Crystal Material Construction Based on DNA Nanotechnology

Peixin Li, Mushi Peng, Xuehui Yan, Yifan Yu, Ye Tian

Prog Chem ›› 2024, Vol. 36 ›› Issue (7) : 949-960.

PDF(10970 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(10970 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (7) : 949-960. DOI: 10.7536/PC240116
Review

Crystal Material Construction Based on DNA Nanotechnology

Author information +
History +

Abstract

nanocrystal materials have exhibited unique and superior properties in the fields of electronics,optics,and magnetism.the fabrication of nanocrystal materials holds significant importance in the material science for achieving breakthroughs and further developments in their performance.DNA,known for its complementary base pairing characteristics,offers the potential to construct diverse nanostructures and crystals of which the structures and composition can be precisely controlled,thereby enabling the tailored material properties.Currently,the nanocrystal materials fabricated through DNA nanotechnology has been applied in various fields,including catalysts,optical devices,and semiconductor materials.These advancements signify a progressive realization of the fundamental objective for constructing three-dimensional crystals as versatile,periodic molecular frameworks.in this review,we provide a systematic elucidation of the development and recent advancements in the research pertaining to three pivotal techniques employed in the construction of DNA nanocrystals.These techniques include DNA tiles,programmable atomic equivalents,and DNA origami.Moreover,we briefly deliberate on the future direction of utilizing DNA nanotechnology in the construction of nanocrystal materials。

Contents

1 Introduction

2 Construction of nanoparticle crystals based on DNA tiles

3 Direct DNA-mediated nanoparticle crystallization

4 DNA origami-based assembly technique for nanoparticle crystal

5 Conclusion and outlook

Key words

DNA nanotechnology / programmable atomic equivalents / DNA origami / self-assembly

Cite this article

Download Citations
Peixin Li , Mushi Peng , Xuehui Yan , et al . Crystal Material Construction Based on DNA Nanotechnology[J]. Progress in Chemistry. 2024, 36(7): 949-960 https://doi.org/10.7536/PC240116

