M L, Zhang J G, Zhang S L, Wang C M. Nat. Commun., 2018, 9: 2437.
[69]
Lin Q Y, Guan W H, Zhou J B, Meng J, Huang W, Chen T, Gao Q, Wei X, Zeng Y W, Li J X, Zhang Z. Nano Energy, 2020, 76: 105021.
[70]
Yan P F, Zheng J M, Gu M, Xiao J, Zhang J G, Wang C M. Nat. Commun., 2017, 8: 14101.
[71]
Sun H H, Ryu H H, Kim U H, Weeks J A, Heller A, Sun Y K, Mullins C B. ACS Energy Lett., 2020, 5(4): 1136.
[72]
Ko D S, Park J H, Park S, Ham Y N, Ahn S J, Park J H, Han H N, Lee E, Jeon W S, Jung C. Nano Energy, 2019, 56: 434.
[73]
Wachs S J, Behling C, Ranninger J, Möller J, Mayrhofer K J J, Berkes B B. ACS Appl. Mater. Interfaces, 2021, 13(28): 33075.
[74]
Qiu L, Zhang M K, Song Y, Xiao Y, Wu Z G, Xiang W, Liu Y X, Wang G K, Sun Y, Zhang J, Zhang B, Guo X D. EcoMat, 2021, 3(5): e12141.
[75]
Jeong M, Kim H, Lee W, Ahn S J, Lee E, Yoon W S. J. Power Sources, 2020, 474: 228592.
[76]
Liu X L, Wang S, Wang L, Wang K, Wu X Z, Zhou P F, Miao Z C, Zhou J, Zhao Y, Zhuo S P. J. Power Sources, 2019, 438: 227017.
[77]
Mo Y, Guo L J, Cao B K, Wang Y G, Zhang L, Jia X B, Chen Y. Energy Storage Mater., 2019, 18: 260.
[78]
Schipper F, Dixit M, Kovacheva D, Talianker M, Haik O, Grinblat J, Erickson E M, Ghanty C, Major D T, Markovsky B, Aurbach D. J. Mater. Chem. A, 2016, 4(41): 16073.
[79]
Cui P, Jia Z J, Li L Y, He T. J. Phys. Chem. Solids, 2011, 72(7): 899.
[80]
Weigel T, Schipper F, Erickson E M, Susai F A, Markovsky B, Aurbach D. ACS Energy Lett., 2019, 4(2): 508.
[81]
Levartovsky Y, Chakraborty A, Kunnikuruvan S, Maiti S, Grinblat J, Talianker M, Major D T, Aurbach D. ACS Appl. Mater. Interfaces, 2021, 13(29): 34145.
[82]
Su Y F, Yang Y Q, Chen L, Lu Y, Bao L Y, Chen G, Yang Z R, Zhang Q Y, Wang J, Chen R J, Chen S, Wu F. Electrochim. Acta, 2018, 292: 217.
[83]
Ryu H H, Park G T, Yoon C S, Sun Y K. J. Mater. Chem. A, 2019, 7(31): 18580.
[84]
Li X, Xie Z W, Liu W J, Ge W J, Wang H, Qu M Z. Electrochim. Acta, 2015, 174: 1122.
[85]
Bianchini M, Roca-Ayats M, Hartmann P, Brezesinski T, Janek J. Angew. Chem. Int. Ed., 2019, 58(31): 10434.
[86]
Hou P Y, Yin J M, Ding M, Huang J Z, Xu X J. Small, 2017, 13(45): 1701802.
[87]
Gomez-Martin A, Reissig F, Frankenstein L, Heidbüchel M, Winter M, Placke T, Schmuch R. Adv. Energy Mater., 2022, 12(8): 2103045.
[88]
Choi J U, Voronina N, Sun Y K, Myung S T. Adv. Energy Mater., 2020, 10(42): 2002027.
[89]
Dixit M, Markovsky B, Aurbach D, Major D T. J. Electrochem. Soc., 2017, 164(1): A6359.
[90]
