Principle and Application of Electro-Fermentation Technology for Enhancing the Resource Utilization of Organic Waste

Xiaoyan Sun, Yanan Yin, Hui Chen, Lei Zhao, Cheng Wang, Jianlong Wang

Prog Chem ›› 2024, Vol. 36 ›› Issue (8) : 1200-1216.

PDF(7441 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(7441 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (8) : 1200-1216. DOI: 10.7536/PC240104
Review

Principle and Application of Electro-Fermentation Technology for Enhancing the Resource Utilization of Organic Waste

Author information +
History +

Abstract

the increasing production of organic waste poses a challenge for waste treatment and disposal.Due to the richness of nutrients such as polysaccharides,proteins and minerals,the Bio-resourcing of organic waste has attracted much attention.Currently,the traditional anaerobic fermentation system for organic waste treatment has problems such as long fermentation period,low product yield,poor product selectivity,and low degradation rate of organic waste.the bio-electro-fermentation technology formed by applying electrochemical system to the traditional anaerobic fermentation system can regulate the redox balance of microbial reaction by electrochemical methods,overcome the thermodynamic limitations of traditional fermentation,strengthen the microbial electron transfer,promote the degradation of organic wastes and the generation of resource products,and achieve the high efficiency of organic waste resourcing.in this paper,we systematically investigate the basic principles of electro-fermentation technology to promote organic waste resources,review the electrode materials,microorganisms,reactor structure,and methods to enhance the operation of the system,introduce the current research status of electro-fermentation technology to strengthen the generation of organic waste resource products(including methane,hydrogen,alcohols,short-chain fatty acids,medium-chain fatty acids,polyhydroxybutyrate,polyhydroxyalkanoate,etc.),summarize and look forward to the prospects and challenges for the development of electro-fermentation technology In the application of organic waste resource utilization。

Contents

1 Introduction

2 Principle of electro-fermentation

2.1 Principle of cathodic electro-fermentation

2.2 Principle of anodic electro-fermentation

2.3 Extracellular electron transfer

3 Electrode materials used in electro-fermentation

3.1 Carbon-based materials

3.2 Metal-based materials

3.3 Composite-based materials

4 Microorganisms in electro-fermentation systems

5 Single and double chamber electro-fermentation systems

6 Methods for improving the operation of electro-fermentation systems

6.1 Condition optimization

6.2 Conductive medium

6.3 Bioaugmentation

7 Products of electro-fermentation

7.1 Methane

7.2 Hydrogen

7.3 Alcohols

7.4 Volatile fatty acids

7.5 High-value chemicals

8 Conclusions and Perspectives

Key words

electro-fermentation technology / organic waste / electrode material / electroactive bacteria / electro-fermentation products / extracellular electron transfer / high value chemicals

Cite this article

Download Citations
Xiaoyan Sun , Yanan Yin , Hui Chen , et al . Principle and Application of Electro-Fermentation Technology for Enhancing the Resource Utilization of Organic Waste[J]. Progress in Chemistry. 2024, 36(8): 1200-1216 https://doi.org/10.7536/PC240104

