Atmospheric Chemistry and Measurement Research on Organic Nitrates

Dou Shao, Min Qin, Wu Fang, Baobin Han, Jianye Xie, Xiadan Zhao, Zhitang Liao, Jiaqi Hu, Enbo Ren

Prog Chem ›› 2024, Vol. 36 ›› Issue (8) : 1145-1156.

PDF(1246 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(1246 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (8) : 1145-1156. DOI: 10.7536/PC240111
Review

Atmospheric Chemistry and Measurement Research on Organic Nitrates

Author information +
History +

Abstract

Organic nitrates(ONs)are an important nitrogen-containing organic compounds in the atmosphere.Atmospheric ONs are primarily produced by secondary photochemical reactions between atmospheric oxidants and volatile organic compounds in the presence of nitrogen oxides.Their generation and removal processes are closely related to the atmospheric nitrogen cycle,ozone,and the formation of secondary organic aerosols.Additionally,partial gas-phase ONs can enter the particle phase through gas-particle distribution or multiple oxidations,forming particle-phase ONs,which will promote the generation of PM2.5and further damage to human health.Currently,various chemical and spectroscopic measurement techniques have been successfully applied to measure the concentrations of single species and total ONs,and comprehensive field observations of various atmospheric components have been carried out in different regions to explore the mechanism of ONs generation involving nitrogen oxides,the impact of ONs on regional nitrogen chemistry,and the contribution of particulate ONs to secondary organic aerosols.This article discusses the important role of ONs in atmospheric chemistry by elucidating their mechanisms of generation and removal.It summarizes the measurement methods for ONs and highlights the characteristics and applications of different methods.The focus is placed on indoor smoke chamber researches related to ONs and field observation results in different regions.The observed data combined with atmospheric chemical models,further explain the atmospheric chemical effects of ONs.Additionally,it identifies some shortcomings in current researches,that need to be improved in subsequent researches 。

Contents

1 Introduction

2 Sources and sinks of atmospheric organic nitrates

3 Quantification methods of atmospheric organic nitrates

4 Researches on indoor smog chamber of organic nitrates

5 Field observations of organic nitrates

5.1 International field observations

5.2 Domestic field observations

6 Conclusion and outlook

Key words

organic nitrates / atmospheric chemistry / measurement technology / field observations

Cite this article

Download Citations
Dou Shao , Min Qin , Wu Fang , et al . Atmospheric Chemistry and Measurement Research on Organic Nitrates[J]. Progress in Chemistry. 2024, 36(8): 1145-1156 https://doi.org/10.7536/PC240111