References

[1]
Seeman N C. J. Theor. Biol., 1982, 99(2): 237.
[2]
Caruthers M H. Science, 1985, 230(4723): 281.
[3]
Kallenbach N R, Ma R I, Seeman N C. Nature, 1983, 305(5937): 829.
[4]
Winfree E, Liu F R, Wenzler L A, Seeman N C. Nature, 1998, 394(6693): 539.
[5]
Zhang C, Su M, He Y, Zhao X, Fang P A, Ribbe A E, Jiang W, Mao C D. Proc. Natl. Acad. Sci. U. S. A., 2008, 105(31): 10665.
[6]
He Y, Tian Y, Ribbe A E, Mao C D. J. Am. Chem. Soc., 2006, 128(50): 15978.
[7]
He Y, Tian Y, Chen Y, Deng Z X, Ribbe A E, Mao C D. Angew. Chem. Int. Ed., 2005, 44(41): 6694.
[8]
Zheng J P, Birktoft J J, Chen Y, Wang T, Sha R J, Constantinou P E, Ginell S L, Mao C D, Seeman N C. Nature, 2009, 461(7260): 74.
[9]
Wang T, Sha R J, Birktoft J, Zheng J P, Mao C D, Seeman N C. J. Am. Chem. Soc., 2010, 132(44): 15471.
[10]
Lu B, Vecchioni S, Ohayon Y P, Sha R J, Woloszyn K, Yang B A, Mao C D, Seeman N C. ACS Nano, 2021, 15(10): 16788.
[11]
Lu B, Vecchioni S, Ohayon Y P, Woloszyn K, Markus T, Mao C D, Seeman N C, Canary J W, Sha R J. Small, 2023, 19(3): 2205830.
[12]
Woloszyn K, Vecchioni S, Ohayon Y P, Lu B, Ma Y L, Huang Q Y, Zhu E, Chernovolenko D, Markus T, Jonoska N, Mao C D, Seeman N C, Sha R J. Adv. Mater., 2022, 34(49): 2206876.
[13]
Wang X, Sha R J, Kristiansen M, Hernandez C, Hao Y D, Mao C D, Canary J W, Seeman N C. Angew. Chem. Int. Ed., 2017, 56(23): 6445.
[14]
Hao Y D, Kristiansen M, Sha R J, Birktoft J J, Hernandez C, Mao C D, Seeman N C. Nat. Chem., 2017, 9(8): 824.
[15]
Zheng M X, Li Z, Zhang C Z, Seeman N C, Mao C D. Adv. Mater., 2022, 34(26): 2200441.
[16]
Wang X, Seeman N C. J. Am. Chem. Soc., 2007, 129(26): 8169.
[17]
Wang Y L, Mueller J E, Kemper B, Seeman N C. Biochemistry, 1991, 30(23): 5667.
[18]
Ma R I, Kallenbach N R, Sheardy R D, Petrillo M L, Seeman N C. Nucleic Acids Res., 1986, 14(24): 9745.
[19]
Zhang F, Liu Y, Yan H. J. Am. Chem. Soc., 2013, 135(20): 7458.
[20]
Fu T J, Seeman N C. Biochemistry, 1993, 32(13): 3211.
[21]
Ding B Q, Sha R J, Seeman N C. J. Am. Chem. Soc., 2004, 126(33): 10230.
[22]
He Y, Chen Y, Liu H P, Ribbe A E, Mao C D. J. Am. Chem. Soc., 2005, 127(35): 12202.
[23]
Liu L F, Li Z, Li Y L, Mao C D. J. Am. Chem. Soc., 2019, 141(10): 4248.
[24]
Liu D G, Wang M S, Deng Z X, Walulu R, Mao C D. J. Am. Chem. Soc., 2004, 126(8): 2324.
[25]
Paukstelis P, Seeman N. Crystals, 2016, 6(8): 97.
[26]
Zhao J M, Chandrasekaran A R, Li Q, Li X, Sha R J, Seeman N C, Mao C D. Angew. Chem. Int. Ed., 2015, 54(34): 9936.
[27]
Abdallah H O, Ohayon Y P, Chandrasekaran A R, Sha R J, Fox K R, Brown T, Rusling D A, Mao C D, Seeman N C. Chem. Commun., 2016, 52(51): 8014.
[28]
Zhang D A, Paukstelis P J. ChemBioChem, 2016, 17(12): 1163.
[29]
Li Z, Liu L F, Zheng M X, Zhao J M, Seeman N C, Mao C D. J. Am. Chem. Soc., 2019, 141(40): 15850.
[30]
Zheng J W, Constantinou P E, Micheel C, Alivisatos A P, Kiehl R A, Seeman N C. Nano Lett., 2006, 6(7): 1502.
[31]
Samanta D, Zhou W J, Ebrahimi S B, Petrosko S H, Mirkin C A. Adv. Mater., 2022, 34(12): 2107875.
[32]
Mirkin C A, Letsinger R L, Mucic R C, Storhoff J J. Nature, 1996, 382(6592): 607.