References

[1]
Tyagi V K, Fdez-Güelfo L A, Zhou Y, Álvarez-Gallego C J, Romero Garcia L I, Ng W J. Renew. Sustain. Energy Rev., 2018, 93: 380.
[2]
Xu F Q, Li Y, Ge X M, Yang L C, Li Y B. Bioresour. Technol., 2018, 247: 1047.
[3]
Liu M, Ogunmoroti A, Liu W, Li M Y, Bi M Y, Liu W Q, Cui Z J. Sci. Total Environ., 2022, 807: 150751.
[4]
Feng Y H. Master Dissertation of Dalian University of Technology, 2014.
(冯应鸿. 大连理工大学硕士学位论文, 2014 )
[5]
Wang J H, Zhu N W, Li C, Cheng D, Wu P X. Journal of Agro-Environmental Science, 2012, 31(7): 1431.
(王华金, 朱能武, 李冲, 程丹, 吴平霄. 农业环境科学学报, 2012, 31(7): 14317.)
[6]
Zou Y J, Sun L X, Xu F, Yang L N. Chem. J. Chin. Univ., 2007, 28(3): 510.
(邹勇进, 孙立贤, 徐芬, 杨黎妮. 高等学校化学学报, 2007, 28(3): 510.)
[7]
Ma C, Zhou S G, Zhuang L. Acta Ecologica Sinica, 2011, 31(7): 2008.
(马晨, 周顺桂, 庄莉. 生态学报, 2011, 31(7): 2008.)
[8]
Jiang Y, May H D, Lu L, Liang P, Huang X, Ren Z J. Water Res., 2019, 149: 42.
[9]
Chu N, Hao W, Wu Q L, Liang Q J, Jiang Y, Liang P, Ren Z J, Zeng R J. Engineering, 2022, 16: 141.
[10]
Agler M T, Wrenn B A, Zinder S H, Angenent L T. Trends Biotechnol., 2011, 29(2): 70.
[11]
Schievano A, Pepé Sciarria T, Vanbroekhoven K, De Wever H, Puig S, Andersen S J, Rabaey K, Pant D. Trends Biotechnol., 2016, 34(11): 866.
[12]
Sarkar O, Venkata Mohan S. Bioresour. Technol., 2020, 313: 123604.
[13]
Sravan J S, Sarkar O, Mohan S V. Sustain. Energy Fuels, 2020, 4(2): 700.
[14]
Park J, Lee B, Tian D, Jun H. Bioresour. Technol., 2018, 247: 226.
[15]
Selembo P A, Perez J M, Lloyd W A, Logan B E. Int. J. Hydrog. Energy, 2009, 34(13): 5373.
[16]
Mathew A S, Wang J P, Luo J L, Yau S T. Sci. Rep., 2015, 5: 15713.
[17]
He A Y, Yin C Y, Xu H, Kong X P, Xue J W, Zhu J, Jiang M, Wu H. Bioprocess Biosyst. Eng., 2016, 39(2): 245.
[18]
Moscoviz R, Trably E, Bernet N. Microb. Biotechnol., 2018, 11(1): 74.
[19]
Shanthi Sravan J, Butti S K, Sarkar O, Vamshi Krishna K, Venkata Mohan S. Chem. Eng. J., 2018, 334: 1709.
[20]
Wu P, Liu H, Li J, Ding P, Zhang C, Zhang J, Jiang Q, Zhang Y, Cu M H, Xu J J. Energy Convers. Manag., 2021, 248: 114804.
[21]
Moscoviz R, Toledo-Alarcón J, Trably E, Bernet N. Trends Biotechnol., 2016, 34(11): 856.
[22]
Selvasembian R, Mal J, Rani R, Sinha R, Agrahari R, Joshua I, Santhiagu A, Pradhan N. Bioresour. Technol., 2022, 346: 126462.
[23]
Kim C, Kim M Y, Michie I, Jeon B H, Premier G C, Park S, Kim J R. Biotechnol. Biofuels, 2017, 10(1): 199.
[24]
Kracke F, Krömer J O. BMC Bioinform., 2014, 15(1): 410.
[25]
Rabaey K, Rozendal R A. Nat. Rev. Microbiol., 2010, 8(10): 706.
[26]
Nevin K P, Woodard T L, Franks A E, Summers Z M, Lovley D R. mBio, 2010, 1(2): 10.1128/mbio.00103-10.
[27]
Kim C, Lee J H, Baek J, Kong D S, Na J G, Lee J, Sundstrom E, Park S, Kim J R. ChemSusChem, 2020, 13(3): 564.
[28]
