MXene-Based Functional Textile Composites

Suqin Zhou, Lu Jia, Chuanjin Shi, Aiqin Zhang, Shuqiang Liu, Hua Wang

Prog Chem ›› 2024, Vol. 36 ›› Issue (8) : 1157-1173.

PDF(1889 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(1889 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (8) : 1157-1173. DOI: 10.7536/PC240102
Review

MXene-Based Functional Textile Composites

Author information +
History +

Abstract

the novel two-dimensional metal carbon/nitride MXene,owing to its unique two-dimensional structure and performance,can be composite with various textile materials,imparting excellent conductivity,mechanical properties,etc.,to textile composite materials.Therefore,It has shown tremendous development potential in fields such as sensing,electromagnetic shielding,and energy storage.This article initially introduces the structure,preparation methods,and properties of MXene.It provides a summary of the preparation methods for MXene-based functional textile composite materials,including coating methods,electrospinning,wet spinning,vacuum filtration,etc.the article outlines the impact of different structures(coating,embedding,hybrid)of MXene-based functional textile composites on their performance.It also reviews their applications in sensors,electromagnetic shielding,energy transmission,and conversion.Finally,the article offers a prospect of the development trends in the research field of MXene-based functional textile composite materials。

Contents

1 Introduction

2 Structure and properties of MXene and its preparation methods

2.1 Structure

2.2 Preparation methods

2.3 Properties

3 Preparation of MXene-based functional textile composites

3.1 Coating

3.2 Electrostatic spinning

3.3 Wet spinning

3.4 Other methods

4 Structure of MXene-based functional textile composites

4.1 Wrap-around construction

4.2 Embedded Architecture

4.3 Hybrid structure

5 Applications of MXene-based functional textile composites

5.1 Transducers

5.2 Energy transfer,storage and conversion

5.3 Electromagnetic shielding

5.4 Other applications

6 Conclusions and outlook

Key words

MXene / textile composites / preparation methods / structure / properties / applications

Cite this article

Download Citations
Suqin Zhou , Lu Jia , Chuanjin Shi , et al . MXene-Based Functional Textile Composites[J]. Progress in Chemistry. 2024, 36(8): 1157-1173 https://doi.org/10.7536/PC240102