[33]
Alivisatos A P, Johnsson K P, Peng X G, Wilson T E, Loweth C J, Bruchez M P, Schultz P G. Nature, 1996, 382(6592): 609.
[34]
Park S Y, Lytton-Jean A K R, Lee B, Weigand S, Schatz G C, Mirkin C A. Nature, 2008, 451(7178): 553.
[35]
Nykypanchuk D, Maye M M, van der Lelie D, Gang O. Nature, 2008, 451(7178): 549.
[36]
MacFarlane R J, Lee B, Jones M R, Harris N, Schatz G C, Mirkin C A. Science, 2011, 334(6053): 204.
[37]
Maye M M, Kumara M T, Nykypanchuk D, Sherman W B, Gang O. Nat. Nanotechnol., 2010, 5(2): 116.
[38]
Kim Y, MacFarlane R J, Mirkin C A. J. Am. Chem. Soc., 2013, 135(28): 10342.
[39]
Mason J A, Laramy C R, Lai C T, O’Brien M N, Lin Q Y, Dravid V P, Schatz G C, Mirkin C A. J. Am. Chem. Soc., 2016, 138(28): 8722.
[40]
Zhu J H, Kim Y, Lin H X, Wang S Z, Mirkin C A. J. Am. Chem. Soc., 2018, 140(15): 5061.
[41]
Lee S, Calcaterra H A, Lee S M, Hadibrata W, Lee B, Oh E, Aydin K, Glotzer S C, Mirkin C A. Nature, 2022, 610(7933): 674.
[42]
Ben Zion M Y, He X J, Maass C C, Sha R J, Seeman N C, Chaikin P M. Science, 2017, 358(6363): 633.
[43]
He L C, Mu J, Gang O, Chen X Y. Adv. Sci., 2021, 8(8): 2003775.
[44]
MacFarlane R, Jones M, Senesi A, Young K, Lee B, Wu J S, Mirkin C. Angew. Chem. Int. Ed., 2010, 49(27): 4589.
[45]
Lin H X, Lee S M, Sun L, Spellings M, Engel M, Glotzer S C, Mirkin C A. Science, 2017, 355(6328): 931.
[46]
Young K L, Jones M R, Zhang J, MacFarlane R J, Esquivel-Sirvent R, Nap R J, Wu J S, Schatz G C, Lee B, Mirkin C A. Proc. Natl. Acad. Sci. U. S. A., 2012, 109(7): 2240.
[47]
O’Brien M N, Jones M R, Lee B, Mirkin C A. Nat. Mater., 2015, 14(8): 833.
[48]
Jones M R, MacFarlane R J, Lee B, Zhang J, Young K L, Senesi A J, Mirkin C A. Nat. Mater., 2010, 9(11): 913.
[49]
Lu F, Yager K G, Zhang Y G, Xin H L, Gang O. Nat. Commun., 2015, 6: 6912.
[50]
Zhang C, MacFarlane R J, Young K L, Choi C H J, Hao L L, Auyeung E, Liu G L, Zhou X Z, Mirkin C A. Nat. Mater., 2013, 12(8): 741.
[51]
Zhang Y G, Lu F, Yager K G, van der Lelie D, Gang O. Nat. Nanotechnol., 2013, 8(11): 865.
[52]
Landy K M, Gibson K J, Urbach Z J, Park S S, Roth E W, Weigand S, Mirkin C A. Nano Lett., 2022, 22(1): 280.
[53]
Distler M E, Landy K M, Gibson K J, Lee B, Weigand S, Mirkin C A. J. Am. Chem. Soc., 2023, 145(2): 841.
[54]
MacFarlane R J, Thaner R V, Brown K A, Zhang J, Lee B, Nguyen S T, Mirkin C A. Proc. Natl. Acad. Sci. U. S. A., 2014, 111(42): 14995.
[55]
Sciortino F, Zhang Y G, Gang O, Kumar S K. ACS Nano, 2020, 14(5): 5628.
[56]
Landy K M, Gibson K J, Chan R R, Pietryga J, Weigand S, Mirkin C A. ACS Nano, 2023, 17(7): 6480.
[57]
Hill H D, MacFarlane R J, Senesi A J, Lee B, Park S Y, Mirkin C A. Nano Lett., 2008, 8(8): 2341.
[58]
MacFarlane R J, Lee B, Hill H D, Senesi A J, Seifert S, Mirkin C A. Proc. Natl. Acad. Sci. U. S. A., 2009, 106(26): 10493.
[59]
Senesi A J, Eichelsdoerfer D J, Brown K A, Lee B, Auyeung E, Choi C H J, MacFarlane R J, Young K L, Mirkin C A. Adv. Mater., 2014, 26(42): 7235.
[60]
MacFarlane R J, O’Brien M N, Petrosko S H, Mirkin C A. Angew. Chem. Int. Ed., 2013, 52(22): 5688.