Zhang Y F, Li J Z, Meng J, Wang X. Sci. Total Environ., 2021, 767: 145011.
[29]
Flynn J M, Ross D E, Hunt K A, Bond D R, Gralnick J A. mBio, 2010, 1(5): 10.1128/mbio.00190-10.
[30]
Liu C G, Xue C, Lin Y H, Bai F W. Biotechnol. Adv., 2013, 31(2): 257.
[31]
Kouzuma A, Kato S, Watanabe K. Frontiers in microbiology, 2015, 6: 477.
[32]
Speers A M, Young J M, Reguera G. Environ. Sci. Technol., 2014, 48(11): 6350.
[33]
Millo D. Biochem. Soc. Trans., 2012, 40(6): 1284.
[34]
Scott K, Yu E H. Woodhead Publishing, 2015.
[35]
Lovley D R. Annu. Rev. Microbiol., 2017, 71: 643.
[36]
Baek G, Kim J, Kim J, Lee C. Energies, 2018, 11(1): 107.
[37]
Sieber J R, Le H M, McInerney M J. Environ. Microbiol., 2014, 16(1): 177.
[38]
Wang N H, Gao M, Liu S, Zhu W B, Zhang Y C, Wang X N, Sun H S, Guo Y, Wang Q H. Environ. Res., 2024, 244: 117422.
[39]
Gregory K B, Bond D R, Lovley D R. Environ. Microbiol., 2004, 6(6): 596.
[40]
Reguera G, McCarthy K D, Mehta T, Nicoll J S, Tuominen M T, Lovley D R. Nature, 2005, 435(7045): 1098.
[41]
Gorby Y A, Yanina S, McLean J S, Rosso K M, Moyles D, Dohnalkova A, Beveridge T J, Chang I S, Kim B H, Kim K S. Proceedings of the National Academy of Sciences, 2006, 103(30): 11358.
[42]
Deutzmann J S, Sahin M, Spormann A M. mBio, 2015, 6(2): 10.1128/mbio.00496-15.
[43]
Cai X X, Yuan Y, Yu L P, Zhang B P, Li J B, Liu T, Yu Z, Zhou S G. J. Hazard. Mater., 2020, 391: 122213.
[44]
Al-Amshawee S, Bin Mohd Yunus M Y, Lynam J G, Lee W H, Dai F, Dakhil I H. Environ. Technol. Innov., 2021, 21: 101233.
[45]
Baek G, Kim K Y, Logan B E. Chem. Eng. J., 2021, 426: 131281.
[46]
Chou S C, Sun B Y, Fan T L, Chiang Y T, Chiao J C, Wu P W. J. Taiwan Inst. Chem. Eng., 2021, 129: 381.
[47]
Jiang P Y, Xiao Z H, Li S H, Luo Z N, Qiu R, Wu H X, Li N, Liu Z Q. J. Power Sources, 2021, 512: 230491.
[48]
Ghasemi B, Yaghmaei S, Ghaderi S, Bayat A, Mardanpour M M. J. Environ. Chem. Eng., 2020, 8(5): 104039.
[49]
Mehdinia A, Ziaei E, Jabbari A. Electrochim. Acta, 2014, 130: 512.
[50]
Guo K, Donose B C, Soeriyadi A H, Prévoteau A, Patil S A, Freguia S, Gooding J J, Rabaey K. Environ. Sci. Technol., 2014, 48(12): 7151.
[51]
Ali Yaqoob A, Ibrahim M N M, Rodríguez-Couto S. Biochem. Eng. J., 2020, 164: 107779.
[52]
Alqahtani M F, Katuri K P, Bajracharya S, Yu Y L, Lai Z P, Saikaly P E. Adv. Funct. Mater., 2018, 28(43): 1804860.
[53]
Ren G P, Hu A D, Huang S F, Ye J, Tang J H, Zhou S G. Bioresour. Technol., 2018, 269: 74.
[54]
D’Ippolito G, Squadrito G, Tucci M, Esercizio N, Sardo A, Vastano M, Lanzilli M, Fontana A, Cristiani P. Bioresour. Technol., 2021, 319: 124078.
[55]
Yazdi A A, D’Angelo L, Omer N, Windiasti G, Lu X N, Xu J. Biosens. Bioelectron., 2016, 85: 536.
[56]
Xie X, Zhao W T, Lee H R, Liu C, Ye M, Xie W J, Cui B X, Criddle C S, Cui Y. ACS Nano, 2014, 8(12): 11958.
