Application of Metal-Organic Frameworks for Battery Separators

Pengcheng Xiao, Saiqun Nie, Mingliang Luo, Jiayao Chen, Fuli Luo, Tian Zhao, Yue-Jun Liu

Prog Chem ›› 2024, Vol. 36 ›› Issue (8) : 1217-1236.

PDF(98145 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(98145 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (8) : 1217-1236. DOI: 10.7536/PC240110
Review

Application of Metal-Organic Frameworks for Battery Separators

Author information +
History +

Abstract

With the rapid development of the new energy industry,research on different kinds of high-performance batteries has become a hot topic nowadays.As one of the important components of batteries,the separator can effectively prevent direct contact between positive and negative electrodes of batteries and provide favorable channels for ion transport.However,traditional polymer battery separators usually have problems such As insufficient thermal stability,poor ion transport capacity,and poor electrolyte wettability.As a new type of porous crystalline material,metal-organic frameworks(MOFs)have become the current research hotspot for high-performance battery separators due to their high porosity,high specific surface area and excellent thermal stability.in this paper,the applications of various MOFs or MOFs-based materials in battery separators are reviewed,and the advantages and disadvantages of MOFs-based battery separators are comprehensively discussed.Finally,the urgent problems to be solved in the field of MOFs-based battery separators and the development prospects of MOFs in battery separators are presented。

Contents

1 Introduction

2 Lithium-ion battery separators based on MOFs

2.1 Original MOFs based separators

2.2 MOFs composites-based separators

2.3 MOFs derivatives-based separators

3 Lithium-sulfur battery separator

3.1 Original MOFs based separators

3.2 MOFs composites-based separators

3.3 MOFs derivatives-based separators

4 Other types of battery separator based on MOFs

5 Conclusion and outlook

Key words

metal-organic frameworks (MOFs) / battery separator / syntheses

Cite this article

Download Citations
Pengcheng Xiao , Saiqun Nie , Mingliang Luo , et al . Application of Metal-Organic Frameworks for Battery Separators[J]. Progress in Chemistry. 2024, 36(8): 1217-1236 https://doi.org/10.7536/PC240110