References

[1]
Singh H B, Hanst P L. Geophys. Res. Lett., 1981, 8(8): 941.
[2]
Worton D R, Reeves C E, Penkett S A, Sturges W T, Slemr J, Oram D E, Bandy B J, Bloss W J, Carslaw N, Davey J, Emmerson K M, Gravestock T J, Hamilton J F, Heard D E, Hopkins J R, Hulse A, Ingram T, Jacob M J, Lee J D, Leigh R J, Lewis A C, Monks P S, Smith S C. Atmos. Environ., 2010, 44(6): 773.
[3]
Romer Present P S, Zare A, Cohen R C. Atmos. Chem. Phys., 2020, 20(1): 267.
[4]
Farmer D K, Perring A E, Wooldridge P J, Blake D R, Baker A, Meinardi S, Huey L G, Tanner D, Vargas O, Cohen R C. Atmos. Chem. Phys., 2011, 11(9): 4085.
[5]
Xu L, Suresh S, Guo H, Weber R J, Ng N L. Atmos. Chem. Phys., 2015, 15(13): 7307.
[6]
Rollins A W, Browne E C, Min K E, Pusede S E, Wooldridge P J, Gentner D R, Goldstein A H, Liu S, Day D A, Russell L M, Cohen R C. Science, 2012, 337(6099): 1210.
[7]
Kiendler-Scharr A, Mensah A, Friese E, Topping D, Nemitz E, Prevot A S H, Äijälä M, Allan J, Canonaco F, Canagaratna M, Carbone S, Crippa M, Dall Osto M, Day D A, De Carlo P, Di Marco C F, Elbern H, Eriksson A, Freney E, Hao L, Herrmann H, Hildebrandt L, Hillamo R, Jimenez J L, Laaksonen A, McFiggans G, Mohr C, O’Dowd C, Otjes R, Ovadnevaite J, Pandis S N, Poulain L, Schlag P, Sellegri K, Swietlicki E, Tiitta P, Vermeulen A, Wahner A, Worsnop D, Wu H C. Geophys. Res. Lett., 2016, 43(14): 7735.
[8]
Kenagy H S, Romer Present P S, Wooldridge P J, Nault B A, Campuzano-Jost P, Day D A, Jimenez J L, Zare A, Pye H O T, Yu J, Song C H, Blake D R, Woo J H, Kim Y, Cohen R C. Environ. Sci. Technol., 2021, 55(24): 16326.
[9]
Gu F T, Hu M, Zheng J, Guo S. Progress in Chemistry, 2017, 29(9): 962.
(顾芳婷, 胡敏, 郑竞, 郭松. 化学进展, 2017, 29(9): 962.)
[10]
Swanson A L, Nicola J B, Atlas E, Flocke F, Blake D R, Rowland F S. J. Geophys. Res. Atmos., 2003, 108(D2): ACH 7.
[11]
Beaver M R, St Clair J M, Paulot F, Spencer K M, Crounse J D, LaFranchi B W, Min K E, Pusede S E, Wooldridge P J, Schade G W, Park C, Cohen R C, Wennberg P O. Atmos. Chem. Phys., 2012, 12(13): 5773.
[12]
Lee G, Jang Y, Lee H, Han J S, Kim K R, Lee M. Chemosphere, 2008, 73(4): 619.
[13]
Lee J B, Yoon J S, Jung K, Eom S W, Chae Y Z, Cho S J, Kim S D, Sohn J R, Kim K H. Chemosphere, 2013, 93(9): 1796.
[14]
Day D A, Wooldridge P J, Cohen R C. Atmos. Chem. Phys., 2008, 8(6): 1867.
[15]
Perring A E, Bertram T H, Farmer D K, Wooldridge P J, Dibb J, Blake N J, Blake D R, Singh H B, Fuelberg H, Diskin G, Sachse G, Cohen R C. Atmos. Chem. Phys., 2010, 10(15): 7215.
[16]
Sobanski N, Thieser J, Schuladen J, Sauvage C, Song W, Williams J, Lelieveld J, Crowley J N. Atmos. Chem. Phys., 2017, 17(6): 4115.
[17]
Xu W Q, Takeuchi M, Chen C, Qiu Y M, Xie C H, Xu W Y, Ma N, Worsnop D R, Ng N L, Sun Y L. Atmos. Meas. Tech., 2021, 14(5): 3693.
[18]
Li C M, Wang H C, Chen X R, Zhai T Y, Ma X F, Yang X P, Chen S Y, Li X, Zeng L M, Lu K D. Sci. Total Environ., 2023, 859: 160287.
[19]
Stephens E R. Eos Trans. Am. Geophys. Union, 1987, 68(7): 89.
[20]
Gaffney J S, Marley N A. ACS Earth Space Chem., 2021, 5(8): 1829.
[21]
Li W, Huang S, Yuan B, Guo S, Shao M. China Environ. Sci., 2021, 41(7): 3017.
(李伟, 黄山, 袁斌, 郭松, 邵敏. 中国环境科学, 2021, 41(7): 3017.)
[22]