[57]
Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K. Science, 2007, 315(5817): 1379.
[58]
Gangadharan P, Nambi I M, Senthilnathan J, Pavithra V M. RSC Adv., 2016, 6(73): 68827.
[59]
Najafabadi A T, Ng N, Gyenge E. Biosens. Bioelectron., 2016, 81: 103.
[60]
Rozendal R A, Hamelers H V M, Rabaey K, Keller J, Buisman C J N. Trends Biotechnol., 2008, 26(8): 450.
[61]
Guo K, Prévoteau A, Rabaey K. J. Power Sources, 2017, 356: 484.
[62]
Chaurasia A K, Mondal P. Chemosphere, 2022, 286: 131728.
[63]
Tang J, Bian Y H, Jin S, Sun D Y, Ren Z J. ACS Environ. Au, 2022, 2(1): 20.
[64]
Park S G, Rajesh P P, Sim Y U, Jadhav D A, Noori M T, Kim D H, Al-Qaradawi S Y, Yang E, Jang J K, Chae K J. Energy Rep., 2022, 8: 2726.
[65]
Dange P, Pandit S, Jadhav D, Shanmugam P, Gupta P K, Kumar S, Kumar M, Yang Y H, Bhatia S K. Sustainability, 2021, 13(16): 8796.
[66]
Mohanakrishna G, Abu-Reesh I M, Al-Raoush R I. J. Clean. Prod., 2018, 190: 44.
[67]
Rani G, Nabi Z, Rajesh Banu J, Yogalakshmi K N. Renew. Energy, 2020, 153: 168.
[68]
Xie J W, Zou X Y, Chang Y F, Chen C J, Ma J, Liu H, Cui M H, Zhang T C. Bioresour. Technol., 2021, 342: 125959.
[69]
Su M, Wei L L, Qiu Z Z, Wang G, Shen J Q. J. Power Sources, 2016, 301: 29.
[70]
Jayabalan T, Matheswaran M, Radhakrishnan T K, Naina Mohamed S. Bioresour. Technol., 2021, 320: 124284.
[71]
Chaurasia A K, Goyal H, Mondal P. Int. J. Hydrog. Energy, 2020, 45(36): 18250.
[72]
Bachvarov V, Lefterova E, Rashkov R. Int. J. Hydrog. Energy, 2016, 41(30): 12762.
[73]
Cai W W, Liu W Z, Han J L, Wang A J. Biosens. Bioelectron., 2016, 80: 118.
[74]
Kokko M, Bayerköhler F, Erben J, Zengerle R, Kurz P, Kerzenmacher S. Appl. Energy, 2017, 190: 1221.
[75]
Rusli S F N, Abu Bakar M H, Loh K S, Mastar M S. Int. J. Hydrog. Energy, 2019, 44(58): 30772.
[76]
Paunovic P, Dimitrov A T, Popovski O, Slavkov D, Jordanov S H. Macedonian Journal of Chemistry Chemical Engineering, 2007, 26(2): 87.
[77]
Yamashita T, Yamashita Y, Takano M, Sato N, Nakano S, Yokoyama H. Environ. Technol., 2023, 44(21): 3229.
[78]
Wang P, Li H R, Du Z W. Int. J. Electrochem. Sci., 2014, 9(4): 2038.
[79]
Wang J, Li M, Liu F T, Chen S L. J. Nanomater., 2016, 2016: 4246568.
[80]
Wang T H, Wu F Z, Yang W L, Dai X Y. J. Alloys Compd., 2022, 898: 162781.
[81]
Ci S Q, Wen Z H, Chen J H, He Z. Electrochem. Commun., 2012, 14(1): 71.
[82]
Yellappa M, Sarkar O, Rami Reddy Y V, Mohan S V. Process. Saf. Environ. Prot., 2023, 172: 716.
[83]
Bond D R, Holmes D E, Tender L M, Lovley D R. Science, 2002, 295(5554): 483.
[84]
Yi W J, You J H, Zhu C, Wang B L, Qu D. Eur. J. Soil Biol., 2013, 56: 11.
[85]
Lovley D R. Curr. Biol., 2022, 32(3): R110.
[86]
Dikow R B. BMC Genom., 2011, 12(1): 237.
[87]