References

[1]
Dunn B, Kamath H, Tarascon J M. Science, 2011, 334(6058): 928.
[2]
Hoseini S S, Seyedkanani A, Najafi G, Sasmito A P, Akbarzadeh A. Energy Storage Mater., 2023, 59: 102768.
[3]
Manthiram A. ACS Cent. Sci., 2017, 3(10): 1063.
[4]
Lee Y G, Fujiki S, Jung C, Suzuki N, Yashiro N, Omoda R, Ko D S, Shiratsuchi T, Sugimoto T, Ryu S, Ku J H, Watanabe T, Park Y, Aihara Y, Im D, Han I T. Nat. Energy, 2020, 5(4): 299.
[5]
Seh Z W, Sun Y M, Zhang Q F, Cui Y. Chem. Soc. Rev., 2016, 45(20): 5605.
[6]
Manthiram A, Fu Y Z, Chung S H, Zu C X, Su Y S. Chem. Rev., 2014, 114(23): 11751.
[7]
Zhang L L, Liu D B, Muhammad Z, Wan F, Xie W, Wang Y J, Song L, Niu Z Q, Chen J. Adv. Mater., 2019, 31(40): 1903955.
[8]
Zhang X, Xie H, Kim C S, Zaghib K, Mauger A, Julien C M. Mater. Sci. Eng. R Rep., 2017, 121: 1.
[9]
Jia H, Wang Z Q, Tawiah B, Wang Y D, Chan C Y, Fei B, Pan F. Nano Energy, 2020, 70: 104523.
[10]
Tang B Y, Shan L T, Liang S Q, Zhou J. Energy Environ. Sci., 2019, 12(11): 3288.
[11]
Matsuda S, Ono M, Asahina H, Kimura S, Mizuki E, Yasukawa E, Yamaguchi S, Kubo Y, Uosaki K. Adv. Energy Mater., 2023, 13(11): 2203062.
[12]
Yan L G, Li D, Li S Q, Xu Z, Dong J H, Jing W H, Xing W H. ACS Appl. Mater. Interfaces, 2016, 8(51): 35289.
[13]
Lourenssen K, Williams J, Ahmadpour F, Clemmer R, Tasnim S. J. Energy Storage, 2019, 25: 100844.
[14]
Xu X J, Liu J, Liu J W, Ouyang L Z, Hu R Z, Wang H, Yang L C, Zhu M. Adv. Funct. Mater., 2018, 28(16): 1870108.
[15]
Yang T, Xu X J, Yang Y, Fan W Z, Wu Y X, Ji S M, Zhao J W, Liu J, Huo Y P. Energy Mater. Adv., 2024, 5: 0078.
[16]
Yang Y, Yao S Y, Wu Y W, Ding J Y, Liang Z W, Li F K, Zhu M, Liu J. Nano Lett., 2023, 23(11): 5061.
[17]
Li C, Liu R, Xiao Y, Cao F F, Zhang H. Energy Storage Mater., 2021, 40: 439.
[18]
Xu G Y, Zhu C Y, Gao G. Small, 2022, 18(44): 2203140.
[19]
Dong A R, Chen D D, Li Q P, Qian J J. Small, 2023, 19(10): 2201550.
[20]
Zhang L T, Liu M L, Fang Z L, Ju Q. Coord. Chem. Rev., 2022, 468: 214641.
[21]
Zhao T, Li S H, Xiao Y X, Janiak C, Chang G G, Tian G, Yang X Y. Sci. China Mater., 2021, 64(1): 252.
[22]
Zou M M, Dong M, Zhao T. Int. J. Mol. Sci., 2022, 23(16): 9396.
[23]
Zheng H Q, Zhang Y N, Liu L F, Wan W, Guo P, Nyström A M, Zou X D. J. Am. Chem. Soc., 2016, 138(3): 962.
[24]
Teplensky M H, Fantham M, Poudel C, Hockings C, Lu M, Guna A, Aragones-Anglada M, Moghadam P Z, Li P, Farha O K, Bernaldo de Quirós Fernández S, Richards F M, Jodrell D I, Kaminski Schierle G, Kaminski C F, Fairen-Jimenez D. Chem, 2019, 5(11): 2926.
[25]
Zhao T, Nie S Q, Luo M L, Xiao P C, Zou M M, Chen Y. J. Alloys Compd., 2024, 974: 172897.
[26]
Qasem N A A, Ben-Mansour R, Habib M A. Appl. Energy, 2018, 210: 317.
[27]
