Performance Improvement Strategy of Photocatalytic Ammonia Synthesis Catalyst

Lijun Guo, Hong Yang, Shengjuan Shao, Yinqi Liu, Jianxin Liu

Prog Chem ›› 2024, Vol. 36 ›› Issue (6) : 939-948.

PDF(9459 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(9459 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (6) : 939-948. DOI: 10.7536/PC231202
Review

Performance Improvement Strategy of Photocatalytic Ammonia Synthesis Catalyst

Author information +
History +

Abstract

Photocatalytic nitrogen fixation is driven by solar energy.N2and H2O are used to directly produce NH3at normal temperature and pressure,and the process has zero carbon emissions.It is one of the most promising artificial nitrogen fixation methods and has attracted wide attention from researchers in recent years.Limited by the difficult activation of N2,low utilization rate of photogenerated carrier and low utilization rate of sunlight,the ammonia production efficiency is still not high,so improving the ammonia production efficiency is the focus of research in the field of photocatalytic ammonia synthesis.Starting from the three important processes of N2adsorption activation,carrier separation and migration,and surface reaction,it is very promising to promote the activation and conversion of N2under mild conditions and produce NH3efficiently by reasonable modification of the catalyst.This paper mainly studied the modification of photocatalysts,summarized the influence of N2molecular adsorption and activation ability,photogenerated electron transfer ability and light utilization on the ammonia production efficiency,analyzed the research in recent years in these fields,and finally summarized the modification strategy of photocatalytic ammonia synthesis catalyst.

Contents

1 Introduction

2 Improving the adsorption and activation capacity of N2

2.1 Introducing defect site

2.2 Introducing metal site

3 Increased charge transfer capacity

3.1 Constructing the monometal mixed valence catalyst

3.2 Designing bimetallic site catalyst

3.3 Constructing multi-metal site catalyst

4 Improving light utilization

5 Conclusion and outlook

Key words

photocatalytic synthesis of ammonia / photocatalyst / active site / photogenic electron transfer ability / morphology control

Cite this article

Download Citations
Lijun Guo , Hong Yang , Shengjuan Shao , et al . Performance Improvement Strategy of Photocatalytic Ammonia Synthesis Catalyst[J]. Progress in Chemistry. 2024, 36(6): 939-948 https://doi.org/10.7536/PC231202