Yu Y Y, Wang Y Z, Fang Z, Shi Y T, Cheng Q W, Chen Y X, Shi W D, Yong Y C. Nat. Commun., 2020, 11: 4087.
[88]
Kim T Y, Kim M G, Lee J H, Hur H G. Front. Microbiol., 2018, 9: 2817.
[89]
Zhang J J, Wang H, Yuan X Z, Zeng G M, Tu W G, Wang S B. J. Photochem. Photobiol. C Photochem. Rev., 2019, 38: 1.
[90]
Marshall C W, May H D. Energy Environ. Sci., 2009, 2(6): 699.
[91]
Berben T, Overmars L, Sorokin D Y, Muyzer G. Front. Microbiol., 2017, 8: 254.
[92]
Malkin S Y, Rao A M F, Seitaj D, Vasquez-Cardenas D, Zetsche E M, Hidalgo-Martinez S, Boschker H T S, Meysman F J R. ISME J., 2014, 8(9): 1843.
[93]
McAnulty M J, Poosarla V G, Kim K Y, Jasso-Chávez R, Logan B E, Wood T K. Nat. Commun., 2017, 8: 15419.
[94]
Liu X, Huang L Y, Rensing C, Ye J, Nealson K H, Zhou S G. Sci. Adv., 2021, 7(27): eabh1852.
[95]
Zhu H W, Meng H K, Zhang W, Gao H C, Zhou J, Zhang Y P, Li Y. Nat. Commun., 2019, 10: 4282.
[96]
Yi Y, Zhao T, Zang Y X, Xie B Z, Liu H. Electrochem. Commun., 2021, 124: 106966.
[97]
Verma M, Singh V, Mishra V. World J. Microbiol. Biotechnol., 2023, 39(5): 130.
[98]
Fu Q, Kobayashi H, Kawaguchi H, Wakayama T, Maeda H, Sato K. Environ. Sci. Technol., 2013, 47(21): 12583.
[99]
Holmes D E, Bond D R, Lovley D R. Appl. Environ. Microbiol., 2004, 70(2): 1234.
[100]
Dean C R, Ward O P. Appl. Environ. Microbiol., 1991, 57(7): 1893.
[101]
Steinbusch K J J, Hamelers H V M, Plugge C M, Buisman C J N. Energy Environ. Sci., 2011, 4(1): 216.
[102]
Luo T, Abdu S, Wessling M. J. Membr. Sci., 2018, 555: 429.
[103]
Rousseau R, Etcheverry L, Roubaud E, Basséguy R, Délia M L, Bergel A. Appl. Energy, 2020, 257: 113938.
[104]
Shen R X, Zhao L X, Lu J W, Watson J, Si B C, Chen X, Meng H B, Yao Z L, Feng J, Liu Z D,. Int. J. Agric. Biol. Eng., 2019, 12(5): 179.
[105]
Koók L, Kaufer B, Bakonyi P, Rózsenberszki T, Rivera I, Buitrón G, Bélafi-Bakó K, Nemestóthy N. J. Membr. Sci., 2019, 570-571: 215.
[106]
Wang Y X. Doctoral Dissertation of the University of Science and Technology of China, 2020.
(王艺碹. 中国科学技术大学博士学位论文, 2020.)
[107]
Liu H, Logan B E. Environ. Sci. Technol., 2004, 38(14): 4040.
[108]
Park J G, Jiang D Q, Lee B, Jun H B. Water Res., 2020, 184: 116214.
[109]
Wang H, Du H X, Zeng S F, Pan X L, Cheng H, Liu L, Luo F. Bioelectrochemistry, 2021, 138: 107726.
[110]
Rivera I, Bakonyi P, Cuautle-Marín M A, Buitrón G. Chemosphere, 2017, 174: 253.
[111]
Call D, Logan B E. Environ. Sci. Technol., 2008, 42(9): 3401.
[112]
Murugaiyan J, Narayanan A, Naina Mohamed S. Int. J. Energy Res., 2022, 46(14): 20811.
[113]
Ahmed S F, Mofijur M, Islam N, Parisa T A, Rafa N, Bokhari A, Klemeš J J, Indra Mahlia T M. Energy, 2022, 254: 124163.
[114]
Zhang L F. Doctoral Dissertation of Chongqing University, 2020.
(张林防. 重庆大学博士学位论文, 2020.)
[115]