Chuck A L, Turner S M, Liss P S. Science, 2002, 297(5584): 1151.
[23]
Ballschmiter K. Science, 2002, 297(5584): 1127.
[24]
Busilacchio M, Di Carlo P, Aruffo E, Biancofiore F, Dari Salisburgo C, Giammaria F, Bauguitte S, Lee J, Moller S, Hopkins J, Punjabi S, Andrews S, Lewis A C, Parrington M, Palmer P I, Hyer E, Wolfe G M. Atmos. Chem. Phys., 2016, 16(5): 3485.
[25]
Aruffo E, Biancofiore F, Di Carlo P, Busilacchio M, Verdecchia M, Tomassetti B, Dari-Salisburgo C, Giammaria F, Bauguitte S, Lee J, Moller S, Hopkins J, Punjabi S, Andrews S J, Lewis A C, Palmer P I, Hyer E, Le Breton M, Percival C. Atmos. Meas. Tech., 2016, 9(11): 5591.
[26]
Simpson I J, Meinardi S, Blake D R, Blake N J, Rowland F S, Atlas E, Flocke F. Geophys. Res. Lett., 2002, 29(24): 2168.
[27]
Ling Z H, Guo H, Simpson I J, Saunders S M, Lam S H M, Lyu X P, Blake D R. Atmos. Chem. Phys., 2016, 16(13): 8141.
[28]
Blake N J, Blake D R, Swanson A L, Atlas E, Flocke F, Rowland F S. J. Geophys. Res. Atmos., 2003, 108(D2): PEM 14.
[29]
Perring A E, Pusede S E, Cohen R C. Chem. Rev., 2013, 113(8): 5848.
[30]
Liebmann J, Sobanski N, Schuladen J, Karu E, Hellén H, Hakola H, Zha Q Z, Ehn M, Riva M, Heikkinen L, Williams J, Fischer H, Lelieveld J, Crowley J N. Atmos. Chem. Phys., 2019, 19(15): 10391.
[31]
Fan W L, Chen T, Zhu Z L, Zhang H, Qiu Y L, Yin D Q. J. Hazard. Mater., 2022, 430: 128406.
[32]
Rollins A W, Pusede S, Wooldridge P, Min K E, Gentner D R, Goldstein A H, Liu S, Day D A, Russell L M, Rubitschun C L, Surratt J D, Cohen R C. J. Geophys. Res. Atmos., 2013, 118(12): 6651.
[33]
Pankow J F. Atmos. Environ., 1994, 28(2): 185.
[34]
Wu C, Bell D M, Graham E L, Haslett S, Riipinen I, Baltensperger U, Bertrand A, Giannoukos S, Schoonbaert J, El Haddad I, Prevot A S H, Huang W, Mohr C. Atmos. Chem. Phys., 2021, 21(19): 14907.
[35]
Wang Y C, Piletic I R, Takeuchi M, Xu T C, France S, Ng N L. Environ. Sci. Technol., 2021, 55(21): 14595.
[36]
Zare A, Romer P S, Nguyen T, Keutsch F N, Skog K, Cohen R C. Atmos. Chem. Phys., 2018, 18(20): 15419.
[37]
Talukdar R K, Burkholder J B, Schmoltner A M, Roberts J M, Wilson R R, Ravishankara A R. J. Geophys. Res., 1995, 100(D7): 14163.
[38]
Talukdar R K, Burkholder J B, Hunter M, Gilles M K, Roberts J M, Ravishankara A R. Faraday Trans., 1997, 93(16): 2797.
[39]
Wang Y C, Takeuchi M, Wang S Y, Nizkorodov S A, France S, Eris G, Ng N L. J. Phys. Chem. A, 2023, 127(4): 987.
[40]
Paulot F, Henze D K, Wennberg P O. Atmos. Chem. Phys., 2012, 12(3): 1307.
[41]
Müller J F, Peeters J, Stavrakou T. Atmos. Chem. Phys., 2014, 14(5): 2497.
[42]
Surratt J D, Murphy S M, Kroll J H, Ng N L, Hildebrandt L, Sorooshian A, Szmigielski R, Vermeylen R, Maenhaut W, Claeys M, Flagan R C, Seinfeld J H. J. Phys. Chem. A, 2006, 110(31): 9665.
[43]
Neuman J A, Aikin K C, Atlas E L, Blake D R, Holloway J S, Meinardi S, Nowak J B, Parrish D D, Peischl J, Perring A E, Pollack I B, Roberts J M, Ryerson T B, Trainer M. J. Geophys. Res., 2012, 117(D9): D09305.
[44]
Yang X H, Luo F X, Li J Q, Chen D Y, Ye E, Lin W L, Jin J. J. Am. Soc. Mass Spectrom., 2019, 30(12): 2762.
[45]
Li R, Wang X F, Gu R R, Lu C Y, Zhu F P, Xue L K, Xie H J, Du L, Chen J M, Wang W X. Atmos. Environ., 2018, 176: 140.