References

[1]
Naguib M, Kurtoglu M, Presser V, Lu J, Niu J J, Heon M, Hultman L, Gogotsi Y, Barsoum M W. Adv. Mater., 2011, 23(37): 4248.
[2]
Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum M W. ACS Nano, 2012, 6(2): 1322.
[3]
Sharma G, Muthuswamy E, Naguib M, Gogotsi Y, Navrotsky A, Wu D. J. Phys. Chem. C, 2017, 121(28): 15145.
[4]
Sharma G, Navrotsky A. J. Phys. Chem. C, 2016, 120(49): 28131.
[5]
Hou T, Zhao Y, Ding L, Yan C, Wu G, Du B, Liu Z, Wei M. Compos. Part A-Appl. S., 2022,161.
[6]
Kim H, Wang Z W, Alshareef H N. Nano Energy, 2019, 60: 179.
[7]
Zheng Y J, Yin R, Zhao Y, Liu H, Zhang D B, Shi X Z, Zhang B, Liu C T, Shen C Y. Chem. Eng. J., 2021, 420: 127720.
[8]
Cheng W H, Zhang Y, Tian W X, Liu J J, Lu J Y, Wang B B, Xing W Y, Hu Y. Ind. Eng. Chem. Res., 2020, 59(31): 14025.
[9]
Wu Y D, Zheng W S, Xiao Y N, Du B N, Zhang X R, Wen M, Lai C, Huang Y, Sheng L Y. Polymers, 2021, 13(21): 3748.
[10]
Sun S Y, Zhu X L, Wu X J, Xu M G, Hu Y, Bao N Z, Wu G. J. Mater. Sci. Technol., 2023, 139: 23.
[11]
Liu R, Li J M, Li M, Zhang Q H, Shi G Y, Li Y G, Hou C Y, Wang H Z. ACS Appl. Mater. Interfaces, 2020, 12(41): 46446.
[12]
Hantanasirisakul K, Gogotsi Y. Adv. Mater., 2018, 30(52): 1804779.
[13]
Persson P O Å, Rosen J. Curr. Opin. Solid State Mater. Sci., 2019, 23(6): 100774.
[14]
Naguib M, Mashtalir O, Lukatskaya M R, Dyatkin B, Zhang C F, Presser V, Gogotsi Y, Barsoum M W. Chem. Commun., 2014, 50(56): 7420.
[15]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306(5696): 666.
[16]
Wang K, Zhou Y F, Xu W T, Huang D C, Wang Z G, Hong M C. Ceram. Int., 2016, 42(7): 8419.
[17]
Inagaki M, Kim Y A, Endo M. J. Mater. Chem., 2011, 21(10): 3280.
[18]
Zhang T, Pan L, Tang H, Du F, Guo Y, Qiu T, Yang J. J. Alloy. Compd., 2017, 695: 818.
[19]
Ghidiu M, Lukatskaya M R, Zhao M Q, Gogotsi Y, Barsoum M W. Nature, 2014, 516(7529):78.
[20]
Halim J, Lukatskaya M R, Cook K M, Lu J, Smith C R, Näslund L Å, May S J, Hultman L, Gogotsi Y, Eklund P, Barsoum M W. Chem. Mater., 2014, 26(7): 2374.
[21]
Li T, Yao L, Liu Q, Gu J, Luo R, Li J, Yan X, Wang W, Liu P, Chen B, Zhang W, Abbas W, Naz R, Zhang D. Angew. Chem. Int. Ed. Engl., 2018, 57(21): 6115.
[22]
Li M, Lu J, Luo K, Li Y B, Chang K K, Chen K, Zhou J, Rosen J, Hultman L, Eklund P, Persson P O Å, Du S Y, Chai Z F, Huang Z R, Huang Q. J. Am. Chem. Soc., 2019, 141(11): 4730.
[23]
Wang C Z, Wu K H, Cui J Q, Fang X L, Li J, Zheng N F. Small, 2022, 18(43): 2106983.
[24]
Sun W, Shah S A, Chen Y, Tan Z, Gao H, Habib T, Radovic M, Green M J. J. Mater. Chem. A, 2017, 5(41): 21663.