Chang H X, Zou Y J, Hu R, Feng H W, Wu H H, Zhong N B, Hu J J. Environ. Chem. Lett., 2020, 18(5): 1581.
[116]
Wang Q, Li H, Feng K, Liu J G. Energies, 2020, 13(21): 5638.
[117]
Feng K, Li H, Zheng C Z. Bioresour. Technol., 2018, 270: 180.
[118]
Hashemi M, Mousavi S M, Razavi S H, Shojaosadati S A. Ind. Crops Prod., 2013, 43: 661.
[119]
Li S Y, Srivastava R, Suib S L, Li Y, Parnas R S. Bioresour. Technol., 2011, 102(5): 4241.
[120]
Abubackar H N, Fernández-Naveira Á, Veiga M C, Kennes C. Fuel, 2016, 178: 56.
[121]
Martínez-Ruano J, Suazo A, Véliz F, Otálora F, Conejeros R, González E, Aroca G. Environ. Technol. Innov., 2023, 31: 103183.
[122]
Ambler J R, Logan B E. Int. J. Hydrog. Energy, 2011, 36(1): 160.
[123]
Wang Y Z, Zhang L, Xu T F, Ding K. Int. J. Hydrog. Energy, 2017, 42(36): 22663.
[124]
Yu L P, Yuan Y, Tang J H, Zhou S G. Bioelectrochemistry, 2017, 117: 23.
[125]
Xu L J, Liu W Z, Wu Y N, Lee P H, Wang A J, Li S. Bioresour. Technol., 2014, 166: 458.
[126]
Wang Y, Guo W Q, Xing D F, Chang J S, Ren N Q. Int. J. Hydrog. Energy, 2014, 39(33): 19369.
[127]
Mukherjee T, Venkata Mohan S. Bioresour. Technol., 2021, 342: 125854.
[128]
Weimer P J, Stevenson D M. Appl. Microbiol. Biotechnol., 2012, 94(2): 461.
[129]
Yin Y N, Zhang Y F, Karakashev D B, Wang J L, Angelidaki I. Bioresour. Technol., 2017, 241: 638.
[130]
Zhao J H, Ma H Z, Wu W Y, Ali Bacar M, Wang Q H, Gao M, Wu C F, Xia C L, Qian D Y, Chong W W F, Lam S S. Bioresour. Technol., 2023, 368: 128375.
[131]
Ma H Z, Wu W Y, Yu Z Q, Zhao J H, Fu P L, Xia C L, Lam S S, Wang Q H, Gao M. Bioresour. Technol., 2022, 360: 127510.
[132]
Gahlot P, Ahmed B, Tiwari S B, Aryal N, Khursheed A, Kazmi A A, Tyagi V K. Environ. Technol. Innov., 2020, 20: 101056.
[133]
Chen S S, Rotaru A E, Liu F H, Philips J, Woodard T L, Nevin K P, Lovley D R. Bioresour. Technol., 2014, 173: 82.
[134]
Liu F H, Rotaru A E, Shrestha P M, Malvankar N S, Nevin K P, Lovley D R. Energy Environ. Sci., 2012, 5(10): 8982.
[135]
Martins G, Salvador A F, Pereira L, Alves M M. Environmental science technology, 2018, 52(18): 10241.
[136]
Zhao Z Q, Li Y, Zhang Y B, Lovley D R. iScience, 2020, 23(12): 101794.
[137]
Wang C, Yun S N, Xu H F, Wang Z Q, Han F, Zhang Y L, Si Y M, Sun M L. Ceram. Int., 2020, 46(3): 3292.
[138]
Wang G J, Li Q, Gao X, Wang X C. Bioresour. Technol., 2018, 250: 812.
[139]
Yun S N, Fang W, Du T T, Hu X L, Huang X L, Li X, Zhang C, Lund P D. Energy, 2018, 164: 898.
[140]
Yu F, Yang Z Q, Cheng Y J, Xing S Y, Wang Y Y, Ma J. Sep. Purif. Technol., 2022, 281: 119870.
[141]
Xie J, Chen Y Z, Duan X, Feng L Y, Yan Y Y, Wang F, Zhang X Z, Zhang Z G, Zhou Q. Sci. Total Environ., 2019, 658: 1131.
[142]
Liu F H, Rotaru A E, Shrestha P M, Malvankar N S, Nevin K P, Lovley D R. Environ. Microbiol., 2015, 17(3): 648.
[143]