References

[1]
Rusina O, Linnik O, Eremenko A, Kisch H. Chem., 2003, 9(2): 561.
[2]
Kabir E, Kumar P, Kumar S, Adelodun A A, Kim K H. Renew. Sustain. Energy Rev., 2018, 82: 894.
[3]
Hu C, Chen X, Low J. Nat. Commun., 2023, 14: 221.
[4]
Loh J Y Y, Kherani N P, Ozin G A. Nat. Sustain., 2021, 4(6): 466.
[5]
Schrauzer G N, Guth T D. J. Am. Chem. Soc., 1977, 99(22): 7189.
[6]
Chen X Z, Li N, Kong Z Z, Ong W J, Zhao X J. Mater. Horiz., 2018, 5(1): 9.
[7]
Zhang L Y, Meng Y, Shen H, Li J H, Yang C F, Xie B, Xia S J. Inorg. Chem., 2022, 61(16): 6045.
[8]
Guo Y X, Wen H, Zhong T, Huang H W, Lin Z. Colloids Surf. A Physicochem. Eng. Aspects, 2022, 644: 128829.
[9]
Jin Y W, Zhang J W, Wang S F, Wang X X, Fang M, Zuo Q Y, Kong M G, Liu Z Z, Tan X L. J. Environ. Chem. Eng., 2022, 10(3): 107675.
[10]
Hao D, Ma T Y, Jia B H, Wei Y X, Bai X J, Wei W, Ni B J. J. Mater. Sci. Technol., 2022, 109: 276.
[11]
Zhong X, Zhu Y X, Sun Q F, Jiang M, Li J Q, Yao J F. Chem. Eng. J., 2022, 442: 136156.
[12]
Hui X C, Li L F, Xia Q N, Hong S, Hao L D, Robertson A W, Sun Z Y. Chem. Eng. J., 2022, 438: 135485.
[13]
Ma Y Y, Liu Y F, Guo S S. Chinese J. Inorg. Chem., 2022, 38: 274.
[14]
Chen C L, Wang H Y, Li J P, Long L S, Kong X J, Zheng L S. Inorg. Chem. Front., 2022, 9(12): 2862.
[15]
Zhang W S, Han D F, Dai M J, Fan Y Y, Pan G L, Liang W Q, Zheng Q T, Qin D D, Han D X, He Y, Niu L. ACS Sustainable Chem. Eng., 2021, 9(45): 15331.
[16]
Mansingh S, Subudhi S, Sultana S, Swain G, Parida K. ACS Appl. Nano Mater., 2021, 4(9): 9635.
[17]
Hu B, Wang B H, Bai Z J, Chen L, Guo J K, Shen S, Xie T L, Au C T, Jiang L L, Yin S F. Chem. Eng. J., 2022, 442: 136211.
[18]
Yu X R, Qiu P, Wang Y C, He B, Xu X R, Zhu H L, Ding J, Liu X Q, Li Z, Wang Y. J. Colloid Interface Sci., 2023, 640: 775.
[19]
Chen L C, Shou J X, Chen Y T, Han W H, Tu X W, Zhang L P, Sun Q, Cao J, Chang Y R, Zheng H. Chem. Eng. J., 2023, 451: 138592.
[20]
Wang L B, Wang S Y, Cui D H, Li M H, Yang X, Li F Y, Xu L. J. Alloys Compd., 2022, 927: 167003.
[21]
Wang W W, Qu J N, Li C J, Guo L X, Fang X X, Chen G H, Duan J H. Mol. Catal., 2022, 532: 112730.
[22]
Ni Z N, Wang Q W, Guo Y X, Liu H M, Zhang Q J. Catalysts, 2023, 13(3): 579.
[23]
Hu B, Wang B H, Chen L, Bai Z J, Zhou W, Guo J K, Shen S, Xie T L, Au C T, Jiang L L, Yin S F. ACS Catal., 2022, 12(19): 11860.
[24]
Wang T, Qu S S, Wang J H, Xu M, Qu C Q, Feng M. J. Alloys Compd., 2023, 938: 168631.
[25]
Cao Y, El-Shafay A S, Mohammed A H, Almojil S F, Almohana A I, Alali A F. Adv. Powder Technol., 2022, 33(4): 103513.
[26]
Zhang S X, Rong X S, Sun T, Gao P, Liu J, Qiu X C, Zhou X T, Wu Z R. J. Porous Mater., 2022, 29(5): 1431.
[27]
Mousavi M, Moradian S, Pourhakkak P, Zhang G K, Habibi M M, Madadi M, Ghasemi J B. J. Mater. Sci., 2022, 57(20): 9145.
[28]
Medford A J, Hatzell M C. ACS Catal., 2017, 7(4): 2624.
