In Situ Transformation and Application of MXene

Yunshuo Zhang, Feifei Lin, Yuzhe Chen, Ning Ding, Yulan Wei, Weiwei Zhao

Prog Chem ›› 2024, Vol. 36 ›› Issue (8) : 1174-1185.

PDF(298292 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(298292 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (8) : 1174-1185. DOI: 10.7536/PC231215
Review

In Situ Transformation and Application of MXene

Author information +
History +

Abstract

MXene is a new class of two-dimensional transition metal carbides and nitrides which serves as a versatile and promising material with a wide range of applications in various fields.Layered MXene has abundant surface end-group functional groups(−F,−O and−OH)and a wide range of compatibility with second-phase materials,showing great potential in the construction of multi-functional,high-performance hybrid materials.Research has found that Ti3C2MXene nanosheets have a disadvantage of easy interlayer stacking during use,which is detrimental to ion/electron transport.The in-situ transformation of MXene provides a new approach to address this issue.During the in-situ transformation process of MXene materials,the loading of the second-phase material is controllable and can effectively suppress the interlayer stacking effect of MXene nanosheets.At the same time,by selecting and controlling the second-phase material,it is possible to achieve the directional construction of multifunctional,high-performance hybrid materials.The in-situ transformed hybrid materials can integrate the large specific surface area,metallic conductivity,high active sites of MXene,and the intrinsic properties of the selected second-phase material.Recently,there has been rapid development in the preparation and application of composite materials based on Ti3C2MXene derivatives,showcasing extensive research prospects in the fields of energy storage,catalysis,sensing,and more.Taking Ti3C2as an example,this article summarizes the preparation and transformation mechanisms of MXene-based in-situ converted hybrid materials(in-situ derived,metal ion hybridization,and MOF material hybridization).It also summarizes the applications of MXene hybrid materials in energy storage(lithium-sulfur batteries,supercapacitors,and hydrogen storage),sensors,and catalysis.The article points out the unresolved issues in MXene in-situ transformation research and outlines the future development directions for scientific research.It hopes to provide new research ideas for scholars in this field and contribute to the development of nanomaterials with functional properties 。

Contents

1 Introduction

2 In-situ transformation of MXene for hybrid materials

2.1 In-situ transformation of MXene

2.2 In-situ reaction of metal ions on the surface of MXene

2.3 Assembly of MOF with MXene

3 Application of MXene derived nanocomposites

3.1 Energy storage

3.2 Sensor

3.3 Catalysis

4 Summary and outlook

Key words

MXene / in-situ transformation / nanomaterials / catalysis / energy storage / sensor

Cite this article

Download Citations
Yunshuo Zhang , Feifei Lin , Yuzhe Chen , et al . In Situ Transformation and Application of MXene[J]. Progress in Chemistry. 2024, 36(8): 1174-1185 https://doi.org/10.7536/PC231215