Byrne J M, Klueglein N, Pearce C, Rosso K M, Appel E, Kappler A. Science, 2015, 347(6229): 1473.
[144]
Cruz Viggi C, Rossetti S, Fazi S, Paiano P, Majone M, Aulenta F. Environ. Sci. Technol., 2014, 48(13): 7536.
[145]
Liu X B, Shi L, Gu J D. Biotechnol. Adv., 2018, 36(7): 1815.
[146]
Steinbusch K J J, Hamelers H V M, Schaap J D, Kampman C, Buisman C J N. Environ. Sci. Technol., 2010, 44(1): 513.
[147]
Sun J, Li W J, Li Y M, Hu Y Y, Zhang Y P. Bioresour. Technol., 2013, 142: 407.
[148]
Yang Y G, Xu M Y, Guo J, Sun G P. Process. Biochem., 2012, 47(12): 1707.
[149]
Rosenbaum M, Aulenta F, Villano M, Angenent L T. Bioresour. Technol., 2011, 102(1): 324.
[150]
Harrington T D, Tran V N, Mohamed A, Renslow R, Biria S, Orfe L, Call D R, Beyenal H. Bioresour. Technol., 2015, 192: 689.
[151]
Im C H, Kim C, Song Y E, Oh S E, Jeon B H, Kim J R. Chemosphere, 2018, 191: 166.
[152]
Paiano P, Menini M, Zeppilli M, Majone M, Villano M. Bioelectrochemistry, 2019, 130: 107333.
[153]
Choi O, Um Y, Sang B I. Biotechnol. Bioeng., 2012, 109(10): 2494.
[154]
Engel M, Holtmann D, Ulber R, Tippkötter N. Biotechnol. J., 2019, 14(4): 1800514.
[155]
Atasoy M, Cetecioglu Z. Front. Microbiol., 2021, 12: 658494.
[156]
Tabatabaei M, Aghbashlo M, Valijanian E, Kazemi Shariat Panahi H, Nizami A S, Ghanavati H, Sulaiman A, Mirmohamadsadeghi S, Karimi K. Renew. Energy, 2020, 146: 1204.
[157]
Zhang C, Liu H, Wu P, Li J, Zhang J. Bioresour. Technol., 2023, 369: 128436.
[158]
Rahimi S, Modin O, Roshanzamir F, Neissi A, Saheb Alam S, Seelbinder B, Pandit S, Shi L, Mijakovic I. Chem. Eng. J., 2020, 397: 125437.
[159]
Liu S, Deng Z, Li H, Feng K. Bioresour. Technol., 2019, 288: 121536.
[160]
Chen S, He Q. J. Ind. Microbiol. Biotechnol., 2015, 42(8): 1129.
[161]
Cai W W, Liu W Z, Yang C X, Wang L, Liang B, Thangavel S, Guo Z C, Wang A J. ACS Sustainable Chem. Eng., 2016, 4(9): 4913.
[162]
Choi K S, Kondaveeti S, Min B. Bioresour. Technol., 2017, 245: 826.
[163]
Kanellos G, Kyriakopoulos D, Lyberatos G, Tremouli A. Biochem. Eng. J., 2022, 182: 108431.
[164]
Baek G, Kim J, Lee S, Lee C. Bioresour. Technol., 2017, 241: 1201.
[165]
Oh G G, Song Y C, Bae B U, Lee C Y. Processes, 2020, 8(10): 1293.
[166]
Møller K T, Jensen T R, Akiba E, Li H W. Prog. Nat. Sci. Mater. Int., 2017, 27(1): 34.
[167]
Sun M, Sheng G P, Zhang L, Xia C R, Mu Z X, Liu X W, Wang H L, Yu H Q, Qi R, Yu T, Yang M. Environ. Sci. Technol., 2008, 42(21): 8095.
[168]
Jiang Y, McAdam E, Zhang Y, Heaven S, Banks C, Longhurst P. J. Water Process. Eng., 2019, 32: 100899.
[169]
Singh N K, Singh R. Int. J. Hydrog. Energy, 2021, 46(39): 20397.
[170]
Liu H, Grot S, Logan B E. Environ. Sci. Technol., 2005, 39(11): 4317.
[171]
de Araújo Cavalcante W, Leitão R C, Gehring T A, Angenent L T, Santaella S T. Process. Biochem., 2017, 54: 106.
