Cu-Based Catalysts for Electrocatalytic Nitrate Reduction

Changzheng Lin, Jinwei Zhu, Weijia Li, Hao Chen, Jiangtao Feng, Wei Yan

Prog Chem ›› 2024, Vol. 36 ›› Issue (9) : 1291-1303.

PDF(49221 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(49221 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (9) : 1291-1303. DOI: 10.7536/PC240123
Review

Cu-Based Catalysts for Electrocatalytic Nitrate Reduction

Author information +
History +

Abstract

in recent years,electrocatalytic nitrate reduction(ENitRR)has attracted considerable attention in the synthesis of ammonia at ambient conditions.Compared to the traditional Haber-Bosch process for ammonia synthesis,ENitRR offers lower energy consumption and milder reaction conditions.the design and optimization of ENitRR electrocatalysts are crucial for nitrate deoxygenation and hydrogenation.copper-based catalytic materials have been widely studied due to their unique structure,low cost,and excellent performance,making them highly promising electrocatalysts through various morphology and electronic structure modulation strategies.This article summarizes various effective design strategies using copper-based electrocatalysts as a typical example to enhance the ammonia production rate and conversion efficiency in ENitRR.It also introduces the reaction mechanism and the relationship between structural changes in Cu-based electrocatalysts and their performance.These strategies include morphology modulation,alloy engineering,lattice phase tuning,single-atom structures,as well as copper compound construction and composites with other materials.Finally,challenges faced by copper-based electrocatalysts are discussed along with future research directions that should be focused on in order to provide reference for researchers engaged in nitrate treatment in aqueous systems。

Contents

1 Introduction

2 Mechanism of ENitRR

3 Research status of Cu-based electrocatalysts

3.1 Metal Copper(Cu0 )

3.2 Cuprous based catalyst

3.3 Copper matrix composite

4 Conclusion and outlook

Key words

copper-based electrocatalysts / electrocatalyst / nitrate reduction / design strategies

Cite this article

Download Citations
Changzheng Lin , Jinwei Zhu , Weijia Li , et al . Cu-Based Catalysts for Electrocatalytic Nitrate Reduction[J]. Progress in Chemistry. 2024, 36(9): 1291-1303 https://doi.org/10.7536/PC240123