[46]
Mills G P, Hiatt-Gipson G D, Bew S P, Reeves C E. Atmos. Meas. Tech., 2016, 9(9): 4533.
[47]
Flocke F M, Weinheimer A J, Swanson A L, Roberts J M, Schmitt R, Shertz S. J. Atmos. Chem., 2005, 52(1): 19.
[48]
Schrimpf W, Müller K P, Johnen F J, Lienaerts K, Rudolph J. J. Atmos. Chem., 1995, 22(3): 303.
[49]
Zhang G, Mu Y J, Liu J F, Mellouki A. J. Chromatogr. A, 2012, 1266: 110.
[50]
Lee B H, Mohr C, Lopez-Hilfiker F D, Lutz A, Hallquist M, Lee L, Romer P, Cohen R C, Iyer S, Kurtén T, Hu W W, Day D A, Campuzano-Jost P, Jimenez J L, Xu L, Ng N L, Guo H Y, Weber R J, Wild R J, Brown S S, Koss A, de Gouw J, Olson K, Goldstein A H, Seco R, Kim S, McAvey K, Shepson P B, Starn T, Baumann K, Edgerton E S, Liu J M, Shilling J E, Miller D O, Brune W, Schobesberger S, D’Ambro E L, Thornton J A. Proc. Natl. Acad. Sci. U. S. A., 2016, 113(6): 1516.
[51]
Zhao J, Häkkinen E, Graeffe F, Krechmer J E, Canagaratna M R, Worsnop D R, Kangasluoma J, Ehn M. Atmos. Chem. Phys., 2023, 23(6): 3707.
[52]
Perraud V, Bruns E A, Ezell M J, Johnson S N, Greaves J, Finlayson-Pitts B J. Environ. Sci. Technol., 2010, 44(15): 5887.
[53]
Yu K Y, Zhu Q, Du K, Huang X F. Atmos. Chem. Phys., 2019, 19(7): 5235.
[54]
Day D A, Campuzano-Jost P, Nault B A, Palm B B, Hu W W, Guo H Y, Wooldridge P J, Cohen R C, Docherty K S, Huffman J A, Martin S T, Jimenez J L. Atmos. Meas. Tech., 2022, 15(2): 459.
[55]
Farmer D K, Matsunaga A, Docherty K S, Surratt J D, Seinfeld J H, Ziemann P J, Jimenez J L, Finlayson-Pitts B J. Proc. Natl. Acad. Sci. U. S. A., 2010, 107(15): 6670.
[56]
Bruns E A, Perraud V, Zelenyuk A, Ezell M J, Johnson S N, Yu Y, Imre D, Finlayson-Pitts B J, Alexander M L. Environ. Sci. Technol., 2010, 44(3): 1056.
[57]
Dekermenjian M. Aerosol Sci. Technol., 1999, 30(3): 273.
[58]
Day D A, Wooldridge P J, Dillon M B, Thornton J A, Cohen R C. J. Geophys. Res., 2002, 107(D6): ACH 4.
[59]
Paul D, Furgeson A, Osthoff H D. Rev. Sci. Instrum., 2009, 80(11): 114101.
[60]
Sadanaga Y, Takaji R, Ishiyama A, Nakajima K, Matsuki A, Bandow H. Rev. Sci. Instrum., 2016, 87(7): 074102.
[61]
Garner N M, Matchett L C, Osthoff H D. Environ. Sci. Technol., 2020, 54(16): 9854.
[62]
Rollins A W, Smith J D, Wilson K R, Cohen R C. Environ. Sci. Technol., 2010, 44(14): 5540.
[63]
Keehan N I, Brownwood B, Marsavin A, Day D A, Fry J L. Atmos. Meas. Tech., 2020, 13(11): 6255.
[64]
Li C M, Wang H C, Chen X R, Zhai T Y, Chen S Y, Li X, Zeng L M, Lu K D. Atmos. Meas. Tech., 2021, 14(6): 4033.
[65]
Lin C, Hu R Z, Xie P H, Zhang G X, Liu X Y, Tong J Z, Liu W Q. Talanta, 2024, 270: 125524.
[66]
Lin C, Hu R Z, Xie P H, Wu S Y, Tong J Z, Li Z Y, Wang F Y, Wang Y H. Acta Opt. Sin., 2020, 40(12): 1201003.
(林川, 胡仁志, 谢品华, 吴盛阳, 童金钊, 李治艳, 王凤阳, 王怡慧. 光学学报, 2020, 40(12): 1201003.)
[67]
Li J J, Yu X, Li Q F, Wang S, Cheng Y Y, Yu J Z. Atmos. Environ., 2022, 271: 118905.
[68]
Aruffo E, Wang J F, Ye J H, Ohno P, Qin Y M, Stewart M, McKinney K, Di Carlo P, Martin S T. Environ. Sci. Technol., 2022, 56(9): 5421.
[69]
Rollins A W, Kiendler-Scharr A, Fry J L, Brauers T, Brown S S, Dorn H P, Dubé W P, Fuchs H, Mensah A, Mentel T F, Rohrer F, Tillmann R, Wegener R, Wooldridge P J, Cohen R C. Atmos. Chem. Phys., 2009, 9(18): 6685.