References

[1]
Meena J S, Choi S B, Kim J W. Electron. Mater. Lett., 2022, 18(3): 256.
[2]
Shahzad U, Marwani H M, Saeed M, Asiri A M, Rahman M M. ChemistrySelect, 2023, 8(25): e202300737.
[3]
Zhou A G, Liu Y, Li S B, Wang X H, Ying G B, Xia Q X, Zhang P G. J. Adv. Ceram., 2021, 10(6): 1194.
[4]
Zhou C, Zhao X H, Xiong Y S, Tang Y H, Ma X T, Tao Q, Sun C M, Xu W L. Eur. Polym. J., 2022, 167: 111063.
[5]
Naguib M, Kurtoglu M, Presser V, Lu J, Niu J J, Heon M, Hultman L, Gogotsi Y, Barsoum M W. Adv. Mater., 2011, 23(37): 4248.
[6]
Zhang Y, Ma C, He W, Zhang C, Zhou L, Wang G, Wei W. Prog. Nat. Sci., 2021, 31(4): 501.
[7]
Jiang Q, Lei Y, Liang H, Xi K, Xia C, Alshareef H N. Energy Stor. Mater., 2020, 27: 78.
[8]
Otgonbayar Z, Oh W C. FlatChem, 2023, 40: 100524.
[9]
Hong L F, Guo R T, Yuan Y, Ji X Y, Li Z S, Lin Z D, Pan W G. Mater. Today Energy, 2020, 18: 100521.
[10]
Chen X C, Li L B, Shan Y H, Zhou D, Cui W J, Zhao Y. J. Energy Chem., 2022, 70: 502.
[11]
Kandula S, Kim E, Ahn C W, Lee J, Yeom B, Lee S W, Cho J, Lim H-K, Lee Y, Son J G. Energy Stor. Mater., 2023, 63: 103024.
[12]
Chaudhari N K, Jin H, Kim B, San Baek D, Joo S H, Lee K. J. Mater. Chem. A, 2017, 5(47): 24564.
[13]
Nirmal K A, Ren W Q, Khot A C, Kang D Y, Dongale T D, Kim T G. Adv. Sci., 2023, 10(19): 2300433.
[14]
Sarycheva A, Shanmugasundaram M, Krayev A, Gogotsi Y. ACS Nano, 2022, 16(4): 6858.
[15]
Tan D C, Jiang C M, Sun N, Huang J J, Zhang Z, Zhang Q X, Bu J Y, Bi S, Guo Q L, Song J H. Nano Energy, 2021, 90: 106528.
[16]
Wang L Y, Bai Z, Zhang X W, Li G Z. ACS Appl. Nano Mater., 2022, 5(7): 9666.
[17]
Wang Z H, Duan C Y, Zhou Y Q, Wen F P, Lu Q H, Liu D, Wang F, Meng X X. Appl. Surf. Sci., 2023, 615: 156406.
[18]
Nersisyan H H, Lee J H, Ding J R, Kim K S, Manukyan K V, Mukasyan A S. Prog. Energy Combust. Sci., 2017, 63: 79.
[19]
Bai X, Guan J Q. Chin. J. Catal., 2022, 43(8): 2057.
[20]
Li G, Lian S, Wang J, Xie G, Zhang N, Xie X. J. Materiomics, 2023, 9(6):1160.
[21]
Zhu Q, Li J, Simon P, Xu B. Energy Stor. Mater., 2021, 35: 630.
[22]
Zhuang Y, Liu Y F, Meng X F. Appl. Surf. Sci., 2019, 496: 143647.
[23]
Low J, Zhang L Y, Tong T, Shen B J, Yu J G. J. Catal., 2018, 361: 255.
[24]
Xu Y J, Wang S, Yang J, Han B, Nie R, Wang J X, Wang J G, Jing H W. Nano Energy, 2018, 51: 442.
[25]
Wang H H, Cui H Z, Song X J, Xu R Q, Wei N, Tian J, Niu H S. J. Colloid Interface Sci., 2020, 561: 46.
[26]
Li N, Jiang Y, Zhou C H, Xiao Y, Meng B, Wang Z Y, Huang D Z, Xing C Y, Peng Z C. ACS Appl. Mater. Interfaces, 2019, 11(41): 38116.