Fakhraei Ghazvini M, Vahedi M, Najafi Nobar S, Sabouri F. J. Environ. Chem. Eng., 2021, 9(1): 104790.
[28]
Li J X, Chang G G, Tian G, Pu C, Huang K X, Ke S C, Janiak C, Yang X Y. Adv. Funct. Mater., 2021, 31(30): 2102868.
[29]
Zhou J E, Xu Z H, Li Y L, Lin X M, Wu Y B, Zeb A, Zhang S G. Coord. Chem. Rev., 2023, 494: 215348.
[30]
Li X R, Yang X C, Xue H G, Pang H, Xu Q. EnergyChem, 2020, 2(2): 100027.
[31]
Bai S Y, Sun Y, Yi J, He Y B, Qiao Y, Zhou H S. Joule, 2018, 2(10): 2117.
[32]
Hou C C, Xu Q. Adv. Energy Mater., 2019, 9(23): 1801307.
[33]
Li Z Q, Ge X L, Li C X, Dong S H, Tang R, Wang C X, Zhang Z W, Yin L W. Small Meth., 2020, 4(3): 1900756.
[34]
Yuan N, Sun W D, Yang J L, Gong X R, Liu R P. Adv. Mater. Interfaces, 2021, 8(9): 2001941.
[35]
Phung J, Zhang X Z, Deng W J, Li G. Sustain. Mater. Technol., 2022, 31: e00374.
[36]
Zhou J E, Chen J H, Peng Y H, Zheng Y Q, Zeb A, Lin X M. Coord. Chem. Rev., 2022, 472: 214781.
[37]
Freund R, Canossa S, Cohen S M, Yan W, Deng H X, Guillerm V, Eddaoudi M, Madden D G, Fairen-Jimenez D, Lyu H, Macreadie L K, Ji Z, Zhang Y Y, Wang B, Haase F, Wöll C, Zaremba O, Andreo J, Wuttke S, Diercks C S. Angew. Chem. Int. Ed., 2021, 60(45): 23946.
[38]
Chen Y L, Zhang L J, Pan H, Zhang J D, Xiang S C, Cheng Z B, Zhang Z J. J. Mater. Chem. A, 2021, 9(47): 26929.
[39]
Li M L, Wan Y, Huang J K, Assen A H, Hsiung C E, Jiang H, Han Y, Eddaoudi M, Lai Z P, Ming J, Li L J. ACS Energy Lett., 2017, 2(10): 2362.
[40]
Barbosa J C, Gonçalves R, Valverde A, Martins P M, Petrenko V I, Márton M, Fidalgo-Marijuan A, Fernández de Luis R, Costa C M, Lanceros-Méndez S. Chem. Eng. J., 2022, 443: 136329.
[41]
Chong Y L, Zhao D D, Wang B, Feng L, Li S J, Shao L X, Tong X, Du X, Cheng H, Zhuang J L. Chem. Rec., 2022, 22(10): e202200142.
[42]
Song X, Xu X J, Liu J. ChemNanoMat, 2023, 9(10): e202300246.
[43]
Li Z, Sun L, Wang K, Zhang Y. Mater. Today Sustain., 2023, 22: 100392.
[44]
Liu C C, Wu B R, Liu T, Zhang Y X, Cui J W, Huang L J, Tan G Q, Zhang L, Su Y F, Wu F. J. Energy Chem., 2024, 89: 449.
[45]
Ye Z Q, Jiang Y, Li L, Wu F, Chen R J. Nano Micro Lett., 2021, 13(1): 203.
[46]
Zhong S J, Yuan B T, Guang Z X, Chen D J, Li Q, Dong L W, Ji Y P, Dong Y F, Han J C, He W D. Energy Storage Mater., 2021, 41: 805.
[47]
Li S, Zhu W C, Tang Q S, Huang Z Z, Yu P T, Gui X F, Lin S D, Hu J W, Tu Y Y. Energy Fuels, 2021, 35(16): 12938.
[48]
Zhang L P, Li X L, Yang M R, Chen W H. Energy Storage Mater., 2021, 41: 522.
[49]
Dai X K, Zhang X M, Wen J W, Wang C X, Ma X L, Yang Y, Huang G Y, Ye H M, Xu S M. Energy Storage Mater., 2022, 51: 638.
[50]
Xing J X, Li J Y, Fan W X, Zhao T Q, Chen X Y, Li H Q, Cui Y J, Wei Z Z, Zhao Y. Compos. Part B Eng., 2022, 243: 110105.
[51]
Deng L X, Cai C Y, Huang Y Z, Fu Y. Microporous Mesoporous Mater., 2022, 329: 111544.