[25]
Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y. Adv. Mater., 2014, 26(7): 992.
[26]
Mashtalir O, Naguib M, Mochalin V N, Dall’Agnese Y, Heon M, Barsoum M W, Gogotsi Y. Nat. Commun., 2013, 4: 1716.
[27]
Naguib M, Unocic R R, Armstrong B L, Nanda J. Dalton Trans., 2015, 44(20): 9353.
[28]
Driscoll N, Richardson A G, Maleski K, Anasori B, Adewole O, Lelyukh P, Escobedo L, Cullen D K, Lucas T H, Gogotsi Y, Vitale F. ACS Nano, 2018, 12(10): 10419.
[29]
Alhabeb M, Maleski K, Mathis T S, Sarycheva A, Hatter C B, Uzun S, Levitt A, Gogotsi Y. Angew. Chem. Int. Ed., 2018, 57(19): 5444.
[30]
Shuck C E, Han M K, Maleski K, Hantanasirisakul K, Kim S J, Choi J, Reil W E B, Gogotsi Y. ACS Appl. Nano Mater., 2019, 2(6): 3368.
[31]
Kurtoglu M, Naguib M, Gogotsi Y, Barsoum M W. MRS Commun., 2012, 2(4): 133.
[32]
Borysiuk V N, Mochalin V N, Gogotsi Y. Nanotechnology, 2015, 26(26): 265705.
[33]
Shein I R, Ivanovskii A L. Comput. Mater. Sci., 2012, 65: 104.
[34]
Habib T, Zhao X F, Shah S A, Chen Y X, Sun W M, An H, Lutkenhaus J L, Radovic M, Green M J. NPJ 2D Mater. Appl., 2019, 3: 8.
[35]
Chang T H, Zhang T R, Yang H T, Li K R, Tian Y, Lee J Y, Chen P Y. ACS Nano, 2018, 12(8): 8048.
[36]
Yu L H, Fan Z D, Shao Y L, Tian Z N, Sun J Y, Liu Z F. Adv. Energy Mater., 2019, 9(34): 1901839.
[37]
Anasori B, Lukatskaya M R, Gogotsi Y. Nat. Rev. Mater., 2017, 2(2): 16098.
[38]
Ghassemi H, Harlow W, Mashtalir O, Beidaghi M, Lukatskaya M R, Gogotsi Y, Taheri M L. J. Mater. Chem. A, 2014, 2(35): 14339.
[39]
Yue Y, Wang Y X, Xu X D, Wang C J. J. Alloys Compd., 2023, 945: 169342.
[40]
Zhao X F, Vashisth A, Prehn E, Sun W M, Shah S A, Habib T, Chen Y X, Tan Z Y, Lutkenhaus J L, Radovic M, Green M J. Matter, 2019, 1(2): 513.
[41]
Kim H, Anasori B, Gogotsi Y, Alshareef H N. Chem. Mater., 2017, 29(15): 6472.
[42]
Lan Y, Li L, Zhang L T, Jin Y, Xia L X, Huang G F, Hu W Y, Huang W Q. Appl. Surf. Sci., 2022, 602: 154313.
[43]
Zhang R Z, Cui H L, Li X H. Phys. B Condens. Matter, 2019, 561: 90.
[44]
Lipatov A, Goad A, Loes M J, Vorobeva N S, Abourahma J, Gogotsi Y, Sinitskii A. Matter, 2021, 4(4): 1413.
[45]
Shahzad F, Alhabeb M, Hatter C B, Anasori B, Man Hong S, Koo C M, Gogotsi Y. Science, 2016, 353(6304): 1137.
[46]
Zhang J Z, Uzun S, Seyedin S, Lynch P A, Akuzum B, Wang Z Y, Qin S, Alhabeb M, Shuck C E, Lei W W, Kumbur E C, Yang W R, Wang X G, Dion G, Razal J M, Gogotsi Y. ACS Cent. Sci., 2020, 6(2): 254.
[47]