References

[1]
Canfield D E, Glazer A N, Falkowski P G. Science, 2010, 330(6001): 192.
[2]
Rosca V, Duca M, de Groot M T, Koper M T M. Chem. Rev., 2009, 109(6): 2209.
[3]
Duca M, Koper M T M. Energy Environ. Sci., 2012, 5(12): 9726.
[4]
Ghafari S, Hasan M, Aroua M K. Bioresour. Technol., 2008, 99(10): 3965.
[5]
Tugaoen H O, Garcia-Segura S, Hristovski K, Westerhoff P. Sci. Total Environ., 2017, 599-600: 1524.
[6]
Martínez J, Ortiz A, Ortiz I. Appl. Catal. B Environ., 2017, 207: 42.
[7]
Lundberg J O, Weitzberg E, Cole J A, Benjamin N. Nat. Rev. Microbiol., 2004, 2(7): 593.
[8]
Schoeman J J, Steyn A. Desalination, 2003, 155(1): 15.
[9]
Liou Y H, Lo S L, Lin C J, Hu C Y, Kuan W H, Weng S C. Environ. Sci. Technol., 2005, 39(24): 9643.
[10]
Chabani M, Amrane A, Bensmaili A. Chem. Eng. J., 2006, 125(2): 111.
[11]
Yang W P, Wang J L, Chen R M, Xiao L, Shen S J, Li J Y, Dong F. J. Mater. Chem. A, 2022, 10(34): 17357.
[12]
Li M, Feng C P, Zhang Z Y, Lei X H, Chen R Z, Yang Y N, Sugiura N. J. Hazard. Mater., 2009, 171(1-3): 724.
[13]
Wijayanta A T, Oda T, Purnomo C W, Kashiwagi T, Aziz M. Int. J. Hydrog. Energy, 2019, 44(29): 15026.
[14]
Aziz M, Energies, 2021, 14(18): 10.3390/en14185917.
[15]
Giddey S, Badwal S P S, Munnings C, Dolan M. ACS Sustainable Chem. Eng., 2017, 5(11): 10231.
[16]
Wu Z Y, Karamad M, Yong X, Huang Q Z, Cullen D A, Zhu P, Xia C, Xiao Q F, Shakouri M, Chen F Y, Kim J Y, Xia Y, Heck K, Hu Y F, Wong M S, Li Q L, Gates I, Siahrostami S, Wang H T. Nat. Commun., 2021, 12: 2870.
[17]
He W H, Zhang J, Dieckhöfer S, Varhade S, Brix A C, Lielpetere A, Seisel S, Junqueira J R C, Schuhmann W. Nat. Commun., 2022, 13: 1129.
[18]
Bhatnagar A, Sillanpää M. Chem. Eng. J., 2011, 168(2): 493.
[19]
Tang C, Qiao S Z. Chem. Soc. Rev., 2019, 48(12): 3166.
[20]
Andersen S Z, Čolić V, Yang S, Schwalbe J A, Nielander A C, McEnaney J M, Enemark-Rasmussen K, Baker J G, Singh A R, Rohr B A, Statt M J, Blair S J, Mezzavilla S, Kibsgaard J, Vesborg P C K, Cargnello M, Bent S F, Jaramillo T F, Stephens I E L, Nørskov J K, Chorkendorff I. Nature, 2019, 570(7762): 504.
[21]
Wang Y T, Yu Y F, Jia R R, Zhang C, Zhang B. Natl. Sci. Rev., 2019, 6(4): 730.
[22]
Lei X H, Liu F, Li M, Ma X J, Wang X H, Zhang H J. Chemosphere, 2018, 212: 237.
[23]
2023 Research Frontier, Institute of Science and Technology Strategy Consulting, Chinese Academy of Sciences, National Science Library, Chinese Academy of Sciences, Clarivate Analytics, 2023.
(2023研究前沿, 中国科学院科技战略咨询研究院, 中国科学院文献情报中心, 科睿唯安, 2023.)
[24]
Taguchi S, Feliu J M. Electrochim. Acta, 2007, 52(19): 6023.