[29]
Liu Y, Cheng M, He Z. Angew. Chem. Int. Ed. Engl., 2019, 58: 731.
[30]
Shang H, Wang Y J, Jia H B, Qu M H, Ye X Y, Zhu Q, Zhang D Q, Wang D, Li G S, Li H X. Catal. Sci. Technol., 2023, 13(3): 854.
[31]
Xiao J D, Li R, Jiang H L. Small Meth., 2023, 7(1): 2201258.
[32]
Mao C L, Wang J X, Zou Y J, Li H, Zhan G M, Li J, Zhao J C, Zhang L Z. Green Chem., 2019, 21(11): 2852.
[33]
Jiang M H, Han L K, Peng P, Hu Y, Xiong Y, Mi C X, Tie Z X, Xiang Z H, Jin Z. Nano Lett., 2022, 22(1): 372.
[34]
Xue X L, Chen R P, Chen H W, Hu Y, Ding Q Q, Liu Z T, Ma L B, Zhu G Y, Zhang W J, Yu Q, Liu J, Ma J, Jin Z. Nano Lett., 2018, 18(11): 7372.
[35]
Xue X, Chen H, Xiong Y. ACS Appl. Mater. Interfaces, 2021, 13: 4975.
[36]
Li X Z, He C L, Dai D, Zuo S X, Yan X Y, Yao C, Ni C Y. Appl. Nanosci., 2020, 10(9): 3477.
[37]
Chang B B, Guo Y Z, Liu H L, Li L, Yang B C. J. Mater. Chem. A, 2022, 10(6): 3134.
[38]
Gao X M, Xu K X, He H B, Liu S D, Zhao X B. J. Ind. Eng. Chem., 2022, 111: 129.
[39]
Xue X L, Chen R P, Yan C Z, Hu Y, Zhang W J, Yang S Y, Ma L B, Zhu G Y, Jin Z. Nanoscale, 2019, 11(21): 10439.
[40]
Li M H, Wang L B, Li F Y, Xu L. Photochem. Photobiol. Sci., 2023, 22(6): 1233.
[41]
Lin S, Chen Y H, Fu J J, Sun L, Jiang Q R, Li J F, Cheng J, Lin C J, Tian Z Q. Int. J. Hydrog. Energy, 2022, 47(98): 41553.
[42]
Li C, Xu R Z, Ma S X, Xie Y H, Qu K G, Bao H F, Cai W W, Yang Z H. Chem. Eng. J., 2021, 415: 129018.
[43]
Zhang G H, Yuan X X, Xie B, Meng Y, Ni Z M, Xia S J. Chem. Eng. J., 2022, 433: 133670.
[44]
Sun B T, Liang Z Q, Qian Y Y, Xu X S, Han Y, Tian J. ACS Appl. Mater. Interfaces, 2020, 12(6): 7257.
[45]
Lan M, Wang Y T, Dong X L, Yang F Y, Zheng N, Wang Y, Ma H C, Zhang X F. Appl. Surf. Sci., 2022, 591: 153205.
[46]
Guo Y Z, Yang J H, Wu D H, Bai H Y, Yang Z, Wang J F, Yang B C. J. Mater. Chem. A, 2020, 8(32): 16218.
[47]
Chen Z S, Chen W R, Liao G Z, Li X K, Wang J, Tang Y M, Li L S. J. Hazard. Mater., 2022, 428: 128222.
[48]
Zhu Y X, Zheng X L, Zhang W W, Kheradmand A, Gu S S, Kobielusz M, Macyk W, Li H T, Huang J, Jiang Y J. ACS Appl. Mater. Interfaces, 2021, 13(28): 32937.
[49]
Shima T, Hu S W, Luo G, Kang X H, Luo Y, Hou Z M. Science, 2013, 340(6140): 1549.
[50]
Xiong Y, Li B, Gu Y M, Yan T, Ni Z G, Li S H, Zuo J L, Ma J, Jin Z. Nat. Chem., 2023, 15(2): 286.
[51]
Siporin S. J. Catal., 2004, 225(2): 359.
[52]
Rao N N, Dube S, Manjubala, Natarajan P. Appl. Catal. B Environ., 1994, 5(1/2): 33.
[53]
Boucher D L, Davies J A, Edwards J G, Mennad A. J. Photochem. Photobiol. A Chem., 1995, 88(1): 53.
[54]
Dien N D, Phuoc L H, Hien V X, Vuong D D, Chien N D. J. Electron. Mater., 2017, 46(6): 3309.
[55]
Hoffman B M, Lukoyanov D, Dean D R, Seefeldt L C. Acc. Chem. Res., 2013, 46(2): 587.
[56]
Del Castillo T J, Thompson N B, Peters J C. J. Am. Chem. Soc., 2016, 138(16): 5341.
[57]