[70]
Perring A E, Wisthaler A, Graus M, Wooldridge P J, Lockwood A L, Mielke L H, Shepson P B, Hansel A, Cohen R C. Atmos. Chem. Phys., 2009, 9(14): 4945.
[71]
Brownwood B, Turdziladze A, Hohaus T, Wu R R, Mentel T F, Carlsson P T M, Tsiligiannis E, Hallquist M, Andres S, Hantschke L, Reimer D, Rohrer F, Tillmann R, Winter B, Liebmann J, Brown S S, Kiendler-Scharr A, Novelli A, Fuchs H, Fry J L. ACS Earth Space Chem., 2021, 5(4): 785.
[72]
Kwan A J, Chan A W H, Ng N L, Kjaergaard H G, Seinfeld J H, Wennberg P O. Atmos. Chem. Phys., 2012, 12(16): 7499.
[73]
Fry J L, Draper D C, Barsanti K C, Smith J N, Ortega J, Winkler P M, Lawler M J, Brown S S, Edwards P M, Cohen R C, Lee L. Environ. Sci. Technol., 2014, 48(20): 11944.
[74]
Bates K H, Burke G J P, Cope J D, Nguyen T B. Atmos. Chem. Phys., 2022, 22(2): 1467.
[75]
Mutzel A, Zhang Y L, Böge O, Rodigast M, Kolodziejczyk A, Wang X M, Herrmann H. Atmos. Chem. Phys., 2021, 21(11): 8479.
[76]
Moldanova J, Ljungström E. J. Aerosol Sci., 2000, 31(11): 1317.
[77]
Bell D M, Wu C, Bertrand A, Graham E, Schoonbaert J, Giannoukos S, Baltensperger U, Prevot A S H, Riipinen I, El Haddad I, Mohr C. Atmos. Chem. Phys., 2022, 22(19): 13167.
[78]
Rindelaub J D, McAvey K M, Shepson P B. Atmos. Environ., 2015, 100: 193.
[79]
Bean J K, Hildebrandt Ruiz L. Atmos. Chem. Phys., 2016, 16(4): 2175.
[80]
Shen H R, Zhao D F, Pullinen I, Kang S, Vereecken L, Fuchs H, Acir I H, Tillmann R, Rohrer F, Wildt J, Kiendler-Scharr A, Wahner A, Mentel T F. Environ. Sci. Technol., 2021, 55(23): 15658.
[81]
Pullinen I, Schmitt S, Kang S, Sarrafzadeh M, Schlag P, Andres S, Kleist E, Mentel T F, Rohrer F, Springer M, Tillmann R, Wildt J, Wu C, Zhao D F, Wahner A, Kiendler-Scharr A. Atmos. Chem. Phys., 2020, 20(17): 10125.
[82]
Fry J L, Kiendler-Scharr A, Rollins A W, Brauers T, Brown S S, Dorn H P, Dubé W P, Fuchs H, Mensah A, Rohrer F, Tillmann R, Wahner A, Wooldridge P J, Cohen R C. Atmos. Chem. Phys., 2011, 11(8): 3879.
[83]
Pang J Y S, Novelli A, Kaminski M, Acir I-H, Bohn B, Carlsson P T M, Cho C, Dorn H-P, Hofzumahaus A, Li X, Lutz A, Nehr S, Reimer D, Rohrer F, Tillmann R, Wegener R, Kiendler-Scharr A, Wahner A, Fuchs H. Atmos. Chem. Phys., 2022, 22(13): 8497.
[84]
Morales A C, Jayarathne T, Slade J H, Laskin A, Shepson P B. Atmos. Chem. Phys., 2021, 21(1): 129.
[85]
Takeuchi M, Ng N L. Atmos. Chem. Phys., 2019, 19(19): 12749.
[86]
Boyd C M, Sanchez J, Xu L, Eugene A J, Nah T, Tuet W Y, Guzman M I, Ng N L. Atmos. Chem. Phys., 2015, 15(13): 7497.
[87]
Sato K, Hatakeyama S, Imamura T. J. Phys. Chem. A, 2007, 111(39): 9796.
[88]
Priestley M, Bannan T J, Le Breton M, Worrall S D, Kang S, Pullinen I, Schmitt S, Tillmann R, Kleist E, Zhao D F, Wildt J, Garmash O, Mehra A, Bacak A, Shallcross D E, Kiendler-Scharr A, Hallquist Å M, Ehn M, Coe H, Percival C J, Hallquist M, Mentel T F, McFiggans G. Atmos. Chem. Phys., 2021, 21(5): 3473.
[89]
Forstner H J L, Flagan R C, Seinfeld J H. Environ. Sci. Technol., 1997, 31(5): 1345.
[90]
Xu L, Møller K H, Crounse J D, Kjaergaard H G, Wennberg P O. Environ. Sci. Technol., 2020, 54(21): 13467.
[91]
Song C, Na K, Cocker D R. Environ. Sci. Technol., 2005, 39(9): 3143.