[25]
Soto-Hernández J, Santiago-Ramirez C R, Ramirez-Meneses E, Luna-Trujillo M, Wang J A, Lartundo-Rojas L, Manzo-Robledo A. Appl. Catal. B Environ., 2019, 259: 118048.
[26]
Piao S Y, Kayama Y, Nakano Y, Nakata K, Yoshinaga Y, Shimazu K. J. Electroanal. Chem., 2009, 629(1-2): 110.
[27]
Li L, Yun Y F, Zhang Y Z, Huang Y X, Xu Z H. J. Alloys Compd., 2018, 766: 157.
[28]
Katsounaros I, Kyriacou G. Electrochim. Acta, 2008, 53(17): 5477.
[29]
Fu J, Yao F B, Xie T, Zhong Y, Tao Z, Chen S J, He L, Pi Z J, Hou K J, Wang D B, Li X M, Yang Q. Sep. Purif. Technol., 2021, 276: 119329.
[30]
Liu J X, Richards D, Singh N, Goldsmith B R. ACS Catal., 2019, 9(8): 7052.
[31]
Ford C L, Park Y J, Matson E M, Gordon Z, Fout A R. Science, 2016, 354(6313): 741.
[32]
Liu P, Yan J Y, Huang H, Song W B. Chem. Eng. J., 2023, 466: 143134.
[33]
Jeon T H, Wu Z Y, Chen F Y, Choi W, Alvarez P J J, Wang H T. J. Phys. Chem. C, 2022, 126(16): 6982.
[34]
Chavez M E, Biset-Peiró M, Murcia-López S, Morante J R. ACS Sustainable Chem. Eng., 2023, 11(9): 3633.
[35]
Wang Y H, Xu A N, Wang Z Y, Huang L S, Li J, Li F W, Wicks J, Luo M C, Nam D H, Tan C S, Ding Y, Wu J W, Lum Y, Dinh C T, Sinton D, Zheng G F, Sargent E H. J. Am. Chem. Soc., 2020, 142(12): 5702.
[36]
Speck F D, Paul M T Y, Ruiz-Zepeda F, Gatalo M, Kim H, Kwon H C, Mayrhofer K J J, Choi M, Choi C H, Hodnik N, Cherevko S. J. Am. Chem. Soc., 2020, 142(36): 15496.
[37]
Wang C Q, Zhang Y B, Luo H X, Zhang H, Li W, Zhang W X, Yang J P. Small Meth., 2022, 6(10): 2200790.
[38]
Wang Y T, Zhou W, Jia R R, Yu Y F, Zhang B. Angew. Chem. Int. Ed., 2020, 59(13): 5350.
[39]
Chen F Y, Wu Z Y, Gupta S, Rivera D J, Lambeets S V, Pecaut S, Kim J Y T, Zhu P, Finfrock Y Z, Meira D M, King G, Gao G H, Xu W Q, Cullen D A, Zhou H, Han Y M, Perea D E, Muhich C L, Wang H T. Nat. Nanotechnol., 2022, 17(7): 759.
[40]
Daiyan R, Tran-Phu T, Kumar P, Iputera K, Tong Z Z, Leverett J, Khan M H A, Asghar Esmailpour A, Jalili A, Lim M, Tricoli A, Liu R S, Lu X Y, Lovell E, Amal R. Energy Environ. Sci., 2021, 14(6): 3588.
[41]
Xu Y, Ren K L, Ren T L, Wang M Z, Wang Z Q, Li X N, Wang L, Wang H J. Appl. Catal. B Environ., 2022, 306: 121094.
[42]
Wang Y Y, Zhang L L, Niu Y J, Fang D, Wang J, Su Q X, Wang C. Green Chem., 2021, 23(19): 7594.
[43]
Pérez-Gallent E, Figueiredo M C, Katsounaros I, Koper M T M. Electrochim. Acta, 2017, 227: 77.
[44]
Wang Q, Huang H, Wang L C, Chen Y G. Environ. Sci. Pollut. Res., 2019, 26(17): 17567.
[45]
Ge Z X, Wang T J, Ding Y, Yin S B, Li F M, Chen P, Chen Y. Adv. Energy Mater., 2022, 12: 2103916.
[46]