[52]
Yang L Y, Cao J H, Cai B R, Liang T, Wu D Y. Electrochim. Acta, 2021, 382: 138346.
[53]
Huang D, Liang C, Chen L N, Tang M, Zheng Z J, Wang Z B. J. Mater. Sci., 2021, 56(9): 5868.
[54]
Fu Q S, Zhang W, Muhammad I P, Chen X D, Zeng Y, Wang B T, Zhang S Y. Microporous Mesoporous Mater., 2021, 311: 110724.
[55]
Du R, Wu Y, Yang Y, Zhai T, Zhou T, Shang Q, Zhu L, Shang C, Guo Z. Adv. Energy Mater., 2021, 11(20): 2100154.
[56]
Peng Y, Xu J, Xu J M, Ma J, Bai Y, Cao S, Zhang S T, Pang H. Adv. Colloid Interface Sci., 2022, 307: 102732.
[57]
Mageto T, de Souza F M, Kaur J, Kumar A, Gupta R K. Fuel Process. Technol., 2023, 242: 107659.
[58]
Wang M C, Dong R H, Feng X L. Chem. Soc. Rev., 2021, 50(4): 2764.
[59]
Reddy R C K, Lin X M, Zeb A, Su C Y. Electrochem. Energy Rev., 2022, 5(2): 312.
[60]
Gopalakrishnan M, Ganesan S, Nguyen M T, Yonezawa T, Praserthdam S, Pornprasertsuk R, Kheawhom S. Chem. Eng. J., 2023, 457: 141334.
[61]
Chen P, Shen J X, Wang T L, Dai M, Si C H, Xie J X, Li M, Cong X T, Sun X. J. Power Sources, 2018, 400: 325.
[62]
Chen P, Ren H M, Yan L T, Shen J X, Wang T L, Li G D, Chen S W, Cong X T, Xie J X, Li W. ACS Sustainable Chem. Eng., 2019, 7(19): 16612.
[63]
Lin G, Jia K, Bai Z X, Liu C C, Liu S N, Huang Y M, Liu X B. Adv. Funct. Mater., 2022, 32(47): 2207969.
[64]
Hao Z D, Wu Y, Zhao Q, Tang J D, Zhang Q Q, Ke X X, Liu J B, Jin Y H, Wang H. Adv. Funct. Mater., 2021, 31(33): 2102938.
[65]
Wang C J, Hao Z D, Hu Y T, Wu Y, Liu J B, Jin Y H, Wang H, Zhang Q Q. J. Mater. Chem. A, 2023, 11(15): 8131.
[66]
Zhang C, Shen L, Shen J Q, Liu F, Chen G, Tao R, Ma S X, Peng Y T, Lu Y F. Adv. Mater., 2019, 31(21): 1808338.
[67]
Bin Son H, Cho S, Baek K, Jung J, Nam S, Han D Y, Kang S J, Moon H R, Park S. Adv. Funct. Mater., 2023, 33(37): 2302563.
[68]
Liu W X, Huang X C, Meng Y, Xiao D, Guo Y. J. Mater. Chem. A, 2023, 11(25): 13446.
[69]
Shrivastav V, Sundriyal S, Goel P, Kaur H, Tuteja S K, Vikrant K, Kim K H, Tiwari U K, Deep A. Coord. Chem. Rev., 2019, 393: 48.
[70]
Sun X X, Li M C, Ren S X, Lei T Z, Lee S Y, Lee S, Wu Q L. J. Power Sources, 2020, 454: 227878.
[71]
Huang C H, Ji H, Yang Y, Guo B, Luo L, Meng Z H, Fan L L, Xu J. Carbohydr. Polym., 2020, 230: 115570.
[72]
Gwon H, Park K, Chung S C, Kim R H, Kang J K, Ji S M, Kim N J, Lee S, Ku J H, Do E C, Park S, Kim M, Shim W Y, Rhee H S, Kim J Y, Kim J, Kim T Y, Yamaguchi Y, Iwamuro R, Saito S, Kim G, Jung I S, Park H, Lee C, Lee S, Jeon W S, Jang W D, Kim H U, Lee S Y, Im D, Doo S G, Lee S Y, Lee H C, Park J H. Proc. Natl. Acad. Sci. U. S. A., 2019, 116(39): 19288.
[73]
Zhang S F, Luo J, Du M, Zhang F J, He X N. Cellulose, 2022, 29(9): 5163.
[74]
Huang Q M, Zhao C S, Li X. Cellulose, 2021, 28(5): 3097.
[75]