[92]
Song C, Na K, Warren B, Malloy Q, Cocker D R. Environ. Sci. Technol., 2007, 41(21): 7403.
[93]
Atlas E. Nature, 1988, 331(6155): 426.
[94]
Hao L Q, Kortelainen A, Romakkaniemi S, Portin H, Jaatinen A, Leskinen A, Komppula M, Miettinen P, Sueper D, Pajunoja A, Smith J N, Lehtinen K E J, Worsnop D R, Laaksonen A, Virtanen A. Atmos. Chem. Phys., 2014, 14(24): 13483.
[95]
Aruffo E, Di Carlo P, Dari-Salisburgo C, Biancofiore F, Giammaria F, Busilacchio M, Lee J, Moller S, Hopkins J, Punjabi S, Bauguitte S, O’Sullivan D, Percival C, Le Breton M, Muller J, Jones R, Forster G, Reeves C, Heard D, Walker H, Ingham T, Vaughan S, Stone D. Atmos. Environ., 2014, 94: 479.
[96]
Ayres B R, Allen H M, Draper D C, Brown S S, Wild R J, Jimenez J L, Day D A, Campuzano-Jost P, Hu W, de Gouw J, Koss A, Cohen R C, Duffey K C, Romer P, Baumann K, Edgerton E, Takahama S, Thornton J A, Lee B H, Lopez-Hilfiker F D, Mohr C, Wennberg P O, Nguyen T B, Teng A, Goldstein A H, Olson K, Fry J L. Atmos. Chem. Phys., 2015, 15(23): 13377.
[97]
Fry J L, Draper D C, Zarzana K J, Campuzano-Jost P, Day D A, Jimenez J L, Brown S S, Cohen R C, Kaser L, Hansel A, Cappellin L, Karl T, Hodzic Roux A, Turnipseed A, Cantrell C, Lefer B L, Grossberg N. Atmos. Chem. Phys., 2013, 13(17): 8585.
[98]
Lee L, Wooldridge P J, Gilman J B, Warneke C, de Gouw J, Cohen R C. Atmos. Chem. Phys., 2014, 14(22): 12441.
[99]
Toma S, Bertman S, Groff C, Xiong F, Shepson P B, Romer P, Duffey K, Wooldridge P, Cohen R, Baumann K, Edgerton E, Koss A R, de Gouw J, Goldstein A, Hu W W, Jimenez J L. Atmos. Chem. Phys., 2019, 19(3): 1867.
[100]
Fisher J A, Jacob D J, Travis K R, Kim P S, Marais E A, Chan Miller C, Yu K R, Zhu L, Yantosca R M, Sulprizio M P, Mao J Q, Wennberg P O, Crounse J D, Teng A P, Nguyen T B, St Clair J M, Cohen R C, Romer P, Nault B A, Wooldridge P J, Jimenez J L, Campuzano-Jost P, Day D A, Hu W W, Shepson P B, Xiong F, Blake D R, Goldstein A H, Misztal P K, Hanisco T F, Wolfe G M, Ryerson T B, Wisthaler A, Mikoviny T. Atmos. Chem. Phys., 2016, 16(9): 5969.
[101]
Kenagy H S, Sparks T L, Wooldridge P J, Weinheimer A J, Ryerson T B, Blake D R, Hornbrook R S, Apel E C, Cohen R C. Geophys. Res. Lett., 2020, 47(11): e2020GL087860.
[102]
Zaragoza J, Callahan S, McDuffie E E, Kirkland J, Brophy P, Durrett L, Farmer D K, Zhou Y, Sive B, Flocke F, Pfister G, Knote C, Tevlin A, Murphy J, Fischer E V. J. Geophys. Res. Atmos., 2017, 122(22): 12416.
[103]
Flocke F, Pfister G, Crawford J H, Pickering K E, Pierce G, Bon D, Reddy P. J. Geophys. Res. Atmos., 2020, 125(2): e2019jd031197.
[104]
Han J, Lee M, Shang X N, Lee G, Emmons L K. Atmos. Chem. Phys., 2017, 17(17): 10619.
[105]
Sadanaga Y, Ishiyama A, Takaji R, Matsuki A, Kato S, Sato K, Osada K, Bandow H. Atmos. Environ., 2019, 196: 20.
[106]
Johansson S, Wetzel G, Friedl-Vallon F, Glatthor N, Höpfner M, Kleinert A, Neubert T, Sinnhuber B M, Ungermann J. Atmos. Chem. Phys., 2022, 22(5): 3675.
[107]
Lindaas J, Farmer D K, Pollack I B, Abeleira A, Flocke F, Fischer E V. J. Geophys. Res. Atmos., 2019, 124(4): 2336.
[108]