Zhu T H, Chen Q S, Liao P, Duan W J, Liang S, Yan Z, Feng C H. Small, 2020, 16(49): 2004526.
[47]
Mondol P, Panthi D, Albarran Ayala A J, Odoh S O, Barile C J. J. Mater. Chem. A, 2022, 10(42): 22428.
[48]
Yuan J L, Xing Z, Tang Y H, Liu C B. ACS Appl. Mater. Interfaces, 2021, 13(44): 52469.
[49]
Wu T Y, Kong X G, Tong S Y, Chen Y, Liu J, Tang Y, Yang X J, Chen Y M, Wan P Y. Appl. Surf. Sci., 2019, 489: 321.
[50]
Cai J M, Wei Y Y, Cao A, Huang J J, Jiang Z, Lu S Y, Zang S Q. Appl. Catal. B Environ., 2022, 316: 121683.
[51]
Chen W D, Yang X Y, Chen Z D, Ou Z J, Hu J T, Xu Y, Li Y L, Ren X Z, Ye S H, Qiu J S, Liu J H, Zhang Q L. Adv. Funct. Mater., 2023, 33(29): 2300512.
[52]
Xu H, Ma Y Y, Chen J, Zhang W X, Yang J P. Chem. Soc. Rev., 2022, 51(7): 2710.
[53]
Wang Z X, Richards D, Singh N. Catal. Sci. Technol., 2021, 11(3): 705.
[54]
de Vooys A C A, van Santen R A, van Veen J A R. J. Mol. Catal. A Chem., 2000, 154 (1-2): 203.
[55]
Dima G E, de Vooys A C A, Koper M T M. J. Electroanal. Chem., 2003, 554-555: 15.
[56]
Gu L, Kuang M, Chen J, Yang J P. Chin. J. Struct. Chem., 2023, 42(6): 100067.
[57]
Zhang R, Shuai D M, Guy K A, Shapley J R, Strathmann T J, Werth C J. ChemCatChem, 2013, 5(1): 313.
[58]
Wu Z Y, Song Y H, Liu Y B, Luo W, Li W, Yang J P. Chem Catal., 2023, 3(11): 100786.
[59]
Gao J N, Jiang B, Ni C C, Qi Y F, Zhang Y Q, Oturan N, Oturan M A. Appl. Catal. B Environ., 2019, 254: 391.
[60]
Gao J N, Jiang B, Ni C C, Qi Y F, Bi X J. Chem. Eng. J., 2020, 382: 123034.
[61]
de Vooys A C A, Koper M T M, van Santen R A, van Veen J A R. J. Electroanal. Chem., 2001, 506(2): 127.
[62]
Shin H, Jung S, Bae S, Lee W, Kim H. Environ. Sci. Technol., 2014, 48(21): 12768.
[63]
Fan K, Xie W F, Li J Z, Sun Y N, Xu P C, Tang Y, Li Z H, Shao M F. Nat. Commun., 2022, 13: 7958.
[64]
Fang J Y, Zheng Q Z, Lou Y Y, Zhao K M, Hu S N, Li G, Akdim O, Huang X Y, Sun S G. Nat. Commun., 2022, 13: 7899.
[65]
Skúlason E, Tripkovic V, Björketun M E, Gudmundsdóttir S, Karlberg G, Rossmeisl J, Bligaard T, Jónsson H, Nørskov J K. J. Phys. Chem. C, 2010, 114(42): 18182.
[66]
Yu J L, Wang J, Ma Y B, Zhou J W, Wang Y H, Lu P Y, Yin J W, Ye R Q, Zhu Z L, Fan Z X. Adv. Funct. Mater., 2021, 31(37): 2102151.
[67]
Buonsanti R. Nat. Catal., 2021, 4(9): 736.
[68]
Wang G Z, Ma Y B, Wang J, Lu P Y, Wang Y H, Fan Z X. Nanoscale, 2023, 15(14): 6456.
[69]
Yu J L, Yin J W, Li R C, Ma Y B, Fan Z X. Chem Catal., 2022, 2(9): 2229.
[70]
Jiang M H, Zhu Q, Song X M, Gu Y M, Zhang P B, Li C Q, Cui J X, Ma J, Tie Z X, Jin Z. Environ. Sci. Technol., 2022, 56(14): 10299.
[71]
