Preparation and Application of Inorganic Persistent Luminescent Composite Materials

Lukman Kasim, Boyuan Li, Abdukader Abdukayum

Prog Chem ›› 2024, Vol. 36 ›› Issue (8) : 1254-1268.

PDF(12356 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(12356 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (8) : 1254-1268. DOI: 10.7536/PC231210
Review

Preparation and Application of Inorganic Persistent Luminescent Composite Materials

Author information +
History +

Abstract

persistent luminescent materials are photoluminescent materials that store energy when exposed to light and slowly release it as light when the light source is removed.Among them,the inorganic persistent luminescent materials because of its unique characteristics of long afterglow luminescence that make them useful in various fields,including data storage,information technology,photocatalysis,and biomedicine.Researchers have developed multifunctional composites based on inorganic persistent luminescent materials to enhance their properties and functions.However,there is still a lack of a systematic and comprehensive review of inorganic persistent luminescent composite materials.This paper summarizes the preparation methods of inorganic persistent luminescent composites,combining recent literature reports on inorganic persistent luminescent composites and the research work of our group,and then focuses on the progress of the research and application of inorganic persistent luminescent composites in photocatalysis,biomedicine and anti-counterfeiting.Finally,the opportunities and challenges for the practical application of inorganic persistent luminescent composites are analyzed from a prospective point of view。

Contents

1 Introduction

2 Preparation of persistent luminescent composite materials

2.1 Load type

2.2 Core-shell type

2.3 Dumbbell type

3 Application of persistent luminescent composite materials

3.1 Photocatalysis

3.2 Biomedical

3.3 Anti-counterfeiting

4 Conclusion and outlook

Key words

persistent luminescence / composite material / photocatalysis / biomedicine / anti-counterfeiting

Cite this article

Download Citations
Lukman Kasim , Boyuan Li , Abdukader Abdukayum. Preparation and Application of Inorganic Persistent Luminescent Composite Materials[J]. Progress in Chemistry. 2024, 36(8): 1254-1268 https://doi.org/10.7536/PC231210