[61]
Wang S Z, Du J S, Diercks N J, Zhou W J, Roth E W, Dravid V P, Mirkin C A. J. Am. Chem. Soc., 2019, 141(51): 20443.
[62]
Samanta D, Iscen A, Laramy C R, Ebrahimi S B, Bujold K E, Schatz G C, Mirkin C A. J. Am. Chem. Soc., 2019, 141(51): 19973.
[63]
Kim Y, MacFarlane R J, Jones M R, Mirkin C A. Science, 2016, 351(6273): 579.
[64]
Zhu J H, Lin H X, Kim Y, Yang M W, Skakuj K, Du J S, Lee B, Schatz G C, Van Duyne R P, Mirkin C A. Adv. Mater., 2020, 32(8): 1906600.
[65]
De Fazio A F, El-Sagheer A H, Kahn J S, Nandhakumar I, Burton M R, Brown T, Muskens O L, Gang O, Kanaras A G. ACS Nano, 2019, 13(5): 5771.
[66]
Urbach Z J, Park S S, Weigand S L, Rix J E, Lee B, Mirkin C A. Angew. Chem. Int. Ed., 2021, 60(8): 4065.
[67]
Girard M, Wang S Z, Du J S, Das A, Huang Z Y, Dravid V P, Lee B, Mirkin C A, Olvera de la Cruz M. Science, 2019, 364(6446): 1174.
[68]
Wang S Z, Lee S M, Du J S, Partridge B E, Cheng H F, Zhou W J, Dravid V P, Lee B, Glotzer S C, Mirkin C A. Nat. Mater., 2022, 21(5): 580.
[69]
Rothemund P W K. Nature, 2006, 440(7082): 297.
[70]
Qian L L, Wang Y, Zhang Z, Zhao J, Pan D, Zhang Y, Liu Q, Fan C H, Hu J, He L. Chin. Sci. Bull., 2006, 51(24): 2973.
[71]
Andersen E S, Dong M D, Nielsen M M, Jahn K, Lind-Thomsen A, Mamdouh W, Gothelf K V, Besenbacher F, Kjems J. ACS Nano, 2008, 2(6): 1213.
[72]
Douglas S M, Dietz H, Liedl T, Hogberg B, Graf F, Shih W. Nature, 2009, 459: 414.
[73]
Dietz H, Douglas S M, Shih W M. Science, 2009, 325(5941): 725.
[74]
Yang Y, Zhao Z, Zhang F, Nangreave J, Liu Y, Yan H. Nano Lett., 2013, 13(4): 1862.
[75]
Liedl T, Högberg B, Tytell J, Ingber D E, Shih W M. Nat. Nanotechnol., 2010, 5(7): 520.
[76]
Han D R, Pal S, Nangreave J, Deng Z T, Liu Y, Yan H. Science, 2011, 332(6027): 342.
[77]
Wang D F, Yu L, Ji B, Chang S, Song J, Ke Y G. Nano Lett., 2020, 20(11): 8236.
[78]
Wang D F, Yu L, Huang C M, Arya G, Chang S, Ke Y G. J. Am. Chem. Soc., 2021, 143(5): 2256.
[79]
Peil A, Xin L, Both S, Shen L Y, Ke Y G, Weiss T, Zhan P F, Liu N. ACS Nano, 2022, 16(4): 5284.
[80]
Kahn J S, Gang O. Angew. Chem. Int. Ed., 2022, 61(3): 2105678.
[81]
Benson E, Mohammed A, Gardell J, Masich S, Czeizler E, Orponen P, Högberg B. Nature, 2015, 523(7561): 441.
[82]
Veneziano R, Ratanalert S, Zhang K M, Zhang F, Yan H, Chiu W, Bathe M. Science, 2016, 352(6293): 1534.
[83]
Kim M, Lee C, Jeon K, Lee J Y, Kim Y J, Lee J G, Kim H, Cho M, Kim D N. Nature, 2023, 619(7968): 78.
[84]
Tian Y, Wang T, Liu W Y, Xin H L, Li H L, Ke Y G, Shih W M, Gang O. Nat. Nanotechnol., 2015, 10(7): 637.
[85]
Liu W Y, Tagawa M, Xin H L, Wang T, Emamy H, Li H L, Yager K G, Starr F W, Tkachenko A V, Gang O. Science, 2016, 351(6273): 582.
[86]
Tian Y, Zhang Y G, Wang T, Xin H L, Li H L, Gang O. Nat. Mater., 2016, 15(6): 654.
[87]
Zhang C, Li X, Tian C, Yu G M, Li Y L, Jiang W, Mao C D. ACS Nano, 2014, 8(2): 1130.
[88]
Liu W Y, Halverson J, Tian Y, Tkachenko A V, Gang O. Nat. Chem., 2016, 8(9): 867.
[89]
Lin Z W, Emamy H, Minevich B, Xiong Y, Xiang S T, Kumar S, Ke Y G, Gang O. J. Am. Chem. Soc., 2020, 142(41): 17531.