Wang Y F, Biradar A V, Wang G, Sharma K K, Duncan C T, Rangan S, Asefa T. Chem., 2010, 16(35): 10735.
[72]
Yang G N, Zeng X, Wang P Y, Li C, Xu G D, Li Z, Luo J Y, Zhang Y, Cui C Q. ChemElectroChem, 2021, 8(5): 819.
[73]
Zhu X Q, Wang B W, Shi F, Nie J. Langmuir, 2012, 28(40): 14461.
[74]
El-Khawaga A M, Zidan A, El-Mageed A I A A. J. Mol. Struct., 2023, 1281: 135148.
[75]
Wen W D, Yan P, Sun W P, Zhou Y T, Yu X Y. Adv. Funct. Mater., 2023, 33(6): 2212236.
[76]
Fu X B, Zhao X G, Hu X B, He K, Yu Y N, Li T, Tu Q, Qian X, Yue Q, Wasielewski M R, Kang Y J. Appl. Mater. Today, 2020, 19: 100620.
[77]
Jiang H F, Chen G F, Savateev O, Xue J, Ding L X, Liang Z X, Antonietti M, Wang H H. Angew. Chem. Int. Ed., 2023, 62(13): e202218717.
[78]
Wang Y Z, Dutta A, Iarchuk A, Sun C Z, Vesztergom S, Broekmann P. ACS Catal., 2023, 13(12): 8169.
[79]
Reyter D, Chamoulaud G, Bélanger D, Roué L. J. Electroanal. Chem., 2006, 596(1): 13.
[80]
Li Y, Ma J X, Wu Z C, Wang Z W. Environ. Sci. Technol., 2022, 56(12): 8673.
[81]
Bae S E, Stewart K L, Gewirth A A. J. Am. Chem. Soc., 2007, 129(33): 10171.
[82]
Bae S E, Gewirth A A. Faraday Discuss., 2009, 140: 113.
[83]
Butcher D P, Gewirth A A. Nano Energy, 2016, 29: 457.
[84]
Hu Q, Qin Y J, Wang X D, Wang Z Y, Huang X W, Zheng H J, Gao K R, Yang H P, Zhang P X, Shao M H, He C X. Energy Environ. Sci., 2021, 14(9): 4989.
[85]
Fu Y F, Wang S, Wang Y, Wei P F, Shao J Q, Liu T F, Wang G X, Bao X H. Angew. Chem. Int. Ed., 2023, 62(26): e202303327.
[86]
Yang J, Qi H F, Li A Q, Liu X Y, Yang X F, Zhang S X, Zhao Q, Jiang Q K, Su Y, Zhang L L, Li J F, Tian Z Q, Liu W, Wang A Q, Zhang T. J. Am. Chem. Soc., 2022, 144(27): 12062.
[87]
Reyter D, Bélanger D, Roué L. Electrochim. Acta, 2008, 53(20): 5977.
[88]
Liu H M, Lang X Y, Zhu C, Timoshenko J, Rüscher M, Bai L C, Guijarro N, Yin H B, Peng Y, Li J H, Liu Z, Wang W C, Cuenya B R, Luo J S. Angew. Chem. Int. Ed., 2022, 61(23): e202202556.
[89]
Gao W, Xie K, Xie J, Wang X, Zhang H, Chen S, Wang H, Li Z, Li C. Adv. Mater., 2023, 35:2202952.
[90]
Sun L, Yao H, Jia F, Wang Y, Liu B. Adv. Energy Mater., 2023, 13: 2302274.
[91]
Cerrón-Calle G A, Fajardo A S, Sánchez-Sánchez C M, Garcia-Segura S. Appl. Catal. B Environ., 2022, 302: 120844.
[92]
Wang C H, Liu Z Y, Hu T, Li J S, Dong L Q, Du F, Li C M, Guo C X. ChemSusChem, 2021, 14(8): 1825.
[93]
Zhang S, Wu J H, Zheng M T, Jin X, Shen Z H, Li Z H, Wang Y J, Wang Q, Wang X B, Wei H, Zhang J W, Wang P, Zhang S Q, Yu L Y, Dong L F, Zhu Q S, Zhang H G, Lu J. Nat. Commun., 2023, 14: 3634.
[94]