References

[1]
Huang K, Le N, Wang J S, Huang L, Zeng L, Xu W C, Li Z J, Li Y, Han G. Adv. Mater., 2022, 34(14): 2107962.
[2]
Pan Z W, Lu Y Y, Liu F. Nat. Mater., 2012, 11(1): 58.
[3]
Wu S Q, Li Y, Ding W H, Xu L T, Ma Y, Zhang L B. Nano-Micro Lett., 2020, 12: 70.
[4]
Matsuzawa T, Aoki Y, Takeuchi N, Murayama Y. J. Electrochem. Soc., 1996, 143(8): 2670.
[5]
Kang F W, Sun G H, Boutinaud P, Wu H Y, Ma F X, Lu J, Gan J L, Bian H D, Gao F, Xiao S S. Chem. Eng. J., 2021, 403: 126099.
[6]
Li Y, Gecevicius M, Qiu J R. Chem. Soc. Rev., 2016, 45(8): 2090.
[7]
Huang J H, Ding K N, Hou Y D, Wang X C, Fu X Z. ChemSusChem, 2008, 1(12): 1011.
[8]
Manna R, Rahut S, Samanta A N. Mater. Today Energy, 2023, 35: 101326.
[9]
Fu Z T, Zhao X, Zhang S, Fu Z X. Mater. Chem. Phys., 2021, 259: 124004.
[10]
Li H, Wang Y H, Li L, Huang H J, Zhao H, Hu Z F. Mod. Phys. Lett. B, 2016, 30(27): 1650305.
[11]
Pei L, Luo Z G, Wang X S, Ma Z F, Nie Y H, Zhong J S, Yang D, Bandaru S, Su B L. J. Colloid Interface Sci., 2023, 652: 636.
[12]
Wei Y R, Gong C X, Zhao M, Zhang L, Yang S D, Li P X, Ding Z, Yuan Q, Yang Y B. J. Rare Earths, 2022, 40(9): 1333.
[13]
Liu Y, Wang Z X, Miao K, Zhang X D, Li W, Zhao P, Sun P, Zheng T T, Zhang X Y, Chen C. Nanoscale Adv., 2022, 4(23): 4972.
[14]
Wu B Y, Yan X P. Chem. Commun., 2015, 51(18): 3903.
[15]
Sun S K, Wang H F, Yan X P. Acc. Chem. Res., 2018, 51(5): 1131.
[16]
Abdukayum A, Chen J T, Zhao Q, Yan X P. J. Am. Chem. Soc., 2013, 135(38): 14125.
[17]
Wang J, Li Y J, Mao R H, Wang Y, Yan X P, Liu J. J. Mater. Chem. B, 2017, 5(29): 5793.
[18]
Ozdemir T, Lu Y C, Kolemen S, Tanriverdi-Ecik E, Akkaya E U. ChemPhotoChem, 2017, 1(5): 183.
[19]
Liu G Y, Zhang S C, Shi Y H, Huang X Y, Tang Y Y, Chen P, Si W L, Huang W, Dong X C. Adv. Funct. Mater., 2018, 28(42): 1804317.
[20]
Jiang W J, Huang L, Mo F, Zhong Y Y, Xu L J, Fu F F. J. Mater. Chem. B, 2019, 7(18): 3019.
[21]
Ma C Q, Liu H H, Ren F, Liu Z, Sun Q, Zhao C J, Li Z. Cryst. Growth Des. , 2020, 20(3): 1859.
[22]
Zhang X, Guo H J, Shi Q F, Cui C E, Cui Y X, Huang P, Wang L. Ceram. Int., 2022, 48(24): 36201.
[23]
Feng P F, Wei Y D, Wang Y N, Zhang J C, Li H H, Ci Z P. J. Am. Ceram. Soc., 2016, 99(7): 2368.
[24]
Tuerdi A, Yan P, He F G, Abdukayum A. RSC Adv., 2022, 12(54): 35064.
[25]
Lv Y, Ding D D, Zhuang Y X, Feng Y S, Shi J P, Zhang H W, Zhou T L, Chen H M, Xie R J. ACS Appl. Mater. Interfaces, 2019, 11(2): 1907.
[26]
Fu X, Zhao X, Chen L J, Ma P M, Liu T X, Yan X P. Biomater. Sci., 2023, 11(15): 5186.
[27]
Li Z J, Huang L, Zhang Y W, Zhao Y, Yang H, Han G. Nano Res., 2017, 10(5): 1840.
[28]