Zhang S F, Luo J, Zhang F J, Du M, Hui H Y, Zhao F X, He X N, Sun Z X. J. Membr. Sci., 2022, 652: 120461.
[76]
Ahmadi P, Nazeri N, Ali Derakhshan M, Ghanbari H. Int. J. Biol. Macromol., 2021, 180: 590.
[77]
Zhao J, Li Y, Sheng J L, Wang X F, Liu L F, Yu J Y, Ding B. ACS Appl. Mater. Interfaces, 2017, 9(34): 29302.
[78]
Deng L X, Wang Y Q, Cai C Y, Wei Z C, Fu Y. Carbohydr. Polym., 2021, 274: 118620.
[79]
Valverde A, Gonçalves R, Silva M M, Wuttke S, Fidalgo-Marijuan A, Costa C M, Vilas-Vilela J L, Laza J M, Arriortua M I, Lanceros-Méndez S, Fernández de Luis R. ACS Appl. Energy Mater., 2020, 3(12): 11907.
[80]
Liu X T, Wu Y N, Yang F, Wang S C, Zhang B, Wang L. J. Membr. Sci., 2021, 626: 119190.
[81]
Li M Y, Cheng S, Zhang J S, Huang C, Gu J P, Han J, Xu X, Chen X, Zhang P C, You Y. Chem. Eng. J., 2024, 487: 150709.
[82]
Liu J, Liu Y B, Yang W X, Ren Q, Li F Y, Huang Z. J. Power Sources, 2018, 396: 265.
[83]
Liu Y Z, Lv S, Zhang M Z, He J L, Ni P H. Colloids Surf. A Physicochem. Eng. Aspects, 2023, 667: 131359.
[84]
Hu J N, Liu Y Z, Zhang M Z, He J L, Ni P H. Electrochim. Acta, 2020, 334: 135585.
[85]
Xian D X, Liao Z X, Min Y, Wei G Y, Huang J Z, Zhang B, Wang L. Chem. Eng. J., 2023, 474: 145582.
[86]
Hou Y, Huang Z D, Chen Z, Li X L, Chen A, Li P, Wang Y B, Zhi C Y. Nano Energy, 2022, 97: 107204.
[87]
Lee D J, Yu X L, Sikma R E, Li M Q, Cohen S M, Cai G R, Chen Z. ACS Appl. Mater. Interfaces, 2022, 14(30): 34742.
[88]
Min Y, Liu X T, Guo L, Wu A G, Xian D X, Zhang B, Wang L. ACS Appl. Energy Mater., 2022, 5(7): 9131.
[89]
Li J Q, Chen L, Wang F L, Qin Z Y, Zhang Y, Zhang N, Liu X H, Chen G. Chem. Eng. J., 2023, 451: 138536.
[90]
Shi W Y, Shen J Q, Shen L, Hu W, Xu P C, Baucom J A, Ma S X, Yang S X, Chen X M, Lu Y F. Nano Lett., 2020, 20(7): 5435.
[91]
Shen M H, Ma H L. Coord. Chem. Rev., 2022, 470: 214715.
[92]
He Y B, Wu S C, Li Q, Zhou H S. Small, 2019, 15(47): 1904332.
[93]
Yang M, Nan J, Chen W, Hu A J, Sun H, Chen Y F, Wu C Y. Electrochem. Commun., 2021, 125: 106971.
[94]
Li W W, Yang B, Pang R X, Zhang M Y. Compos. Commun., 2023, 38: 101489.
[95]
Deng C, Wang Z W, Wang S P, Yu J X, Martin D J, Nanjundan A K, Yamauchi Y. ACS Appl. Mater. Interfaces, 2019, 11(1): 541.
[96]
Zhou H F, Tang Q L, Xu Q E, Zhang Y, Huang C, Xu Y L, Hu A P, Chen X H. RSC Adv., 2020, 10(31): 18115.
[97]
Zhu P, Zhu J D, Zang J, Chen C, Lu Y, Jiang M J, Yan C Y, Dirican M, Kalai Selvan R, Zhang X W. J. Mater. Chem. A, 2017, 5(29): 15096.
[98]
Guo P Q, Jiang P F, Chen W X, Qian G Y, He D Y, Lu X. Electrochim. Acta, 2022, 428: 140955.
[99]
Cheng Z B, Pan H, Chen J Q, Meng X P, Wang R H. Adv. Energy Mater., 2019, 9(32): 1901609.
[100]
Wang X, Yang L W, Li Q, Wang Y, Zhong Y J, Song Y, Chen Y X, Wu Z G, Zhong B H, Guo X D. Ind. Eng. Chem. Res., 2022, 61(4): 1761.