Li W D, Liu X M, Celio H, Smith P, Dolocan A, Chi M F, Manthiram A. Adv. Energy Mater., 2018, 8(15): 1703154.
[91]
Zhou K, Xie Q, Li B H, Manthiram A. Energy Storage Mater., 2021, 34: 229.
[92]
Zheng J X, Liu T C, Hu Z X, Wei Y, Song X H, Ren Y, Wang W D, Rao M M, Lin Y, Chen Z H, Lu J, Wang C M, Amine K, Pan F. J. Am. Chem. Soc., 2016, 138(40): 13326.
[93]
Sun H H, Kim U H, Park J H, Park S W, Seo D H, Heller A, Mullins C B, Yoon C S, Sun Y K. Nat. Commun., 2021, 12: 6552.
[94]
Zhu H, Wang Z, Chen L, Hu Y, Jiang H, Li C. Adv. Mater. 2023, 35: e2209357.
[95]
Li C L, Kan W H, Xie H L, Jiang Y, Zhao Z K, Zhu C Y, Xia Y H, Zhang J, Xu K, Mu D B, Wu F. Adv. Sci., 2019, 6(4): 1801406.
[96]
Binder J O, Culver S P, Pinedo R, Weber D A, Friedrich M S, Gries K I, Volz K, Zeier W G, Janek J. ACS Appl. Mater. Interfaces, 2018, 10(51): 44452.
[97]
Wang T Y, Yi C X, Ge P, Wang L, Sun W, Wu M R, Zhang C, Yang Y. Sci. China Mater., 2023, 66(9): 3433.
[98]
Kim U H, Park G T, Conlin P, Ashburn N, Cho K, Yu Y S, Shapiro D A, Maglia F, Kim S J, Lamp P, Yoon C S, Sun Y K. Energy Environ. Sci., 2021, 14(3): 1573.
[99]
Kong F T, Liang C P, Longo R C, Yeon D H, Zheng Y P, Park J H, Doo S G, Cho K. Chem. Mater., 2016, 28(19): 6942.
[100]
Zhou Y, Zhang H W, Wang Y L, Wan T, Guan P Y, Zhou X D, Wang X R, Chen Y C, Shi H C, Dou A C, Su M R, Guo R Q, Liu Y J, Dai L M, Chu D W. ACS Nano, 2023, 17(20): 20621.
[101]
Zhang R, Wang C Y, Zou P C, Lin R Q, Ma L, Yin L, Li T Y, Xu W Q, Jia H, Li Q Y, Sainio S, Kisslinger K, Trask S E, Ehrlich S N, Yang Y, Kiss A M, Ge M Y, Polzin B J, Lee S J, Xu W, Ren Y, Xin H L. Nature, 2022, 610(7930): 67.
[102]
Liu Y J, Zeng T Y, Li G T, Wan T, Li M Y, Zhang X Y, Li M Q, Su M R, Dou A C, Zeng W S, Zhou Y, Guo R Q, Chu D W. Energy Storage Mater., 2022, 52: 534.
[103]
Liu W, Li X F, Xiong D B, Hao Y C, Li J W, Kou H R, Yan B, Li D J, Lu S G, Koo A, Adair K, Sun X L. Nano Energy, 2018, 44: 111.
[104]
Hu D Z, Su Y F, Chen L, Li N, Bao L Y, Lu Y, Zhang Q Y, Wang J, Chen S, Wu F. J. Energy Chem., 2021, 58: 1.
[105]
Chen Y X, Tang S Y, Deng S Y, Lei T X, Li Y J, Li W, Cao G L, Zhu J, Zhang J P. J. Power Sources, 2019, 431: 8.
[106]
Yao L, Liang F Q, Jin J, Chowdari B V R, Yang J H, Wen Z Y. Chem. Eng. J., 2020, 389: 124403.
[107]
Liu B S, Sui X L, Zhang S H, Yu F D, Xue Y, Zhang Y, Zhou Y X, Wang Z B. J. Alloys Compd., 2018, 739: 961.
[108]
Zhang W Q, Xiao L, Zheng J F, Zhong Y L, Shi B, Chen H, Fu H K. J. Alloys Compd., 2021, 880: 160415.
[109]