Shen Z F, Li F F, Lu J R, Wang Z D, Li R, Zhang X C, Zhang C M, Wang Y W, Wang Y F, Lv Z P, Liu J X, Fan C M. J. Colloid Interface Sci., 2021, 584: 174.
[58]
Azofra L M, Sun C H, Cavallo L, MacFarlane D R. Chem., 2017, 23(34): 8275.
[59]
Zhao W R, Zhang J, Zhu X, Zhang M, Tang J, Tan M, Wang Y. Appl. Catal. B Environ., 2014, 144: 468.
[60]
Liu Y, Hu Z F, Yu J C. Chem. Mater., 2020, 32(4): 1488.
[61]
Li Q, Bai X X, Luo J Y, Li C Y, Wang Z N, Wu W W, Liang Y P, Zhao Z H. Nanotechnology, 2020, 31(37): 375402.
[62]
Hu S, Chen X, Li Q. Appl. Catal., B, 2017, 201: 58.
[63]
Koli V B, Murugan G, Ke S C. Nanomaterials, 2023, 13(2): 275.
[64]
Jiang M H, Tao A Y, Hu Y, Wang L, Zhang K Q, Song X M, Yan W, Tie Z X, Jin Z. ACS Appl. Mater. Interfaces, 2022, 14(15): 17470.
[65]
Logadóttir, Nørskov J K. J. Catal., 2003, 220(2): 273.
[66]
Rittle J, Peters J C. J. Am. Chem. Soc., 2016, 138(12): 4243.
[67]
Zhang H B, Zuo S W, Qiu M, Wang S B, Zhang Y F, Zhang J, Lou X W D. Sci. Adv., 2020, 6(39): eabb9823.
[68]
Wang S, Guo D, Zong M Y, Fan C Z, Jun X, Wang D H. Appl. Catal. A-Gen., 2021, 617: 118112.
[69]
Yan B, Liu D, Feng X. Adv. Funct. Mater., 2020, 30: 2003007.
[70]
Liu H M, Wu P, Li H T, Chen Z B, Wang L Z, Zeng X, Zhu Y X, Jiang Y J, Liao X Z, Haynes B S, Ye J H, Stampfl C, Huang J. Appl. Catal. B Environ., 2019, 259: 118026.
[71]
Li H, Liu K, Fu J W, Chen K J, Yang K X, Lin Y Y, Yang B P, Wang Q Y, Pan H, Cai Z J, Li H M, Cao M Q, Hu J H, Lu Y R, Chan T S, Cortés E, Fratalocchi A, Liu M. Nano Energy, 2021, 82: 105767.
[72]
Liu Y N, Ye X Y, Li R P, Tao Y, Zhang C, Lian Z C, Zhang D Q, Li G S. Chin. Chemical Lett., 2022, 33(12): 5162.
[73]
Hu C Y, Chen X, Jin J B, Han Y, Chen S M, Ju H X, Cai J, Qiu Y R, Gao C, Wang C M, Qi Z M, Long R, Song L, Liu Z, Xiong Y J. J. Am. Chem. Soc., 2019, 141(19): 7807.
[74]
Liu P, Huang Z, Yang S. ACS Catal., 2022, 12: 8139.
[75]
Yan S, Zhang X M, Wu D, Yu Y L, Ding Z. Surf. Interfaces, 2022, 33: 102225.
[76]
Li L, Wang Y C, Vanka S, Mu X Y, Mi Z T, Li C J. Angew. Chem., 2017, 129(30): 8827.
[77]
Liu S Z, Wang Y J, Wang S B, You M M, Hong S, Wu T S, Soo Y L, Zhao Z Q, Jiang G Y, Qiu J S, Wang B J, Sun Z Y. ACS Sustainable Chem. Eng., 2019, 7(7): 6813.
[78]
Ye Y X, Wen C, Wang J W, Pan J H, Huang S M, Liang S Q, Zhou M J, Tong Q, Zhu F, Xu J Q, Ouyang G F. Chem. Commun., 2020, 56(41): 5476.
[79]
Wang Y, Wang R T, Lin N P, Xu J C, Liu X P, Liu N, Zhang X D. Chemosphere, 2022, 293: 133614.
[80]
Sahoo D P, Patnaik S, Rath D, Nanda B, Parida K. RSC Adv., 2016, 6(113): 112602.
[81]
Wang J, Jiang Z, Peng G. Adv Sci. 2022, 9: 2104857.
[82]
Zhang H W, Liu Q Y, Chen Y F, Pei L, Bao L, Yuan Y J. J. Phys. Chem. C, 2021, 125(40): 21997.
[83]
Čorić I, Holland P L. J. Am. Chem. Soc., 2016, 138(23): 7200.
[84]
Spatzal T, Schlesier J, Burger E M, Sippel D, Zhang L M, Andrade S L A, Rees D C, Einsle O. Nat. Commun., 2016, 7: 10902.