[101]
Zhu L, You L J, Zhu P H, Shen X Q, Yang L Z, Xiao K S. ACS Sustainable Chem. Eng., 2018, 6(1): 248.
[102]
Li Y P, Lei D, Jiang T Y, Guo J L, Deng X Y, Zhang X, Hao C, Zhang F X. Chem. Eng. J., 2021, 426: 131798.
[103]
Yang Y B, Wang S X, Zhang L T, Deng Y F, Xu H, Qin X S, Chen G H. Chem. Eng. J., 2019, 369: 77.
[104]
Yang H, Yang Y N, Zhang X, Li Y P, Qaisrani N A, Zhang F X, Hao C. ACS Appl. Mater. Interfaces, 2019, 11(35): 31860.
[105]
Ren J C, Huang Y L, Zhu H, Zhang B H, Zhu H K, Shen S H, Tan G Q, Wu F, He H, Lan S, Xia X H, Liu Q. Carbon Energy, 2020, 2(2): 176.
[106]
Bai S Y, Liu X Z, Zhu K, Wu S C, Zhou H S. Nat. Energy, 2016, 1(7): 16094.
[107]
Suriyakumar S, Kanagaraj M, Kathiresan M, Angulakshmi N, Thomas S, Stephan A M. Electrochim. Acta, 2018, 265: 151.
[108]
Qi C, Xu L, Wang J, Li H L, Zhao C C, Wang L N, Liu T X. ACS Sustainable Chem. Eng., 2020, 8(34): 12968.
[109]
Zang Y, Pei F, Huang J H, Fu Z H, Xu G, Fang X L. Adv. Energy Mater., 2018, 8(31): 1870136.
[110]
Fan Y P, Niu Z H, Zhang F, Zhang R, Zhao Y, Lu G. ACS Omega, 2019, 4(6): 10328.
[111]
Tian M, Pei F, Yao M S, Fu Z H, Lin L L, Wu G D, Xu G, Kitagawa H, Fang X L. Energy Storage Mater., 2019, 21: 14.
[112]
Dang B Y, Li Q Q, Luo Y H, Zhao R H, Li J D, Wu F C. J. Alloys Compd., 2022, 915: 165375.
[113]
Guo Y, Sun M H, Liang H Q, Ying W, Zeng X Q, Ying Y L, Zhou S D, Liang C D, Lin Z, Peng X S. ACS Appl. Mater. Interfaces, 2018, 10(36): 30451.
[114]
Diao W Y, Xie D, Li D L, Tao F Y, Liu C, Sun H Z, Zhang X Y, Li W L, Wu X L, Zhang J P. J. Colloid Interface Sci., 2022, 627: 730.
[115]
Wu F, Zhao S Y, Chen L, Lu Y, Su Y F, Jia Y N, Bao L Y, Wang J, Chen S, Chen R J. Energy Storage Mater., 2018, 14: 383.
[116]
Song C L, Li G H, Yang Y, Hong X J, Huang S, Zheng Q F, Si L P, Zhang M, Cai Y P. Chem. Eng. J., 2020, 381: 122701.
[117]
Li Y J, Lin S Y, Wang D D, Gao T T, Song J W, Zhou P, Xu Z K, Yang Z H, Xiao N, Guo S J. Adv. Mater., 2020, 32(8): 1906722.
[118]
Huang Y Z, Wang Y Q, Fu Y. Chem. Eng. J., 2023, 454: 140250.
[119]
Liu J W, Wang J N, Zhu L, Chen X, Ma Q Y, Wang L, Wang X, Yan W. Chem. Eng. J., 2021, 411: 128540.
[120]
Wang X B, Luo Y H, Wang H Y, Wu C C, Zhang Z S, Li J D. J. Electroanal. Chem., 2021, 897: 115564.
[121]
Yu Y, Li T Y, Zhang H Z, Luo Y, Zhang H M, Zhang J W, Yan J W, Li X F. Nano Energy, 2020, 71: 104596.
[122]
Li W J, Luan X J, Zhu X X, Sun J, Fan L L. J. Mater. Sci., 2022, 57(42): 19946.
[123]
Kiai M S, Ponnada S, Eroglu O, Mansoor M, Aslfattahi N, Nguyen V, Gadkari S, Sharma R K. Dalton Trans., 2024, 53(1): 82.
[124]
Li H H, Wang Y X, Chen H Q, Niu B X, Zhang W C, Wu D P. Chem. Eng. J., 2021, 406: 126802.
[125]
Qian X Y, Wang Y H, Jin L N, Cheng J, Chen J Y, Huang B B. J. Electroanal. Chem., 2022, 907: 116029.