Qu X Y, Huang H, Wan T, Hu L, Yu Z L, Liu Y J, Dou A C, Zhou Y, Su M R, Peng X Q, Wu H H, Wu T, Chu D W. Nano Energy, 2022, 91: 106665.
[110]
Lee M J, Noh M, Park M H, Jo M, Kim H, Nam H, Cho J. J. Mater. Chem. A, 2015, 3(25): 13453.
[111]
Chen M H, Zhang Z P, Savilov S, Wang G M, Chen Z, Chen Q G. J. Power Sources, 2020, 478: 229051.
[112]
Gan Z G, Hu G R, Peng Z D, Cao Y B, Tong H, Du K. Appl. Surf. Sci., 2019, 481: 1228.
[113]
Ahaliabadeh Z, Kong X Z, Fedorovskaya E, Kallio T. J. Power Sources, 2022, 540: 231633.
[114]
Zhang Y D, Li Y, Xia X H, Wang X L, Gu C D, Tu J P. Sci. China Technol. Sci., 2015, 58(11): 1809.
[115]
Tang W J, Peng Z F, Shi Y L, Xu S, Shuai H T, Zhou S, Kong Y, Yan K P, Lu T C, Wang G X. J. Alloys Compd., 2019, 810: 151834.
[116]
Cho W, Kim S M, Lee K W, Song J H, Jo Y N, Yim T, Kim H, Kim J S, Kim Y J. Electrochim. Acta, 2016, 198: 77.
[117]
Kim J H, Park J S, Cho S H, Park J M, Nam J S, Yoon S G, Kim I D, Jung J W, Kim H S. J. Mater. Chem. A, 2022, 10(47): 25009.
[118]
Zaker N, Geng C X, Rathore D, Hamam I, Chen N, Xiao P H, Yang C Y, Dahn J R, Botton G A. Adv. Funct. Mater., 2023, 33(16): 2211178.
[119]
Li L J, Xu M, Yao Q, Chen Z Y, Song L B, Zhang Z A, Gao C H, Wang P, Yu Z Y, Lai Y Q. ACS Appl. Mater. Interfaces, 2016, 8(45): 30879.
[120]
Zhu J, Li Y J, Xue L L, Chen Y X, Lei T X, Deng S Y, Cao G L. J. Alloys Compd., 2019, 773: 112.
[121]
Meng K, Wang Z X, Guo H J, Li X H, Wang D. Electrochim. Acta, 2016, 211: 822.
[122]
Jeyakumar J, Wu Y S, Wu S H, Jose R, Yang C C. ACS Appl. Energy Mater., 2022, 5(4): 4796.
[123]
Tang L B, Liu Y, Wei H X, Yan C, He Z J, Li Y J, Zheng J C. J. Energy Chem., 2021, 55: 114.
[124]
Dai Z S, Wang J H, Zhao H L, Bai Y. Adv. Sci., 2022, 9(18): e2200622.
[125]
Yan J Q, Huang H, Tong J F, Li W, Liu X H, Zhang H X, Huang H Q, Zhou W D. Interdiscip. Mater., 2022, 1(3): 330.
[126]
Qu X Y, Yu Z L, Ruan D S, Dou A C, Su M R, Zhou Y, Liu Y J, Chu D W. ACS Sustainable Chem. Eng., 2020, 8(15): 5819.
[127]
Hyuk Son I, Park K, Hwan Park J. Electrochim. Acta, 2017, 230: 308.
[128]
Yu H F, Cao Y Q, Chen L, Hu Y J, Duan X Z, Dai S, Li C Z, Jiang H. Nat. Commun., 2021, 12: 4564.
[129]
Yan P F, Zheng J M, Liu J, Wang B Q, Cheng X P, Zhang Y F, Sun X L, Wang C M, Zhang J G. Nat. Energy, 2018, 3(7): 600.
[130]
Cao Y B, Qi X Y, Hu K H, Wang Y, Gan Z G, Li Y, Hu G R, Peng Z D, Du K. ACS Appl. Mater. Interfaces, 2018, 10(21): 18270.
[131]
Liu S Y, Zhang C C, Su Q L, Li L Y, Su J M, Huang T, Chen Y B, Yu A S. Electrochim. Acta, 2017, 224: 171.
[132]