Giordano L, Cai G Y, Seguin J, Liu J H, Richard C, Rodrigues L C V, Viana B. Adv. Opt. Mater., 2023, 11(11): 2201468.
[29]
Kang F W, Sun G H, Boutinaud P, Wu H Y, Ma F X, Lu J, Gan J L, Bian H D, Gao F, Xiao S S. Chem. Eng. J., 2021, 403: 126099.
[30]
Xiao Y H, Luo B, Cheng B C, Huang Q F, Ye Y L, Fang L T, Zhou L, Lei S J. Dalton Trans., 2018, 47(24): 7941.
[31]
He F G, Abulimiti A, Li B Y, Wu Y, Chen Y, Zhang M H, Abdukayum A. ACS Appl. Nano Mater., 2023, 6(14): 12871.
[32]
Liu X M, Chen X Y, Li Y Z, Wu B Q, Luo X B, Ouyang S, Luo S L, Al Kheraif A A, Lin J. J. Mater. Chem. A, 2019, 7(32): 19173.
[33]
Wang J, Pan R H, Yuan Z J, Hao Q, Niu X Y, Wang R, Ye J L, Yang H Y, Wu Y P. Chem. Eng. J., 2024, 481: 148296.
[34]
Li J M, Yi D, Zhan F, Zhou B, Gao D L, Guo D Y, Liu S J, Wang X, Yao J N. Appl. Catal. B Environ., 2020, 271: 118925.
[35]
Wang J H, Zhu Q, Liao Y W, Fu H Q, Chang J M, Zhang Y L, Kan T T, Gao H J, Huang W C. J. Alloys Compd., 2021, 883: 160832.
[36]
Qin Y Y, Li H, Lu J, Feng Y H, Meng F Y, Ma C C, Yan Y S, Meng M J. Appl. Catal. B Environ., 2020, 277: 119254.
[37]
Dai X J, Feng S, Ma C C, Xu L, Fan L F, Ye Z W, Wang Y. Appl. Surf. Sci., 2023, 639: 158142.
[38]
Lee G J, Hou Y H, Chen C Y, Tsay C Y, Chang Y C, Chen J H, Horng T L, Anandan S, Wu J J. Int. J. Hydrog. Energy, 2021, 46(8): 5938.
[39]
Zhao X, Gao X M, Gu T Y, Chen K L, Yan Z Y, Chen L J, Yan X P. Trac Trends Anal. Chem., 2023, 168: 117279.
[40]
Li Z J, Zhang Y W, Wu X, Wu X Q, Maudgal R, Zhang H W, Han G. Adv. Sci., 2015, 2(3): 1500001.
[41]
Wang Y Q, Li Z H, Lin Q S, Wei Y R, Wang J, Li Y X, Yang R H, Yuan Q. ACS Sens., 2019, 4(8): 2124.
[42]
Shi L X, Shao J J, Jing X H, Zheng W W, Liu H, Zhao Y. ACS Sustainable Chem. Eng., 2020, 8(1): 686.
[43]
Jiang Y Y, Zhao X, Chen L J, Yang C, Yin X B, Yan X P. Talanta, 2020, 218: 121101.
[44]
Feng Y, Deng D Y, Zhang L C, Liu R, Lv Y. Sens. Actuat. B Chem., 2019, 279: 189.
[45]
Li N, Li Y H, Han Y Y, Pan W, Zhang T T, Tang B. Anal. Chem., 2014, 86(8): 3924.
[46]
Feng Y, Song H J, Deng D Y, Lv Y. Anal. Chem., 2020, 92(9): 6645.
[47]
Liu Z J, Pu Y W, Bao Y X, He S. Int. J. Gen. Med., 2021, 14: 4369.
[48]
Wu B Y, Wang H F, Chen J T, Yan X P. J. Am. Chem. Soc., 2011, 133(4): 686.
[49]
Feng F, Chen X, Li G J, Liang S, Hong Z Y, Wang H F. Feng F, Chen X, Li G J, Liang S, Hong Z Y, Wang H F. ACS Sens., 2018, 3(9): 1846.
[50]
Zhao H X, Liu C X, Gu Z, Dong L X, Li F, Yao C, Yang D Y. Nano Lett., 2020, 20(1): 252.
[51]
Jiang Y Y, Zhao X, Chen L J, Yang C, Yin X B, Yan X P. Talanta, 2021, 232: 122395.
[52]
Yao T L, Dong G Q, Qian S Y, Cui Y, Chen X, Tan T T, Li L L. Sens. Actuat. B Chem., 2022, 357: 131470.