Wu L M, Feng J Q, Zhang L B, Jia S H, Song X N, Zhu Q G, Kang X C, Xing X Q, Sun X F, Han B X. Angew. Chem. Int. Ed., 2023, 62(43): e202307952.
[95]
Soares O S G P, Fan X L, Órfão J J M, Lapkin A A, Pereira M F R. Ind. Eng. Chem. Res., 2012, 51(13): 4854.
[96]
Milhano C, Pletcher D. J. Electroanal. Chem., 2008, 614(1-2): 24.
[97]
Han S H, Li H J, Li T L, Chen F P, Yang R, Yu Y F, Zhang B. Nat. Catal., 2023, 6(5): 402.
[98]
Ren T L, Ren K L, Wang M Z, Liu M Y, Wang Z Q, Wang H J, Li X N, Wang L, Xu Y. Chem. Eng. J., 2021, 426: 130759.
[99]
Wang C C, Ye F, Shen J H, Xue K H, Zhu Y H, Li C Z. ACS Appl. Mater. Interfaces, 2022, 14(5): 6680.
[100]
Yao F B, Jia M C, Yang Q, Chen F, Zhong Y, Chen S J, He L, Pi Z J, Hou K J, Wang D B, Li X M. Water Res., 2021, 193: 116881.
[101]
Kim K H, Lee H, Huang X P, Choi J H, Chen C P, Kang J K, O’Hare D. Energy Environ. Sci., 2023, 16(2): 663.
[102]
Li Y F, Wang C C, Yang L K, Ge W X, Shen J H, Zhu Y H, Li C Z. Adv. Energy Mater., 2023, 14(7):2303863.
[103]
Song Z M, Liu Y, Zhong Y Z, Guo Q, Zeng J, Geng Z G. Adv. Mater., 2022, 34(36): 2204306.
[104]
Xu Y, Wen Y S, Ren T L, Yu H J, Deng K, Wang Z Q, Li X N, Wang L, Wang H J. Appl. Catal. B Environ., 2023, 320: 121981.
[105]
Chen Y L, Li J J, Jiang G M, Xu B, Zhang J B, Zhang H W, Shu S. J. Environ. Chem. Eng., 2023, 11(5): 110472.
[106]
Zhang Z, Zhu J, Chen S, Sun W, Wang D. Angew. Chem., Int. Ed., 2023, 62: e202215136.
[107]
Li F W, Li Y C, Wang Z Y, Li J, Nam D H, Lum Y, Luo M C, Wang X, Ozden A, Hung S F, Chen B, Wang Y H, Wicks J, Xu Y, Li Y L, Gabardo C M, Dinh C T, Wang Y, Zhuang T T, Sinton D, Sargent E H. Nat. Catal., 2019, 3(1): 75.
[108]
Tao Z X, Rooney C L, Liang Y Y, Wang H L. J. Am. Chem. Soc., 2021, 143(47): 19630.
[109]
Chang X X, Malkani A, Yang X, Xu B J. J. Am. Chem. Soc., 2020, 142(6): 2975.
[110]
Ting L R L, García-Muelas R, Martín A J, Veenstra F L P, Chen S T-J, Peng Y, Per E Y X, Pablo-García S, López N, Pérez-Ramírez J, Yeo B S. Angew. Chem., Int. Ed., 2020, 132:21258.
[111]
Luo Y T, Xie K, Ou P F, Lavallais C, Peng T, Chen Z, Zhang Z Y, Wang N, Li X Y, Grigioni I, Liu B L, Sinton D, Dunn J B, Sargent E H. Nat. Catal., 2023, 6(10): 939.
[112]
Zhao Y L, Ding Y X, Li W L, Liu C, Li Y Z, Zhao Z Q, Shan Y, Li F, Sun L C, Li F S. Nat. Commun., 2023, 14: 4491.
[113]
Wu Y S, Jiang Z, Lin Z C, Liang Y Y, Wang H L. Nat. Sustain., 2021, 4(8): 725.
[114]
Jing H J, Long J, Li H, Fu X Y, Xiao J P. ACS Catal., 2023, 13(15): 9925.

Funding

New Energy Material Innovation Consortium Projects of Yunnan Province(202302AB080018)
PDF(49221 KB)

Accesses

Citation

Detail

Sections
Recommended

/