[27]
Sun Y, Li P P, Zhu Y, Zhu X H, Zhang Y Y, Liu M L, Liu Y. Biosens. Bioelectron., 2021, 194: 113600.
[28]
Liu N, Yu L, Liu B, Yu F, Li L, Xiao Y, Yang J, Ma J. Adv. Sci., 2022, 10: 2204041.
[29]
Wang H, Peng R, Hood Z D, Naguib M, Adhikari S P, Wu Z L. ChemSusChem, 2016, 9(12): 1490.
[30]
Li Y, Yin Z, Ji G, Liang Z, Xue Y, Guo Y, Tian J, Wang X, Cui H. Appl. Catal. B, 2019, 246: 12.
[31]
Shahzad A, Rasool K, Nawaz M, Miran W, Jang J, Moztahida M, Mahmoud K A, Lee D S. Chem. Eng. J., 2018, 349: 748.
[32]
Tang J, Huang X, Lin T, Qiu T, Huang H, Zhu X, Gu Q, Luo B, Wang L. Energy Stor. Mater., 2020, 26: 550.
[33]
Talib M, Tripathi N, Sharma P, Hasan P M Z, Melaibari A A, Darwesh R, Arsenin A V, Volkov V S, Yakubovsky D I, Kumar S, Pavelyev V, Mishra P. J. Mater. Res. Technol., 2021, 14: 1243.
[34]
Zhao B T, Wang S L, Yu Q T, Wang Q, Wang M, Ni T, Ruan L M, Zeng W. J. Power Sources, 2021, 504: 230076.
[35]
Huang X, Tang J Y, Luo B, Knibbe R, Lin T E, Hu H, Rana M, Hu Y X, Zhu X B, Gu Q F, Wang D, Wang L Z. Adv. Energy Mater., 2019, 9(32): 1901872.
[36]
Sanchez-Perez C, Knapp C E, Colman R H, Sotelo-Vazquez C, Oilunkaniemi R, Laitinen R S, Carmalt C J. RSC Adv., 2018, 8(40): 22552.
[37]
Zheng R T, Yu H X, Zhang X K, Ding Y, Xia M T, Cao K Z, Shu J, Vlad A, Su B L. Angew. Chem. Int. Ed., 2021, 60(34): 18430.
[38]
Juran T R, Smeu M. J. Power Sources, 2019, 436: 226813.
[39]
Qi F Y, Shao L Y, Lu X Y, Liu G P, Shi X Y, Sun Z P. Appl. Surf. Sci., 2022, 605: 154653.
[40]
Azadmanjiri J, Děkanovský L, Wei S Y, Li M, Sofer Z. J. Energy Storage, 2022, 56: 105918.
[41]
Huang H J, Xiao D, Zhu Z H, Zhang C, Yang L, He H Y, You J, Jiang Q G, Xu X T, Yamauchi Y. Chem. Sci., 2023, 14(36): 9854.
[42]
Qin J L, Huang H J, Zhang J, Zhu F Y, Luo L, Zhang C, Yang L, Jiang Q G, He H Y. J. Mater. Chem. A, 2023, 11(6): 2848.
[43]
Feng W L, Luo H, Zeng S F, Chen C, Deng L W, Tan Y Q, Zhou X S, Peng S M, Zhang H B. Mater. Chem. Front., 2018, 2(12): 2320.
[44]
Wen C, Li X, Zhang R, Xu C, You W, Liu Z, Zhao B, Che R. ACS Nano, 2021, 16: 1150.
[45]
Liang L Y, Han G J, Li Y, Zhao B, Zhou B, Feng Y Z, Ma J M, Wang Y M, Zhang R, Liu C T. ACS Appl. Mater. Interfaces, 2019, 11(28): 25399.
[46]
Bat-Erdene M, Batmunkh M, Sainbileg B, Hayashi M, Bati A S R, Qin J D, Zhao H J, Zhong Y L, Shapter J G. Small, 2021, 17(38): 2102218.
[47]
Kong A Q, Peng M, Gu H Z, Zhao S C, Lv Y, Liu M H, Sun Y W, Dai S D, Fu Y, Zhang J L, Li W. Chem. Eng. J., 2021, 426: 131234.
[48]