Li S, Fan Z D, Wu G Q, Shao Y Y, Xia Z, Wei C H, Shen F, Tong X L, Yu J C, Chen K, Wang M L, Zhao Y, Luo Z P, Jian M Q, Sun J Y, Kaner R B, Shao Y L. ACS Nano, 2021, 15(4): 7821.
[48]
Shin H, Eom W, Lee K H, Jeong W, Kang D J, Han T H. ACS Nano, 2021, 15(2): 3320.
[49]
Shen S Y, Ke T, Rajavel K, Yang K, Lin D H. Small, 2020, 16(36): 2002433.
[50]
Li Z Y, Wang L B, Sun D D, Zhang Y D, Liu B Z, Hu Q K, Zhou A G. Mater. Sci. Eng.: B, 2015, 191: 33.
[51]
Wang L, Tao W Q, Yuan L Y, Liu Z R, Huang Q, Chai Z F, Gibson J K, Shi W Q. Chem. Commun., 2017, 53(89): 12084.
[52]
Seyedin S, Zhang J Z, Usman K A S, Qin S, Glushenkov A M, Yanza E R S, Jones R T, Razal J M. Glob. Chall., 2019, 3(10):1900037.
[53]
Abdolhosseinzadeh S, Jiang X, Zhang H, Qiu J, Zhang C. Mater. Today, 2021, 48: 214.
[54]
Zhang C J, Anasori B, Seral-Ascaso A, Park S H, McEvoy N, Shmeliov A, Duesberg G S, Coleman J N, Gogotsi Y, Nicolosi V. Adv. Mater., 2017, 29(36): 1702678.
[55]
Wang B L, Lai X J, Li H Q, Jiang C C, Gao J F, Zeng X R. ACS Appl. Mater. Interfaces, 2021, 13(19): 23020.
[56]
Lin B, Yuen A C Y, Li A, Zhang Y, Chen T B Y, Yu B, Lee E W M, Peng S H, Yang W, Lu H D, Chan Q N, Yeoh G H, Wang C H. J. Hazard. Mater., 2020, 381: 120952.
[57]
Shi Y, Liu C, Duan Z, Yu B, Liu M, Song P. Chem. Eng. J., 2020, 399: 125829.
[58]
Huang Y B, Jiang S H, Liang R C, Sun P, Hai Y, Zhang L. Chem. Eng. J., 2020, 391: 123621.
[59]
Xiong D B, Li X F, Bai Z M, Lu S G. Small, 2018, 14(17):1703419.
[60]
Mashtalir O, Lukatskaya M R, Zhao M Q, Barsoum M W, Gogotsi Y. Adv. Mater., 2015, 27(23): 3501.
[61]
Inman A, Hryhorchuk T, Bi L Y, Wang R J, Greenspan B, Tabb T, Gallo E M, VahidMohammadi A, Dion G, Danielescu A, Gogotsi Y. J. Mater. Chem. A, 2023, 11(7): 3514.
[62]
Zhang Y X, Li L, Cao Y X, Yang Y Y, Wang W J, Wang J F. Mater. Horiz., 2023, 10(1): 235.
[63]
Lan C T, Xu F, Pan C X, Guo Z H, Pu X. Chem. Eng. J., 2023, 472: 144662.
[64]
Jung M, Lee Y S, Hong S G, Moon J. Cem. Concr. Res., 2020, 131: 106017.
[65]
Zhang X P, Zhang T Z, Zhang C, Xiao J P, Wu D T, Ma X Z, Gao H. J. Alloys Compd., 2022, 909: 164730.
[66]
Luo Z T, Feng S X, Li Y P, Xu G Y, Fang G, Wang S L, Zhu C H, Liu C Y. Adv. Eng. Mater., 2023, 25(1):2200976.
[67]
Li B X, Qin L Y, Yang D Z, Luo Z, Zhao T Y, Yu Z Z. Compos. Sci. Technol., 2022, 225: 109484.
[68]
Yan B B, Bao X M, Liao X T, Wang P, Zhou M, Yu Y Y, Yuan J G, Cui L, Wang Q. ACS Appl. Mater. Interfaces, 2022, 14(1): 2132.
[69]
Wang X Y, Liao S Y, Wan Y J, Huang H P, Li X M, Hu Y G, Zhu P L, Sun R, Wong C P. Mater. Today Phys., 2022, 23: 100644.