[85]
Wu Y J. Masteral Dissertation of Zhejiang University of Technology, 2009.
(吴勇军. 浙江工业大学硕士论文, 2009.)
[86]
McKinlay A C, Eubank J F, Wuttke S, Xiao B, Wheatley P S, Bazin P, Lavalley J C, Daturi M, Vimont A, De Weireld G, Horcajada P, Serre C, Morris R E. Chem. Mater., 2013, 25(9): 1592.
[87]
Zhao Z F, Yang D, Ren H J, An K, Chen Y, Zhou Z Y, Wang W J, Jiang Z Y. Chem. Eng. J., 2020, 400: 125929.
[88]
Zhao Z F, Ren H J, Yang D, Han Y, Shi J F, An K, Chen Y, Shi Y H, Wang W J, Tan J D, Xin X, Zhang Y, Jiang Z Y. ACS Catal., 2021, 11(15): 9986.
[89]
Han H X, Frei H. J. Phys. Chem. C, 2008, 112(22): 8391.
[90]
Chen Y T, Sun Q, Tu X W, Chen L C, Han W H, Zhang L P, Duan X F, Liu M, Zheng H. J. Clean. Prod., 2023, 392: 136314.
[91]
Li H D, Deng H G, Gu S N, Li C P, Tao B R, Chen S M, He X, Wang G F, Zhang W F, Chang H X. J. Colloid Interface Sci., 2022, 607: 1625.
[92]
Zuo S X, Zhang H G, Li X Z, Han C Y, Yao C, Ni C Y. ACS Sustainable Chem. Eng., 2022, 10(4): 1440.
[93]
Carvalho P H P R, Centurion H A, Gonçalves R V, Scholten J D. ACS Sustainable Chem. Eng., 2021, 9(26): 8721.
[94]
Yin H, Chen Z, Peng Y. Angew. Chem. Int. Ed. Engl., 2022, 61: e202114242.
[95]
Zhang Y, Wang Q, Yang S. Adv. Funct. Mater., 2022, 2112452.
[96]
Lin K Y, Feng L, Li D K, Zhang J W, Wang W, Ma B J. Appl. Catal. B Environ., 2021, 286: 119880.
[97]
Mao C L, Yu L H, Li J, Zhao J C, Zhang L Z. Appl. Catal. B Environ., 2018, 224: 612.
[98]
Hu Y, Liang J C, Yang S Y, Jiang M H, Xia Y R, Zhang W J, Li F J, Tie Z X, Jin Z. Chem. Eng. J., 2023, 468: 143571.
[99]
Cendrowski K, Skumial P, Spera P, Mijowska E. Mater. Des., 2016, 110: 740.
[100]
Zhang H Y, Sun Y, Zhang X Q, Yang H, Lin B P. Electrochim. Acta, 2021, 389: 138684.
[101]
da Trindade L G, Borba K M N, Trench A B, Zanchet L, Teodoro V, Pontes F M L, Longo E, Mazzo T M. J. Solid State Chem., 2021, 293: 121794.
[102]
Yan K D, Yang S W, Zhao Y R, Ma C, Jin Y, Wang S Y. Comput. Phys. Commun., 2022, 270: 108183.
[103]
You F F, Wan J W, Qi J, Mao D, Yang N L, Zhang Q H, Gu L, Wang D. Angew. Chem. Int. Ed., 2020, 59(2): 721.
[104]
Bie C, Zhu B, Xu F. Adv. Mater., 2019, 31: e1902868.
[105]
Ren Y F, Liu G Q, Zhu T. Chem., 2021, 16(7): 761.
[106]
Zaine S N A, Mohamed N M, Khatani M, Samsudin A E, Shahid M U. Mater. Today Commun., 2019, 19: 220.
[107]
Zhang X W, Wang P, Lv X Y, Niu X Y, Lin X Y, Zhong S X, Wang D M, Lin H J, Chen J R, Bai S. ACS Catal., 2022, 12(4): 2569.

Funding

National Natural Science Foundation of China(21978187)
Fundamental Research Program of Shanxi Province(202203021221058)
Scientific Technological Innovation Programs of Higher Education Institutions in Shanxi(2022L535)
Taiyuan Institute of Technology Scientific Research Initial Funding(2024KJ013)
PDF(9459 KB)

Accesses

Citation

Detail

Sections
Recommended

/