[172]
Vassilev I, Hernandez P A, Batlle-Vilanova P, Freguia S, Krömer J O, Keller J, Ledezma P, Virdis B. ACS Sustainable Chem. Eng., 2018, 6(7): 8485.
[173]
Alberto García Mogollón C, Carlos Quintero Díaz J, Omar Gil Posada J. Bioelectrochemistry, 2023, 152: 108414.
[174]
Blasco-Gómez R, Ramió-Pujol S, Bañeras L, Colprim J, Balaguer M D, Puig S. Green Chem., 2019, 21(3): 684.
[175]
Moscoviz R, Trably E, Bernet N, Carrère H. Green Chem., 2018, 20(14): 3159.
[176]
Liang T, Elmaadawy K, Liu B C, Hu J P, Hou H J, Yang J K. Process. Saf. Environ. Prot., 2021, 145: 321.
[177]
Tayou L N, Lauri R, Incocciati E, Pietrangeli B, Majone M, Micolucci F, Gottardo M, Valentino F. Process. Saf. Environ. Prot., 2022, 163: 158.
[178]
Liu H B, Wang L, Zhang X D, Fu B, Liu H, Li Y J, Lu X Y. J. Hazard. Mater., 2019, 365: 912.
[179]
Bhatia S K, Gurav R, Choi T R, Jung H R, Yang S Y, Song H S, Kim Y G, Yoon J J, Yang Y H. Energy Convers. Manag., 2019, 192: 385.
[180]
Schievano A, Tenca A, Scaglia B, Merlino G, Rizzi A, Daffonchio D, Oberti R, Adani F. Environ. Sci. Technol., 2012, 46(15): 8502.
[181]
Zhou M M, Yan B H, Lang Q L, Zhang Y. Sci. Total Environ., 2019, 668: 295.
[182]
Isipato M, Dessì P, Sánchez C, Mills S, Ijaz U Z, Asunis F, Spiga D, De Gioannis G, Mascia M, Collins G, Muntoni A, Lens P N L. Front. Microbiol., 2020, 11: 599438.
[183]
Chen Z K. Master Dissertation of Hunan University, 2018.
(陈哲柯. 湖南大学硕士学位论文, 2018.)
[184]
Wu Q L. Doctoral Dissertation of Harbin Institute of Technology, 2019.
(吴清莲. 哈尔滨工业大学博士学位论文, 2019.)
[185]
Chu N, Liang Q J, Zhang W, Ge Z, Hao W, Jiang Y, Zeng R J. ACS Sustainable Chem. Eng., 2020, 8(23): 8773.
[186]
Van Eerten-Jansen M C A A, Ter Heijne A, Grootscholten T I M, Steinbusch K J J, Sleutels T H J A, Hamelers H V M, Buisman C J N. ACS Sustainable Chem. Eng., 2013, 1(5): 513.
[187]
Aditi S, Souza Shalet N, Pranesh R, Katyayini T. Int. J. Biosci., 2015, 6(4): 16.
[188]
de Amorim de Carvalho C, Ferreira dos Santos A, Tavares Ferreira T J, Sousa Aguiar Lira V N, Mendes Barros A R, Bezerra dos Santos A. Chemosphere, 2021, 274: 129881.
[189]
Xu J, Li X Y, Gan L H, Li X Y. Sci. Total Environ., 2018, 644: 547.
[190]
Jiang Y, Hebly M, Kleerebezem R, Muyzer G, van Loosdrecht M C M. Water Res., 2011, 45(3): 1309.
[191]
Marang L, Jiang Y, van Loosdrecht M C M, Kleerebezem R. Bioresour. Technol., 2013, 142: 232.
[192]
Srikanth S, Venkateswar Reddy M, Venkata Mohan S. Bioresour. Technol., 2012, 125: 291.
[193]
Kaewbai-ngam A, Incharoensakdi A, Monshupanee T. Bioresour. Technol., 2016, 212: 342.
[194]
Lai Y H, Lan J C W. Int. J. Hydrog. Energy, 2021, 46(31): 16787.

Funding

National Natural Science Foundation of China(22206103)
PDF(7441 KB)

Accesses

Citation

Detail

Sections
Recommended

/