[70]
Zheng X H, Wang Y, Nie W Q, Wang Z Q, Hu Q L, Li C L, Wang P, Wang W. Compos. Part A Appl. Sci. Manuf., 2022, 158: 106985.
[71]
Pan H, Chen G R, Chen Y M, Di Carlo A, Mayer M A, Shen S, Chen C X, Li W X, Subramaniam S, Huang H C, Tai H L, Jiang Y D, Xie G Z, Su Y J, Chen J. Biosens. Bioelectron., 2023, 222: 114999.
[72]
Kwon Y S, Lee J S, Hwang G H, Jeong Y G. Macromol Mater Eng, 2022, 307(5): 2100877.
[73]
Ma C, Yuan Q, Du H S, Ma M G, Si C L, Wan P B. ACS Appl. Mater. Interfaces, 2020, 12(30): 34226.
[74]
Xue C, Hu Y Y, Huang Z M. Polymer Briefing, 2009, 6: 38.
(薛聪, 胡影影, 黄争鸣. 高分子通报, 2009, 6: 38 )
[75]
Zhou F L, Gong R H, Porat I. Polym. Int., 2009, 58(4): 331.
[76]
Levitt A ; Zhang JZ; Dion G ; Gogotsi Y ; Razal JM. Adv Funct Mater, 2020, 30(47):2000739.
[77]
Levitt A S, Alhabeb M, Hatter C B, Sarycheva A, Dion G, Gogotsi Y. J. Mater. Chem. A, 2019, 7(1): 269.
[78]
Xiong F Y, Cai Z Y, Qu L B, Zhang P F, Yuan Z F, Asare O K, Xu W W, Lin C, Mai L Q. ACS Appl. Mater. Interfaces, 2015, 7(23): 12625.
[79]
Mayerberger E A, Street R M, McDaniel R M, Barsoum M W, Schauer C L. RSC Adv., 2018, 8(62): 35386.
[80]
Sobolčiak P, Ali A, Hassan M K, Helal M I, Tanvir A, Popelka A, Al-Maadeed M A, Krupa I, Mahmoud K A. PLoS One, 2017, 12(8): e0183705.
[81]
Zou Q, Shi C F, Liu B, Liu D J, Cao D, Liu F, Zhang Y, Shi W Z. Nanotechnology, 2021, 32(41): 415204.
[82]
Li H, Cao J, Chen J, Li Y, Liu J, Du Z. Text Res J, 2022, 92(11-12): 1999.
[83]
Ozipek B, Karakas H. Advances in Filament Yarn Spinning of Textiles and Polymers. Amsterdam: Elsevier, 2014. 174.
[84]
Eom W, Shin H, Ambade R B, Lee S H, Lee K H, Kang D J, Han T H. Nat. Commun., 2020, 11: 2825.
[85]
He G L, Cai Z Y, Xiang S L, Cai D Y. ACS Appl. Nano Mater., 2022, 5(1): 303.
[86]
Wu G, Yang Z, Zhang Z, Ji B, Hou C, Li Y, Jia W, Zhang Q, Wang H. Electrochim Acta, 2021, 395.
[87]
Yang Q Y, Xu Z, Fang B, Huang T Q, Cai S Y, Chen H, Liu Y J, Gopalsamy K, Gao W W, Gao C. J. Mater. Chem. A, 2017, 5(42): 22113.
[88]
Cheng B C, Wu P Y. ACS Nano, 2021, 15(5): 8676.
[89]
Li Y Z, Zhang X T. Adv. Funct. Mater., 2022, 32(4): 2107767.
[90]
Hasan M M, Bin Sadeque M S, Albasar I, Pecenek H, Dokan F K, Onses M S, Ordu M. Small, 2023, 19(6): 2206107.
[91]
Lima M D, Fang S, Lepró X, Lewis C, Ovalle-Robles R, Carretero-González J, Castillo-Martínez Z, Kozlov M, Oh J, Rawat N, Haines C, Haque M, Aare V, Stoughton S, Zakhidov A, Baughman R. Science, 2011, 331(6013).
[92]