Palmer P I, Parrington M, Lee J D, Lewis A C, Rickard A R, Bernath P F, Duck T J, Waugh D L, Tarasick D W, Andrews S, Aruffo E, Bailey L J, Barrett E, Bauguitte S J B, Curry K R, Di Carlo P, Chisholm L, Dan L, Forster G, Franklin J E, Gibson M D, Griffin D, Helmig D, Hopkins J R, Hopper J T, Jenkin M E, Kindred D, Kliever J, Le Breton M, Matthiesen S, Maurice M, Moller S, Moore D P, Oram D E, O’Shea S J, Owen R C, Pagniello C M L S, Pawson S, Percival C J, Pierce J R, Punjabi S, Purvis R M, Remedios J J, Rotermund K M, Sakamoto K M, da Silva A M, Strawbridge K B, Strong K, Taylor J, Trigwell R, Tereszchuk K A, Walker K A, Weaver D, Whaley C, Young J C. Atmos. Chem. Phys., 2013, 13(13): 6239.
[109]
Lee L, Wooldridge P J, deGouw J, Brown S S, Bates T S, Quinn P K, Cohen R C. Atmos. Chem. Phys., 2015, 15(16): 9313.
[110]
Toon O B, Maring H, Dibb J, Ferrare R, Jacob D J, Jensen E J, Luo Z J, Mace G G, Pan L L, Pfister L, Rosenlof K H, Redemann J, Reid J S, Singh H B, Thompson A M, Yokelson R, Minnis P, Chen G, Jucks K W, Pszenny A. J. Geophys. Res. Atmos., 2016, 121(9): 4967.
[111]
Malley C S, Cape J N, Jones M R, Leeson S R, Coyle M, Braban C F, Heal M R, Twigg M M. Atmos. Res., 2016, 174: 135.
[112]
Kenagy H S, Sparks T L, Ebben C J, Wooldrige P J, Lopez-Hilfiker F D, Lee B H, Thornton J A, McDuffie E E, Fibiger D L, Brown S S, Montzka D D, Weinheimer A J, Schroder J C, Campuzano-Jost P, Day D A, Jimenez J L, Dibb J E, Campos T, Shah V, Jaeglé L, Cohen R C. J. Geophys. Res. Atmos., 2018, 123(17): 9813.
[113]
Nault B A, Campuzano-Jost P, Day D A, Schroder J C, Anderson B, Beyersdorf A J, Blake D R, Brune W H, Choi Y, Corr C A, de Gouw J A, Dibb J, DiGangi J P, Diskin G S, Fried A, Huey L G, Kim M J, Knote C J, Lamb K D, Lee T, Park T, Pusede S E, Scheuer E, Thornhill K L, Woo J H, Jimenez J L. Atmos. Chem. Phys., 2018, 18(24): 17769.
[114]
Huang W, Yang Y, Wang Y H, Gao W K, Li H Y, Zhang Y Y, Li J Y, Zhao S M, Yan Y C, Ji D S, Tang G Q, Liu Z R, Wang L L, Zhang R J, Wang Y S. Sci. Total Environ., 2021, 768: 144538.
[115]
Zhu Q, Cao L M, Tang M X, Huang X F, Saikawa E, He L Y. Adv. Atmos. Sci., 2021, 38(7): 1115.
[116]
Fu X, Wang T, Gao J, Wang P, Liu Y M, Wang S X, Zhao B, Xue L K. Environ. Sci. Technol., 2020, 54(7): 3881.
[117]
Xu W Y, Zhang G, Wang Y, Tong S R, Zhang W Q, Ma Z Q, Lin W L, Kuang Y, Yin L Y, Xu X B. Environ. Sci. Technol., 2021, 55(6): 3568.
[118]
Qiu Y L, Ma Z Q, Li K, Huang M Y, Sheng J J, Tian P, Zhu J, Pu W W, Tang Y X, Han T T, Zhou H G, Liao H. Atmos. Chem. Phys., 2021, 21(23): 17995.
[119]
Zhang J W, Guo Y T, Qu Y, Chen Y, Yu R P, Xue C Y, Yang R, Zhang Q, Liu X G, Mu Y J, Wang J, Ye C, Zhao H H, Sun Q Q, Wang Z W, An J L. J. Environ. Sci., 2020, 94: 81.
[120]
Zhang G, Xia L J, Zang K P, Xu W Y, Zhang F, Liang L L, Yao B, Lin W L, Mu Y J. Sci. Total Environ., 2020, 718: 137388.
[121]
Qiu Y L, Ma Z Q, Lin W L, Quan W J, Pu W W, Li Y R, Zhou L Y, Shi Q F. Front. Environ. Sci. Eng., 2020, 14(4): 71.
[122]
Qiu Y L, Ma Z Q, Li K, Lin W L, Tang Y X, Dong F, Liao H. Geophys. Res. Lett., 2020, 47(19): e2020GL089623.
[123]
Zhang B Y, Zhao X M, Zhang J B. Environ. Pollut., 2019, 244: 379.
[124]
Zhang B Y, Zhao B, Zuo P, Huang Z, Zhang J B. J. Environ. Sci., 2019, 77: 189.
[125]