[53]
Weissleder R. Nat. Biotechnol., 2001, 19(4): 316.
[54]
Naczynski D J, Tan M C, Zevon M, Wall B, Kohl J, Kulesa A, Chen S, Roth C M, Riman R E, Moghe P V. Nat. Commun., 2013, 4: 2199.
[55]
Sun L D, Wang Y F, Yan C H. Acc. Chem. Res., 2014, 47(4): 1001.
[56]
Wang F, Liu X G. Acc. Chem. Res., 2014, 47(4): 1378.
[57]
Qiu X C, Zhu X J, Xu M, Yuan W, Feng W, Li F Y. ACS Appl. Mater. Interfaces, 2017, 9(38): 32583.
[58]
Lin P, Shi J P, Lin Y, Zhang Q, Yu K X, Liu L, Song L, Kang Y L, Hong M C, Zhang Y. Adv. Sci., 2023, 10(18): 2207486.
[59]
Louie A. Chem. Rev., 2010, 110(5): 3146.
[60]
Lee D E, Koo H, Sun I C, Ryu J H, Kim K, Kwon I C. Chem. Soc. Rev., 2012, 41(7): 2656.
[61]
Kim J, Piao Y Z, Hyeon T. Chem. Soc. Rev., 2009, 38(2): 372.
[62]
Reddy L H, Arias J L, Nicolas J, Couvreur P. Chem. Rev., 2012, 112(11): 5818.
[63]
Colombo M, Carregal-Romero S, Casula M F, Gutiérrez L, Morales M P, Böhm I B, Heverhagen J T, Prosperi D, Parak W J. Chem. Soc. Rev., 2012, 41(11): 4306.
[64]
Abdukayum A, Yang C X, Zhao Q, Chen J T, Dong L X, Yan X P. Anal. Chem., 2014, 86(9): 4096.
[65]
Wang Y, Yang C X, Yan X P. Nanoscale, 2017, 9(26): 9049.
[66]
Lu Y C, Yang C X, Yan X P. Nanoscale, 2015, 7(42): 17929.
[67]
Shi J P, Fu H X, Sun X, Shen J S, Zhang H W. J. Mater. Chem. B, 2015, 3(4): 635.
[68]
Dai W B, Lei Y F, Ye S, Song E H, Chen Z, Zhang Q Y. J. Mater. Chem. B, 2016, 4(10): 1842.
[69]
Zou R, Li J W, Yang T, Zhang Y, Jiao J, Wong K L, Wang J. Theranostics, 2021, 11(17): 8448.
[70]
Liu J M, Liu Y Y, Zhang D D, Fang G Z, Wang S. ACS Appl. Mater. Interfaces, 2016, 8(44): 29939.
[71]
Chamundeeswari M, Jeslin J, Verma M L. Environ. Chem. Lett., 2019, 17(2): 849.
[72]
Mura S, Nicolas J, Couvreur P. Nat. Mater., 2013, 12(11): 991.
[73]
Zhang H J, Chen W, Gong K, Chen J H. ACS Appl. Mater. Interfaces, 2017, 9(37): 31519.
[74]
Maldiney T, Ballet B, Bessodes M, Scherman D, Richard C. Nanoscale, 2014, 6(22): 13970.
[75]
Zheng B, Chen H B, Zhao P Q, Pan H Z, Wu X L, Gong X Q, Wang H J, Chang J. ACS Appl. Mater. Interfaces, 2016, 8(33): 21603.
[76]
Zhao H X, Shu G, Zhu J Y, Fu Y Y, Gu Z, Yang D Y. Biomaterials, 2019, 217: 119332.
[77]
Shu G, Zhao H X, Zhang X N. Biomater. Sci., 2023, 11(5): 1797.
[78]
Pei H, Zuo X L, Zhu D, Huang Q, Fan C H. Acc. Chem. Res., 2014, 47(2): 550.
[79]
Ouyang X Y, Li J, Liu H J, Zhao B, Yan J, Ma Y Z, Xiao S J, Song S P, Huang Q, Chao J, Fan C H. Small, 2013, 9(18): 3082.
[80]
Wang J, Ma Q Q, Wang Y Q, Shen H J, Yuan Q. Nanoscale, 2017, 9(19): 6204.
[81]
Chen L J, Zhao X, Liu Y Y, Yan X P. J. Mater. Chem. B., 2020, 8: 8071.