Jo C H, Cho D H, Noh H J, Yashiro H, Sun Y K, Myung S T. Nano Res., 2015, 8(5): 1464.
[133]
Chen S, He T, Su Y F, Lu Y, Bao L Y, Chen L, Zhang Q Y, Wang J, Chen R J, Wu F. ACS Appl. Mater. Interfaces, 2017, 9(35): 29732.
[134]
Sun Y K, Myung S T, Park B C, Prakash J, Belharouak I, Amine K. Nat. Mater., 2009, 8(4): 320.
[135]
Su Y F, Chen G, Chen L, Lu Y, Zhang Q Y, Lv Z, Li C, Li L W, Liu N, Tan G Q, Bao L Y, Chen S, Wu F. ACS Appl. Mater. Interfaces, 2019, 11(40): 36697.
[136]
Park K J, Choi M J, Maglia F, Kim S J, Kim K H, Yoon C S, Sun Y K. Adv. Energy Mater., 2018, 8(19): 1703612.
[137]
Rathore D, Garayt M, Liu Y L, Geng C X, Johnson M, Dahn J R, Yang C Y. ACS Energy Lett., 2022, 7(7): 2189.
[138]
Liu T C, Yu L, Lu J, Zhou T, Huang X J, Cai Z H, Dai A, Gim J, Ren Y, Xiao X H, Holt M V, Chu Y S, Arslan I, Wen J G, Amine K. Nat. Commun., 2021, 12: 6024.
[139]
Fan X M, Hu G R, Zhang B, Ou X, Zhang J F, Zhao W G, Jia H P, Zou L F, Li P, Yang Y. Nano Energy, 2020, 70: 104450.
[140]
Zhu H, Tang Y, Wiaderek K M, Borkiewicz O J, Ren Y, Zhang J, Ren J C, Fan L L, Li C C, Li D F, Wang X L, Liu Q. Nano Lett., 2021, 21(23): 9997.
[141]
Li X L, Peng W X, Tian R Z, Song D W, Wang Z Y, Zhang H Z, Zhu L Y, Zhang L Q. Electrochim. Acta, 2020, 363: 137185.
[142]
Trevisanello E, Ruess R, Conforto G, Richter F H, Janek J. Adv. Energy Mater., 2021, 11(18): 2003400.
[143]
Bi Y J, Tao J H, Wu Y Q, Li L Z, Xu Y B, Hu E Y, Wu B B, Hu J T, Wang C M, Zhang J G, Qi Y, Xiao J. Science, 2020, 370: 1313.
[144]
Qiu L, Zhang M K, Song Y, Wu Z G, Zhang H, Hua W B, Sun Y, Kong Q Q, Feng W, Wang K, Xiao Y, Guo X D. Angew. Chem. Int. Ed., 2023, 62(12): 2300209.
[145]
Zhao J Q, Zhang W, Huq A, Misture S T, Zhang B L, Guo S M, Wu L J, Zhu Y M, Chen Z H, Amine K, Pan F, Bai J M, Wang F. Adv. Energy Mater., 2017, 7(3): 1601266.
[146]
Kim J, Lee H, Cha H, Yoon M, Park M, Cho J. Adv. Energy Mater., 2018, 8(6): 1702028.
[147]
Kimijima T, Zettsu N, Teshima K. Cryst. Growth Des., 2016, 16(5): 2618.
[148]
Ryu H H, Namkoong B, Kim J H, Belharouak I, Yoon C S, Sun Y K. ACS Energy Lett., 2021, 6(8): 2726.
[149]
Ge M Y, Wi S, Liu X, Bai J M, Ehrlich S, Lu D Y, Lee W K, Chen Z H, Wang F. Angew. Chem. Int. Ed., 2021, 60(32): 17350.
[150]
Zou Y G, Mao H C, Meng X H, Du Y H, Sheng H, Yu X Q, Shi J L, Guo Y G. Angew. Chem. Int. Ed., 2021, 60(51): 26535.

Funding

Central South University Innovation-Driven Research Programme(2023CXQD009)
PDF(85792 KB)

Accesses

Citation

Detail

Sections
Recommended

/