[126]
Luo Y, Bai H, Li B, Song X, Zhao J, Xiao Y, Lei S, Cheng B. J. Alloys Compd., 2021, 879: 160368.
[127]
Hu X H, Huang T, Wang S P, Lin S J, Feng Z H, Chung L H, He J. Electrochim. Acta, 2021, 398: 139317.
[128]
Liu Y H, Li L X, Wen A Y, Cao F F, Ye H. Energy Storage Mater., 2023, 55: 652.
[129]
Deng N P, Wang L Y, Feng Y, Liu M, Li Q X, Wang G, Zhang L T, Kang W M, Cheng B W, Liu Y. Chem. Eng. J., 2020, 388: 124241.
[130]
Huang Q H, Zeb A, Xu Z H, Sahar S, Zhou J E, Lin X M, Wu Z Y, Reddy R C K, Xiao X, Hu L. Coord. Chem. Rev., 2023, 494: 215335.
[131]
Chu Z H, Gao X C, Wang C Y, Wang T Y, Wang G X. J. Mater. Chem. A, 2021, 9(12): 7301.
[132]
Zheng Y, Zheng S S, Xue H G, Pang H. J. Mater. Chem. A, 2019, 7(8): 3469.
[133]
Liang Z B, Zhao R, Qiu T J, Zou R Q, Xu Q. EnergyChem, 2019, 1(1): 100001.
[134]
Hong X J, Song C L, Yang Y, Tan H C, Li G H, Cai Y P, Wang H X. ACS Nano, 2019, 13(2): 1923.
[135]
Ma L B, Chen R P, Zhu G Y, Hu Y, Wang Y R, Chen T, Liu J, Jin Z. ACS Nano, 2017, 11(7): 7274.
[136]
Su Y C, Wang W S, Wang W K, Wang A B, Huang Y Q, Guan Y P. J. Electrochem. Soc., 2022, 169(3): 030528.
[137]
Guo S J, Xiao Y B, Wang J, Ouyang Y, Li X, Deng H Y, He W C, Zeng Q H, Zhang W, Zhang Q, Huang S M. Nano Res., 2021, 14(12): 4556.
[138]
Wang Z Q, Huang W Y, Hua J C, Wang Y D, Yi H C, Zhao W G, Zhao Q H, Jia H, Fei B, Pan F. Small Meth., 2020, 4(7): 2000082.
[139]
Lin S J, Dong J L, Chen R W, Zhang G Y, Huang T, Li J T, Zhou H J, Chung L H, Hu X H, He J. J. Alloys Compd., 2023, 965: 171389.
[140]
Zhao X L, Wu Q, Wu F C, Luo Y H, Li J D, Jia A Z. J. Electroanal. Chem., 2023, 939: 117474.
[141]
Zhang X M, Li G R, Zhang Y G, Luo D, Yu A P, Wang X, Chen Z W. Nano Energy, 2021, 86: 106094.
[142]
Cheng Z B, Lian J, Chen Y Y, Tang Y Y, Huang Y L, Zhang J D, Xiang S C, Zhang Z J. CCS Chem., 2024, 6(4): 988.
[143]
Li B H, Pan Y X, Luo B, Zao J, Xiao Y H, Lei S J, Cheng B C. Electrochim. Acta, 2020, 344: 135811.
[144]
Feng Y, Wang G, Wang L Y, Ju J G, Kang W M, Deng N P, Cheng B W. J. Alloys Compd., 2021, 851: 156859.
[145]
Jin L N, Chen J Y, Qian X Y, Cheng J, Hao Q Y, Zhang K. Colloids Surf. A Physicochem. Eng. Aspects, 2023, 657: 130443.
[146]
Li F, Qian X Y, Jin L N. ACS Sustainable Chem. Eng., 2021, 9(46): 15469.
[147]
He J R, Chen Y F, Manthiram A. Energy Environ. Sci., 2018, 11(9): 2560.
[148]
Fang X Z, Jiang Y, Zhang K L, Hu G, Hu W W. New J. Chem., 2021, 45(5): 2361.
[149]
Chuah C Y, Li W, Samarasinghe S A S C, Sethunga G S M D P, Bae T H. Microporous Mesoporous Mater., 2019, 290: 109680.
[150]
Li H T, Jin Q, Li D M, Huan X H, Liu Y M, Feng G L, Zhao J, Yang W, Wu Z G, Zhong B H, Guo X D, Wang B. ACS Appl. Mater. Interfaces, 2020, 12(20): 22971.
[151]