Liu A M, Liang X Y, Gao M F, Ren X F, Gao L G, Yang Y N, Zhu H D, Li G X, Ma T L. ChemCatChem, 2022, 14(7): e202101775.
[49]
Sharma K, Hasija V, Patial S, Singh P, Nguyen V-H, Nadda A K, Thakur S, Nguyen-Tri P, Nguyen C C, Kim S Y, Le Q V, Raizada P. Int. J. Hydrog. Energy, 2023, 48(17): 6560.
[50]
Venkateswarlu S, Vallem S, Umer M, Jyothi N V V, Giridhar Babu A, Govindaraju S, Son Y, Kim M J, Yoon M. J. Energy Chem., 2023, 86: 409.
[51]
Zhang F, Qian Y, Jin Z, Fei Z, Zhang J, Mao H, Kang D J, Pang H. J. Energy Storage, 2023, 72: 108213.
[52]
Xiao P, Zhu G, Shang X, Hu B, Zhang B, Tang Z, Yang J, Liu J. J. Electroanal. Chem., 2022, 916: 116382.
[53]
Zhang H, Li Z, Hou Z, Mei H, Feng Y, Xu B, Sun D. Chem. Eng. J., 2021, 425: 130602.
[54]
Gallo A B, Simões-Moreira J R, Costa H K M, Santos M M, Moutinho dos Santos E. Renew. Sustain. Energ. Rev., 2016, 65: 800.
[55]
Hannan M A, Hoque M M, Mohamed A, Ayob A. Renew. Sustain. Energ. Rev., 2017, 69: 771.
[56]
Zhao C Z, Duan H, Huang J Q, Zhang J, Zhang Q, Guo Y G, Wan L J. Sci. China Chem., 2019, 62(10): 1286.
[57]
Yang C Z, Huang H J, He H Y, Yang L, Jiang Q G, Li W H. Coord. Chem. Rev., 2021, 435: 213806.
[58]
Wang T, He J, Cheng X-B, Zhu J, Lu B, Wu Y. ACS Energy Lett., 2022, 8: 116.
[59]
Zhao H, Deng N, Yan J, Kang W, Ju J, Ruan Y, Wang X, Zhuang X, Li Q, Cheng B. Chem. Eng. J., 2018, 347: 343.
[60]
Ryou M H, Lee Y M, Lee Y J, Winter M, Bieker P. Adv. Funct. Mater., 2015, 25(6): 834.
[61]
Balach J, Linnemann J, Jaumann T, Giebeler L. J. Mater. Chem. A, 2018, 6(46): 23903.
[62]
Fang R, Zhao S, Sun Z, Wang D W, Cheng H M, Li F. Adv. Mater., 2017, 29: 1606823.
[63]
Jiao L, Zhang C, Geng C N, Wu S C, Li H, Lv W, Tao Y, Chen Z J, Zhou G M, Li J, Ling G W, Wan Y, Yang Q H. Adv. Energy Mater., 2019, 9(19): 1900219.
[64]
Li K L, Li J P, Zhu Q Z, Xu B. Small Meth., 2022, 6(4): 2101537.
[65]
Murali G, Rawal J, Modigunta J K R, Park Y H, Lee J H, Lee S Y, Park S J, In I. Renew. Sust. Energ. Rev., 2021, 5(22): 5672.
[66]
Jiang Q, Kurra N, Alhabeb M, Gogotsi Y, Alshareef H N. Adv. Energy Mater., 2018, 8(13): 1703043.
[67]
Chavan R A, Kamble G P, Dhavale S B, Rasal A S, Kolekar S S, Chang J Y, Ghule A V. Energy Fuels, 2023, 37(6): 4658.
[68]
Mustafa H, Rasheed A, Ajmal S, Sarwar N, Falak U, Lee S G, Sattar A. Energy Fuels, 2023, 37(3): 2410.
[69]
Meng W, Zhou J J, Wang G J, Qin J L, Yang L, Huang H J, Zhao Y X, He H Y. J. Energy Storage, 2022, 56: 106105.
[70]
Li H, Liu Y Q, Lin S, Li H, Wu Z Q, Zhu L L, Li C D, Wang X, Zhu X B, Sun Y P. J. Power Sources, 2021, 497: 229882.
[71]