[82]
Wang S J, Huang P, Nie L M, Xing R J, Liu D B, Wang Z, Lin J, Chen S H, Niu G, Lu G M, Chen X Y. Adv. Mater., 2013, 25(22): 3055.
[83]
Yang H Y, Zhang Y M, Song J, Wang M, Yu S N, Chen L, Li X M, Yang S N, Yang L. Chem. Eng. J., 2019, 375: 121941.
[84]
Meng Y Q, Yang J, Jiang R Y, Wang S Y, Zheng L H, Wang G N, Tian X, Zhu H C, Yan D T, Liu C G, Xu C S, Bao Y L, Liu Y X. Appl. Surf. Sci., 2021, 562: 150189.
[85]
Meng Y Q, Wang M W, Zhu Y Q, Wang S, Yang J, Zhu H C, Yan D T, Liu C G, Xu C S, Liu Y X. Dalton Trans., 2022, 51(13): 5285.
[86]
Hu L D, Wang P Y, Zhao M Y, Liu L, Zhou L, Li B H, Albaqami F H, El-Toni A M, Li X M, Xie Y, Sun X F, Zhang F. Biomaterials, 2018, 163: 154.
[87]
Zhao H X, Li L H, Li F, Liu C X, Huang M X, Li J, Gao F, Ruan X H, Yang D Y. Adv. Mater., 2022, 34(13): 2109920.
[88]
Yu B, Wang Y J, Lin Y Y, Feng Y, Wu J, Liu W S, Wang M, Gao X P. Nanoscale., 2022, 14(25): 8978.
[89]
Wang Y H, Yin W, Ke W D, Chen W J, He C X, Ge Z S. Biomacromolecules, 2018, 19(6): 1990.
[90]
Liu C H, Wang D D, Zhang S Y, Cheng Y R, Yang F, Xing Y, Xu T L, Dong H F, Zhang X J. ACS Nano, 2019, 13(4): 4267.
[91]
Liu F, Lin L, Zhang Y, Wang Y B, Sheng S, Xu C N, Tian H Y, Chen X S. Adv. Mater., 2019, 31(40): 1902885.
[92]
Sun H T, Zhang Y Y, Chen S Y, Wang R Z, Chen Q, Li J C, Luo Y, Wang X L, Chen H R. ACS Appl. Mater. Interfaces, 2020, 12(27): 30145.
[93]
Liu Y, Zhen W Y, Jin L H, Zhang S T, Sun G Y, Zhang T Q, Xu X, Song S Y, Wang Y H, Liu J H, Zhang H J. ACS Nano, 2018, 12(5): 4886.
[94]
Yao Y, Li N, Zhang X, Ong’achwa Machuki J, Yang D Z, Yu Y Y, Li J J, Tang D Q, Tian J W, Gao F L. ACS Appl. Mater. Interfaces, 2019, 11(15): 13991.
[95]
An L, Wang X D, Rui X C, Lin J M, Yang H, Tian Q W, Tao C, Yang S P. Angew. Chem. Int. Ed., 2018, 57(48): 15782.
[96]
Hu Y L, Ruan X H, Lv X Y, Xu Y, Wang W J, Cai Y, Ding M, Dong H, Shao J J, Yang D L, Dong X C. Nano Today, 2022, 46: 101602.
[97]
Zhou J, Yao D Y, Qian Z Y, Hou S, Li L H, Jenkins A T A, Fan Y B. Biomaterials, 2018, 161: 11.
[98]
Hou X X, Yang L J, Liu J J, Zhang Y M, Chu L P, Ren C Y, Huang F, Liu J F. Biomater. Sci., 2020, 8(22): 6350.
[99]
Mao C Y, Xiang Y M, Liu X M, Cui Z D, Yang X J, Li Z Y, Zhu S L, Zheng Y F, Yeung K W K, Wu S L. ACS Nano, 2018, 12(2): 1747.
[100]
Liang Y P, Chen B J, Li M, He J H, Yin Z H, Guo B L. Biomacromolecules, 2020, 21(5): 1841.
[101]
Zhang Y, Sun P P, Zhang L, Wang Z Z, Wang F M, Dong K, Liu Z, Ren J S, Qu X G. Adv. Funct. Mater., 2019, 29(11): 1808594.
[102]
Zhu Y W, Xu C, Zhang N, Ding X K, Yu B R, Xu F J. Adv. Funct. Mater., 2018, 28(14): 1706709.