Peng H, Zhang T P, Shao W L, Liu S Y, Hu F Y. Appl. Surf. Sci., 2021, 569: 150935.
[152]
Hao Q Y, Qian X Y, Jin L N, Cheng J, Zhao S L, Chen J Y, Zhang K, Li B Z, Pang S L, Shen X Q. J. Alloys Compd., 2023, 967: 171605.
[153]
Yang J, Kang D W, Kim H, Hwang B, Lee J W. Chem. Eng. J., 2023, 451: 138909.
[154]
Li J J, Li X Y, Fan X, Tang T, Li M, Zeng Y P, Wang H, Wen J F, Xiao J R. Carbon, 2022, 188: 155.
[155]
Leng X L, Zeng J, Yang M D, Li C P, Prabhakar Vattikuti S V, Chen J L, Li S, Shim J, Guo T, Ko T J. J. Energy Chem., 2023, 82: 484.
[156]
Ren Y L, Zhai Q X, Wang B, Hu L B, Ma Y J, Dai Y M, Tang S C, Meng X K. Chem. Eng. J., 2022, 439: 135535.
[157]
Shi X F, Liu M, Gu T, Han J Q, Ren R P, Lv Y K, Ren J. J. Alloys Compd., 2023, 960: 170938.
[158]
Razaq R, Din M M U, Småbråten D R, Eyupoglu V, Janakiram S, Sunde T O, Allahgoli N, Rettenwander D, Deng L Y. Adv. Energy Mater., 2024, 14(3): 2302897.
[159]
Pang S R, Liu Y X, Zhang Z, Li Y X, Li C G, Shi Z, Feng S H. Microporous Mesoporous Mater., 2024, 365: 112892.
[160]
Zhao T J, Wu H Y, Wen X H, Zhang J, Tang H B, Deng Y J, Liao S J, Tian X L. Coord. Chem. Rev., 2022, 468: 214642.
[161]
Yang H J, Qiao Y, Chang Z, Deng H, He P, Zhou H S. Adv. Mater., 2020, 32(38): 2004240.
[162]
Kong L J, Cheng M R, Huang H, Pang J D, Liu S, Xu Y H, Bu X H. EnergyChem, 2022, 4(6): 100090.
[163]
Maeboonruan N, Lohitkarn J, Poochai C, Lomas T, Wisitsoraat A, Kheawhom S, Siwamogsatham S, Tuantranont A, Sriprachuabwong C. J. Sci. Adv. Mater. Devices, 2022, 7(3): 100467.
[164]
Song Y, Ruan P C, Mao C W, Chang Y X, Wang L, Dai L, Zhou P, Lu B G, Zhou J, He Z X. Nano Micro Lett., 2022, 14(1): 218.
[165]
Bruce P G, Freunberger S A, Hardwick L J, Tarascon J M. Nat. Mater., 2012, 11(1): 19.
[166]
Qiao Y, He Y B, Wu S C, Jiang K Z, Li X, Guo S H, He P, Zhou H S. ACS Energy Lett., 2018, 3(2): 463.
[167]
Deng H, Chang Z, Qiu F L, Qiao Y, Yang H J, He P, Zhou H S. Adv. Energy Mater., 2020, 10(12): 1903953.
[168]
Peng S S, Zhang L Y, Zhang C K, Ding Y, Guo X L, He G H, Yu G H. Adv. Energy Mater., 2018, 8(33): 1802533.
[169]
Yang X B, Zhao L, Goh K, Sui X L, Meng L H, Wang Z B. ChemistrySelect, 2019, 4(15): 4633.
[170]
Zhai S X, Lu Z R, Ai Y N, Liu X, Wang Q, Lin J, He S J, Tian M, Chen L. J. Membr. Sci., 2022, 645: 120214.
[171]
Bai S Y, Kim B, Kim C, Tamwattana O, Park H, Kim J, Lee D, Kang K. Nat. Nanotechnol., 2021, 16(1): 77.
[172]
He Y B, Qiao Y, Chang Z, Zhou H S. Energy Environ. Sci., 2019, 12(8): 2327.

Funding

National Natural Science Foundation of China(12372245)
Postgraduate Scientific Research Innovation Project of Hunan Province(CX20240908)
Natural Science Foundation of Hunan Province(2024JJ7164)
PDF(98145 KB)

Accesses

Citation

Detail

Sections
Recommended

/