Shi T Z, Feng Y L, Peng T, Yuan B G. Electrochim. Acta, 2021, 381: 138245.
[72]
Kumar S, Samolia M, Dhilip Kumar T J. ACS Appl. Energy Mater., 2018, 1(3): 1328.
[73]
Masjedi-Arani M, Salavati-Niasari M. Int. J. Hydrog. Energy, 2017, 42(17): 12420.
[74]
Wang S, Gao M X, Xian K C, Li Z L, Shen Y, Yao Z H, Liu Y F, Pan H G. ACS Appl. Energy Mater., 2020, 3(4): 3928.
[75]
Fan X L, Xiao X Z, Shao J, Zhang L T, Li S Q, Ge H W, Wang Q D, Chen L X. Nano Energy, 2013, 2(5): 995.
[76]
Xiong R J, Sang G, Yan X Y, Zhang G H, Ye X Q, Jiang C L, Luo L Z. Int. J. Hydrog. Energy, 2012, 37(13): 10222.
[77]
Yuan Z L, Fan Y P, Chen Y M, Liu X Y, Liu B Z, Han S M. Int. J. Hydrog. Energy, 2020, 45(41): 21666.
[78]
Yuan Z L, Zhang D F, Fan G X, Chen Y M, Fan Y P, Liu B Z. ACS Appl. Energy Mater., 2021, 4(3): 2820.
[79]
Yuan Z L, Zhang D F, Fan G X, Chen Y M, Fan Y P, Liu B Z. Renew. Energy, 2022, 188: 778.
[80]
Bhargava Reddy M S, Kailasa S, Marupalli B C G, Sadasivuni K K, Aich S. ACS Sens., 2022, 7(8): 2132.
[81]
Peng B, Huang X L. Front. Chem., 2022, 10: 1037732.
[82]
Wang Y T, Wang Y H, Kuai Y B, Jian M. Small, 2024, 20(2): 2305250.
[83]
Li Z H, Cui X S, Jia L F, Zeng W, Zhou Q. Diam. Relat. Mater., 2023, 139: 110375.
[84]
Shuvo S N, Ulloa Gomez A M, Mishra A, Chen W Y, Dongare A M, Stanciu L A. ACS Sens., 2020, 5(9): 2915.
[85]
Wu M, An Y P, Yang R, Tao Z H, Xia Q X, Hu Q K, Li M, Chen K, Zhang Z Y, Huang Q, Ma S H, Zhou A G. ACS Appl. Nano Mater., 2021, 4(6): 6257.
[86]
Chang Y W, Chen M Y, Fu Z J, Lu R F, Gao Y X, Chen F J, Li H, Frans de Rooij N, Lee Y K, Wang Y, Zhou G F. J. Mater. Chem. A, 2023, 11(13): 6966.
[87]
Ahmed B, Ghazaly A E, Rosen J. Adv. Funct. Mater., 2020, 30(47): 2000894.
[88]
Zhang N Q, Ye C L, Yan H, Li L C, He H, Wang D S, Li Y D. Nano Res., 2020, 13(12): 3165.
[89]
Zybert M. Catalysts, 2023, 13(3): 607.
[90]
Gouveia J D, Morales-García Á, Viñes F, Gomes J R B, Illas F. ACS Catal., 2020, 10(9): 5049.
[91]
Li L X, Sun W J, Zhang H Y, Wei J L, Wang S X, He J H, Li N J, Xu Q F, Chen D Y, Li H, Lu J M. J. Mater. Chem. A, 2021, 9: 21771.

Funding

National Natural Science Foundation of China(62174086)
National Natural Science Foundation of China(62474096)
Outstanding Youth Foundation of Jiangsu Province(BK20240139)
Qinglan Project of Jiangsu Province of China, Postgraduate Research & Practice Innovation Program of Jiangsu Province(SJCX22_0253)
National Science and Technology Innovation Training Program(202310293156E)
PDF(298292 KB)

Accesses

Citation

Detail

Sections
Recommended

/