Yu C Y, Gong Y J, Chen R Y, Zhang M Y, Zhou J Y, An J N, Lv F, Guo S J, Sun G Z. Small, 2018, 14(29):1801203.
[93]
Wang Z Y, Qin S, Seyedin S, Zhang J Z, Wang J T, Levitt A, Li N, Haines C, Ovalle-Robles R, Lei W W, Gogotsi Y, Baughman R H, Razal J M. Small, 2018, 14(37): 1870167.
[94]
Cao W T, Ma C, Mao D S, Zhang J, Ma M G, Chen F. Adv. Funct. Mater., 2019, 29(51): 1905898.
[95]
Chen J, Zhao Y, Sun M C, Liu Z W, Liu H S, Xiong S, Li S, Song J P, Wang K. J. Mater. Res. Technol., 2022, 19: 3699.
[96]
Liu L, Ying G B, Sun C, Min H H, Zhang J X, Zhao Y L, Wen D, Ji Z Y, Liu X, Zhang C, Wang C. Polymers, 2021, 13(11): 1825.
[97]
He G F, Wang L L, Bao X J, Lei Z W, Ning F G, Li M, Zhang X S, Qu L J. Compos. Part B Eng., 2022, 232: 109618.
[98]
Zheng X H, Wang P, Zhang X S, Hu Q L, Wang Z Q, Nie W Q, Zou L H, Li C L, Han X. Compos. Part A Appl. Sci. Manuf., 2022, 152: 106700.
[99]
Monastyreckis G, Stepura A, Soyka Y, Maltanava H, Poznyak S K, Omastová M, Aniskevich A, Zeleniakiene D. Sensors, 2021, 21(7): 2378.
[100]
Liu G Z, Guo Y N, Meng B C, Wang Z G, Liu G P, Jin W Q. Chin. J. Chem. Eng., 2022, 41: 260.
[101]
Rajavel K, Luo S B, Wan Y J, Yu X C, Hu Y G, Zhu P L, Sun R, Wong C. Compos. Part A Appl. Sci. Manuf., 2020, 129: 105693.
[102]
Reza SS, Seyed A M, Yalda S, Mohsen Y, Hamid T, Elahe T, Alireza Y, Ali K, Aref B. Biointerface. Res. App., 2020, 10(5): 6317.
[103]
Jia Z X, Li Z J, Ma S F, Zhang W Q, Chen Y J, Luo Y F, Jia D M, Zhong B C, Razal J M, Wang X G, Kong L X. J. Colloid Interface Sci., 2021, 584: 1.
[104]
Wang Z, Zhang K M, Liu Y T, Zhao H Y, Gao C H, Wu Y M. Compos. Struct., 2022, 282: 115071.
[105]
Li Y, Dai R B, Zhou H M, Li X S, Wang Z W. ACS Appl. Nano Mater., 2021, 4(6): 6328.
[106]
Qian Y, Zhong J, Ou J P. Carbon, 2022, 190: 104.
[107]
Xu N, Chen S H, Li Y Z, Jiang N Y, Zheng T, Goossens N, Vleugels J, Zhang D X, Seveno D. Compos. Part B Eng., 2022, 246: 110278.
[108]
Duan N M, Shi Z Y, Wang Z H, Zou B, Zhang C P, Wang J L, Xi J R, Zhang X S, Zhang X Z, Wang G L. Mater. Des., 2022, 214: 110382.
[109]
Xie F, Jia F F, Zhuo L H, Lu Z Q, Si L M, Huang J Z, Zhang M Y, Ma Q. Nanoscale, 2019, 11(48): 23382.
[110]
Qin L Q, Jiang J X, Hou L T, Zhang F L, Rosen J. J. Mater. Chem. A, 2022, 10(23): 12544.
[111]
Xiang R F, Zhang J, Yang X N, Liu Y, Lu C H, Wang X H, Zhang K. ACS Appl. Energy Mater., 2022, 5(11): 13212.
[112]
Lee S, Park D, Cho Y, Lee J, Kim J. Synth. Met., 2022, 291: 117183.
[113]
Zhu W B, Luo H S, Tang Z H, Zhang H, Fan T, Wang Y Y, Huang P, Li Y Q, Fu S Y. ACS Sustainable Chem. Eng., 2022, 10(11): 3546.