[90]
Wang M Y, Dai L Z, Duan J L, Ding Z Y, Wang P, Li Z, Xing H, Tian Y. Angew. Chem. Int. Ed., 2020, 59(16): 6389.
[91]
Tian Y, Lhermitte J R, Bai L, Vo T, Xin H L, Li H L, Li R P, Fukuto M, Yager K G, Kahn J S, Xiong Y, Minevich B, Kumar S K, Gang O. Nat. Mater., 2020, 19(7): 789.
[92]
Zhang T, Hartl C, Frank K, Heuer-Jungemann A, Fischer S, Nickels P C, Nickel B, Liedl T. Adv. Mater., 2018, 30(28): 1870203.
[93]
Dong Y X, Liu J L, Lu X Z, Duan J L, Zhou L Q, Dai L Z, Ji M, Ma N N, Wang Y, Wang P, Zhu J J, Min Q H, Gang O, Tian Y. Nano Lett., 2022, 22(9): 3809.
[94]
Wang Y, Dai L Z, Ding Z Y, Ji M, Liu J L, Xing H, Liu X G, Ke Y G, Fan C H, Wang P, Tian Y. Nat. Commun., 2021, 12: 3011.
[95]
Yan X H, Huang S J, Wang Y, Tang Y Y, Tian Y. Nanomaterials, 2020, 10(10): 2047.
[96]
Ma N N, Minevich B, Liu J L, Ji M, Tian Y, Gang O. Directional assembly of nanoparticles by DNA shapes: towards designed architectures and functionality. DNA Nanotechnology. Cham: Springer, 2020. 157.
[97]
Gao D, Ma N N, Yan X H, Ji M, Zhu J J, Min Q H, Tian Y. Chem. Sci., 2022, 13(1): 283.
[98]
Ji M, Liu J L, Dai L Z, Wang L, Tian Y. J. Am. Chem. Soc., 2020, 142(51): 21336.
[99]
Ji M, Zhou Z Y, Cao W H, Ma N N, Xu W G, Tian Y. Sci. Adv., 2022, 8(47): eadc9755.
[100]
Dai L Z, Hu X X, Ji M, Ma N N, Xing H, Zhu J J, Min Q H, Tian Y. Proc. Natl. Acad. Sci. U. S. A., 2023, 120(28): e2302142120.
[101]
Wang Y, Yan X H, Zhou Z Y, Ma N N, Tian Y. Angew. Chem. Int. Ed., 2022, 61(40): 2208290.
[102]
Yan X H, Wang Y, Ma N N, Yu Y F, Dai L Z, Tian Y. J. Am. Chem. Soc., 2023, 145(7): 3978.
[103]
Ma N N, Dai L Z, Chen Z, Ji M, Wang Y, Tian Y. Nano Lett., 2021, 21(8): 3581.
[104]
Nguyen L, Döblinger M, Liedl T, Heuer-Jungemann A. Angew. Chem. Int. Ed., 2019, 58(3): 912.
[105]
Liu X G, Zhang F, Jing X X, Pan M C, Liu P, Li W, Zhu B W, Li J, Chen H, Wang L H, Lin J P, Liu Y, Zhao D Y, Yan H, Fan C H. Nature, 2018, 559(7715): 593.
[106]
Shani L, Michelson A N, Minevich B, Fleger Y, Stern M, Shaulov A, Yeshurun Y, Gang O. Nat. Commun., 2020, 11: 5697.
[107]
Michelson A, Zhang H H, Xiang S T, Gang O. Nano Lett., 2021, 21(4): 1863.
[108]
Geng C, Paukstelis P J. J. Am. Chem. Soc., 2014, 136(22): 7817.
[109]
Kahn J S, Xiong Y, Huang J, Gang O. JACS Au, 2022, 2(2): 357.
[110]
Wang S T, Minevich B, Liu J F, Zhang H H, Nykypanchuk D, Byrnes J, Liu W, Bershadsky L, Liu Q, Wang T, Ren G, Gang O. Nat. Commun., 2021, 12: 3702.
[111]
Kim S, Zheng C Y, Schatz G C, Aydin K, Kim K H, Mirkin C A. Nano Lett., 2020, 20(11): 8096.
[112]
Wang X, Deshmukh R, Sha R J, Birktoft J J, Menon V, Seeman N C, Canary J W. Angew. Chem. Int. Ed., 2022, 61(5): e202115155.

Funding

National Natural Science Foundation of Jiangsu Province, China(BK20220124)
National Natural Science Foundation of China(22372077)
National Natural Science Foundation of China(92356304)
State Key Laboratory of Analytical Chemistry for Life Science,Nanjing University(5431ZZXM2301)
PDF(10970 KB)

Accesses

Citation

Detail

Sections
Recommended

/