Chen J, Wang X F, Zhang J, Li M, Li H Y, Liu Z Y, Bi Y J, Wu D, Yin X K, Gu R R, Jiang Y, Shan Y, Zhao Y, Xue L K, Wang W X. Environ. Res., 2022, 212: 113182.
[126]
Zhang J, Wang X F, Li R, Dong S W, Chen J, Zhang Y N, Zheng P G, Li M, Chen T S, Liu Y H, Xue L K, Zhou X H, Du L, Zhang Q Z, Wang W X. Atmos. Res., 2021, 256: 105585.
[127]
Liu Y L, Nie W, Li Y Y, Ge D F, Liu C, Xu Z N, Chen L D, Wang T Y, Wang L, Sun P, Qi X M, Wang J P, Xu Z, Yuan J, Yan C, Zhang Y J, Huang D D, Wang Z, Donahue N M, Worsnop D, Chi X G, Ehn M, Ding A J. Atmos. Chem. Phys., 2021, 21(19): 14789.
[128]
Liu L, Wang X F, Chen J M, Xue L K, Wang W X, Wen L, Li D D, Chen T S. J. Environ. Sci., 2018, 71: 249.
[129]
Xu Z, Xue L K, Wang T, Xia T, Gao Y, Louie P K K, Luk C W Y. Aerosol Air Qual. Res., 2015, 15(3): 833.
[130]
Zhang Y N, Sun J J, Zheng P G, Chen T S, Liu Y H, Han G X, Simpson I J, Wang X F, Blake D R, Li Z Y, Yang X, Qi Y B, Wang Q, Wang W X, Xue L K. Sci. Total Environ., 2019, 656: 129.
[131]
Lee Y, Huey L G, Wang Y, Qu H, Zhang R, Ji Y, Tanner D J, Wang X, Tang J, Song W, Hu W, Zhang Y. J. Geophys. Res. Atmos., 2021, 126(23): e2021jd035296.
[132]
Simpson I J, Wang T, Guo H, Kwok Y H, Flocke F, Atlas E, Meinardi S, Rowland F S, Blake D R. Atmos. Environ., 2006, 40(9): 1619.
[133]
Wang B, Shao M, Roberts J M, Yang G, Yang F, Hu M, Zeng L M, Zhang Y H, Zhang J B. Int. J. Environ. Anal. Chem., 2010, 90(7): 548.
[134]
Zou Y, Deng X J, Li F, Yin C Q. Chin. J. Environ. Sci., 2019, 40(4): 1634.
(邹宇, 邓雪娇, 李菲, 殷长秦. 环境科学, 2019, 40(4): 1634.)
[135]
Wang X F, Wang T, Xue L K, Nie W, Xu Z, Poon S C N, Wang W X. Front. Environ. Sci. Eng., 2017, 11(4): 3.
[136]
Song J W, Zhang Y Y, Huang Y, Ho K F, Yuan Z B, Ling Z H, Niu X J, Gao Y, Cui L, Louie P K K, Lee S C, Lai S C. Chemosphere, 2018, 194: 275.
[137]
Zeng L W, Lyu X P, Guo H, Zou S C, Ling Z H. Environ. Sci. Technol., 2018, 52(10): 5581.
[138]
Zeng L W, Fan G J, Lyu X P, Guo H, Wang J L, Yao D W. Environ. Pollut., 2019, 252: 1910.
[139]
Zeng L W, Guo H, Lyu X P, Zhou B N, Ling Z H, Simpson I J, Meinardi S, Barletta B, Blake D R. Environ. Pollut., 2021, 270: 116285.
[140]
Zhang J B, Tang X Y. Environ. Chem., 1994, 13(1): 30.
(张剑波, 唐孝炎. 环境化学, 1994, 13(1): 30.)
[141]
Zhang H L, Tong S R, Zhang W Q, Xu Y Y, Zhai M Z, Guo Y C, Li X, Wang L L, Tang G Q, Liu Z R, Hu B, Liu C T, Liu P F, Sun X, Mu Y J, Ge M F. Sci. Total Environ., 2023, 905: 166852.
[142]
Li Z Y, Xie G Z, Chen H, Zhan B X, Wang L, Mu Y J, Mellouki A, Chen J M. J. Environ. Sci., 2022, 114: 221.
[143]
Xu X B, Zhang H L, Lin W L, Wang Y, Xu W Y, Jia S H. Atmos. Chem. Phys., 2018, 18(7): 5199.
[144]
Wang M, Shao M, Chen W T, Lu S H, Wang C, Huang D K, Yuan B, Zeng L M, Zhao Y. Atmos. Environ., 2013, 81: 389.
[145]
Sun J J, Li Z Y, Xue L K, Wang T, Wang X F, Gao J, Nie W, Simpson I J, Gao R, Blake D R, Chai F H, Wang W X. Atmos. Res., 2018, 204: 102.

Funding

National Natural Science Foundation of China(42175151)
National Natural Science Foundation of China(U21A2028)
National Key Research & Development Program of China(2022YFC3701100)
Plan for Anhui Major Provincial Science & Technology Project(202203a07020003)
PDF(1246 KB)

Accesses

Citation

Detail

Sections
Recommended

/