[114]
Zhang W B, Pan Z Y, Ma J Z, Wei L F, Chen Z, Wang J. ACS Sustainable Chem. Eng., 2022, 10(4): 1408.
[115]
Uzun S, Seyedin S, Stoltzfus A L, Levitt A S, Alhabeb M, Anayee M, Strobel C J, Razal J M, Dion G, Gogotsi Y. Adv. Funct. Mater., 2019, 29(45): 1905015.
[116]
Usman K A S, Zhang J Z, Qin S, Yao Y, Lynch P A, Mota-Santiago P, Naebe M, Henderson L C, Hegh D, Razal J M. J. Mater. Chem. A, 2022, 10(9): 4770.
[117]
He N F, Patil S, Qu J G, Liao J Y, Zhao F, Gao W. ACS Appl. Energy Mater., 2020, 3(3): 2949.
[118]
Guo Q, Pang W W, Xie X, Xu Y L, Yuan W J. J. Mater. Chem. A, 2022, 10(29): 15634.
[119]
Zhang H Y, Ji H, Chen J Y, Wang N, Xiao H. Ind. Crops Prod., 2022, 188: 115653.
[120]
Fan W J, Li C, Li W, Yang J. Adv. Mater. Interfaces, 2022, 9(14): 2102553.
[121]
Xu B B, Ye F, Chen R H, Luo X G, Xue Z B, Li R X, Chang G T. Ceram. Int., 2023, 49(3): 4641.
[122]
Dong H, Sun J C, Liu X M, Jiang X D, Lu S W. ACS Appl. Mater. Interfaces, 2022, 14(13): 15504.
[123]
Wu L, Xu C, Fan M S, Tang P, Zhang R, Yang S T, Pan L J, Bin Y Z. Compos. Part A Appl. Sci. Manuf., 2022, 152: 106702.
[124]
Taromsari S M, Shi H H, Saadatnia Z, Park C B, Naguib H E. Chem. Eng. J., 2022, 442: 136138.
[125]
Lee S H, Eom W, Shin H, Ambade R B, Bang J H, Kim H W, Han T H. ACS Appl. Mater. Interfaces, 2020, 12(9): 10434.
[126]
Wang Y L, Zheng Y C, Zhao J P, Li Y. Energy Storage Mater., 2020, 33: 82.
[127]
Zhang Y M, Zhu X L, Sun S Y, Guo Q R, Xu M G, Wu G. Energy Fuels, 2022, 36(14): 7898.
[128]
Li X Q, Guo Y Q, Gao T T, Liu H, Chen C, Li J, Xiao D. J. Colloid Interface Sci., 2023, 631: 182.
[129]
Fan J C, Yuan M M, Wang L B, Xia Q X, Zheng H W, Zhou A G. Nano Energy, 2023, 105: 107973.
[130]
Li Q T, Yang W K, Sun K, Guo Y, Liu H, Liu C T, Shen C Y. J. Mater. Chem. C, 2022, 10(39): 14560.
[131]
Wang J, Ma X Y, Zhou J L, Du F L, Teng C. ACS Nano, 2022, 16(4): 6700.
[132]
Zhang S, Jia ZR, Zhang Y, Wu G L. Nano Res., 2022, 16(2): 3395.
[133]
Wang Y, Dou Q, Jiang W, Su K, You J, Yin S, Wang T, Yang J, Li Q. ACS Appl. Nano Mater., 2022, 5(7): 9209.
[134]
Chen M, Jiang X, Huang J, Yang J, Wu J, Liang Y, Wang T, Yan P. Adv. Optical. Mater., 2024, 12(4):2301694.
[135]
Li X L, Sheng X X, Fang Y, Hu X P, Gong S, Sheng M J, Lu X, Qu J P. Adv. Funct. Mater., 2023, 33(18): 2212776.

Funding

Shanxi Province Basic Research Program(20210302124684)
Shanxi Province Returned Overseas Educated Personnel Research Grant Program(2023-049)
PDF(1889 KB)

Accesses

Citation

Detail

Sections
Recommended

/