[103]
Wu H, Tian H, Li J Q, Liu L H, Wang Y X, Qiu J S, Wang S B, Liu S M. Compos. Part B Eng., 2020, 202: 108415.
[104]
Yang J Y, Chen Y, Zhao L, Feng Z P, Peng K L, Wei A L, Wang Y L, Tong Z R, Cheng B. Compos. Part B Eng., 2020, 197: 108139.
[105]
Hu C, Zhang F J, Kong Q S, Lu Y H, Zhang B, Wu C, Luo R F, Wang Y B. Biomacromolecules, 2019, 20(12): 4581.
[106]
Wan Y Z, Yang S S, Wang J, Gan D Q, Gama M, Yang Z W, Zhu Y, Yao F L, Luo H L. Compos. Part B Eng., 2020, 199: 108259.
[107]
Liu L, Shi J P, Sun X, Zhang Y Q, Qin J W, Peng S S, Xu J X, Song L, Zhang Y. Compos. Part B Eng., 2022, 229: 109459.
[108]
Dundar Arisoy F, Kolewe K W, Homyak B, Kurtz I S, Schiffman J D, Watkins J J. ACS Appl. Mater. Interfaces, 2018, 10(23): 20055.
[109]
Liu L, Shi J P, Sun X, Zhang Y Q, Qin J W, Peng S S, Xu J X, Song L, Zhang Y. Compos. Part B Eng., 2022, 229: 109459.
[110]
Wooh S, Encinas N, Vollmer D, Butt H J. Adv. Mater., 2017, 29(16): 1604637.
[111]
Wang W J, Li G Y, Xia D H, An T C, Zhao H J, Wong P K. Environ. Sci.: Nano, 2017, 4(4): 782.
[112]
Guo Q, Zhou C Y, Ma Z B, Yang X M. Adv. Mater., 2019, 31(50): 1901997.
[113]
Wang L Y, Chen L J, Zhao X, Lv Y, Liu T X, Yan X P. ACS Appl. Nano Mater., 2023, 6(3): 2274.
[114]
Abdollahi A, Roghani-Mamaqani H, Razavi B, Salami-Kalajahi M. ACS Nano., 2020, 14(11): 14417.
[115]
El-Newehy M H, Kim H Y, Khattab T A, El-Naggar M E. Ceram. Int., 2022, 48(3): 3495.
[116]
Liu L, Shi J P, Li Y A, Peng S S, Zhong H Y, Song L, Zhang Y. Chem. Eng. J., 2022, 430: 132884.
[117]
Qiao X K, Kasim L, Tuerdi A, Hu G Z, Abdukayum A, ACS Appl. Nano Mater, 2023, 6(22): 20831.
[118]
Li S, Wang H Y, Yang P, Wang L L, Cheng X R, Yang K. J. Alloys Compd., 2021, 854: 156930.
[119]
Xu Y Q, Chen T, Xie Z X, Jiang W H, Wang L J, Jiang W, Zhang X J. Chem. Eng. J., 2021, 403: 126372.
[120]
Hai O, Pei M K, Yang E L, Ren Q, Wu X L, Zhao Y J, Du L. Appl. Surf. Sci., 2021, 568: 150941.
[121]
Hai O, Li J, Pei M K, Ren Q, Wu X L, Qin B, Xiao X N, He X L, Li T, Chen Y. ACS Appl. Nano Mater., 2023, 6(10): 8990.
[122]
Li W, Zhang H R, Chen S, Liu Y L, Zhuang J L, Lei B F. Adv. Opt. Mater., 2016, 4(3): 427.
[123]
Hou X C, Du C X, Pang Q, Jia C Y, Wang X J, Gao D L. J. Lumin., 2024, 265: 120217.
[124]
Wu Y, Cao F, Jiang H, Zhang Y. Mater. Res. Express, 2017, 4(8): 085303.

Funding

Natural Science Foundation of Xinjiang Uygur Autonomous Region(2022D01E16)
National Natural Science Foundation of China(22364016)
Tianshan Innovation Team Plan of Xinjiang Uygur Autonomous Region(2023D14002)
PDF(12356 KB)

Accesses

Citation

Detail

Sections
Recommended

/