Application of Non-Precious Transition Metal Catalyst in Electrocatalytic Nitrogen Synthesis of Ammonia

Siyu Liu, Yike Wei, Yu Tan, Weiming Yuan, Kexin Liang, Shenghan Zhang

Prog Chem ›› 2024, Vol. 36 ›› Issue (8) : 1134-1144.

PDF(4014 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(4014 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (8) : 1134-1144. DOI: 10.7536/PC240124
Review

Application of Non-Precious Transition Metal Catalyst in Electrocatalytic Nitrogen Synthesis of Ammonia

Author information +
History +

Abstract

As an important chemical product and chemical raw material,ammonia is widely used in industry,agriculture,medicine and other industries,and plays an irreplaceable role in global economic development.At present,industrial ammonia synthesis mainly uses the traditional Haber-Bosch process,which consumes a lot of fossil energy and has a relatively low equilibrium conversion rate.Electrocatalytic nitrogen reduction of ammonia synthesis can convert N2and H2O into NH3at normal temperature and pressure,and it is easy to operate and easy to obtain raw materials,which has become an important research direction in the scientific research field.Among them,non-precious metal transition metal-based oxides,nitrides,sulfides,bimetal catalysts and heteroatom-based catalysts represented by transition metals in zone d showed good catalytic performance.This paper focuses on the recent progress of electrocatalytic ammonia production by transition metal-based electrocatalytic nitrogen reduction reaction(E-NRR),including its challenges,reaction mechanism,and different materials of E-NRR catalysts,and focuses on the structure-performance relationship.The strategies and prospects for improving the performance of E-NRR were introduced from the aspects of synthesis scheme,structure modification,activity,selective enhancement and reaction mechanism 。

Key words

electrocatalytic synthesis of ammonia / transition metals / nitrogen reduction reaction

Cite this article

Download Citations
Siyu Liu , Yike Wei , Yu Tan , et al . Application of Non-Precious Transition Metal Catalyst in Electrocatalytic Nitrogen Synthesis of Ammonia[J]. Progress in Chemistry. 2024, 36(8): 1134-1144 https://doi.org/10.7536/PC240124

References

[1]
Klerke A, Christensen C H, Nørskov J K, Vegge T. J. Mater. Chem., 2008, 18(20): 2304.
[2]
Lan R, Alkhazmi K A, Amar I A, Tao S W. Appl. Catal. B Environ., 2014, 152-153: 212.
[3]
Humphreys J, Lan R, Du D W, Xu W, Tao S W. Int. J. Hydrog. Energy, 2018, 43(37): 17726.
[4]
Amar I A, Petit C T G, Mann G, Lan R, Skabara P J, Tao S W. Int. J. Hydrog. Energy, 2014, 39(9): 4322.
[5]
Lan R, Alkhazmi K A, Amar I A, Tao S W. Electrochim. Acta, 2014, 123: 582.
[6]
Singh A R, Rohr B A, Statt M J, Schwalbe J A, Cargnello M, Norskov J K. ACS Catal., 2019, 9(9): 8316.
[7]
Lan R, Irvine J T S, Tao S W. Int. J. Hydrog. Energy, 2012, 37(2): 1482.
[8]
Klinsrisuk S, Irvine J T S. Catal. Today, 2017, 286: 41.
[9]
Li H W, Li T T, Qian J J, Mei Y, Zheng Y Q. Int. J. Hydrog. Energy, 2020, 45(29): 14640.
[10]
Xu H, Ithisuphalap K, Li Y, Mukherjee S, Lattimer J, Soloveichik G, Wu G. Nano Energy, 2020, 69: 104469.
[11]
Wang L. Petrol. Process. Petrochem., 2020, 51(2): 80.
(王铃. 石油炼制与化工, 2020, 51(2): 80.)
[12]
Milton R D, Abdellaoui S, Khadka N, Dean D R, Leech D, Seefeldt L C, Minteer S D. Energy Environ. Sci., 2016, 9(8): 2550.
[13]
Wang Q C, Lei Y P, Wang D S, Li Y D. Energy Environ. Sci., 2019, 12(6): 1730.
[14]
van der Ham C J M, Koper M T M, Hetterscheid D G H. Chem. Soc. Rev., 2014, 43(15): 5183.
[15]
Li L Q, Tang C, Yao D Z, Zheng Y, Qiao S Z. ACS Energy Lett., 2019, 4(9): 2111.
[16]
Deng J, Iniguez J A, Liu C. Joule, 2018, 2(5): 846.
[17]
Liu H Y, Wang H H, Xu J H. CIESC Journal, 2022, 73(01):32.
(刘恒源, 王海辉, 徐建鸿. 化工学报, 2022, 73(01): 32.)
[18]
Howalt J G, Bligaard T, Rossmeisl J, Vegge T. Phys. Chem. Chem. Phys., 2013, 15(20): 7785.
[19]
Ding T H, Wang M L, Wu F J, Song B, Lu K, Zhang H. ACS Appl. Energy Mater., 2024, DOI:10.1021/acsaem.3c02892.
[20]
Huang Y Y, Babu D D, Peng Z, Wang Y B. Adv. Sci., 2020, 7(4): 1902390.
[21]
Abghoui Y, Skúlason E. Catal. Today, 2017, 286: 69.
[22]
Kong Y C, Fan D H, Alain Puente Santiago R, Li X S, He T W. Appl. Surf. Sci., 2023, 612: 155839.
[23]
Ling C Y, Zhang Y H, Li Q, Bai X W, Shi L, Wang J L. J. Am. Chem. Soc., 2019, 141(45): 18264.
[24]
Chen Q L, Zhou Z H. University Chemistry, 2024, 2310133.
(陈全亮, 周朝晖. 大学化学, 2024, 2310133.)
[25]
Skúlason E, Bligaard T, Gudmundsdóttir S, Studt F, Rossmeisl J, Abild-Pedersen F, Vegge T, Jónsson H, Nørskov J K. Phys. Chem. Chem. Phys., 2012, 14(3): 1235.
[26]
Wang T, Liu Q, Li T S, Lu S Y, Chen G, Shi X F, Asiri A M, Luo Y L, Ma D W, Sun X P. J. Mater. Chem. A, 2021, 9(2): 884.
[27]
Tan H, Ji Q Q, Wang C, Duan H L, Kong Y, Wang Y, Feng S H, Lv L Y, Hu F C, Zhang W H, Chu W S, Sun Z H, Yan W S. Nano Res., 2022, 15(4): 3010.
[28]
Du Y Y, He Z F, Ma F W, Jiang Y C, Wan J F, Wu G, Liu Y F. Inorg. Chem., 2021, 60(6): 4116.
[29]
Zhang S B, Shi T F, Li K, Sun Q, Lin Y, Zheng L R, Wang G Z, Zhang Y X, Yin H J, Zhang H M. J. Phys. Chem. C, 2022, 126(2): 965.
[30]
Chu K, Nan H F, Li Q Q, Guo Y L, Tian Y, Liu W M. J. Energy Chem., 2021, 53: 132.
[31]
Liu B P, Ma C Q, Liu D, Yan S H. ChemElectroChem, 2021, 8(16): 3030.
[32]
Wu W Z, Niu C Y, Yan P F, Shi F, Ma C Y, Yang X N, Jia Y, Chen J, Ahmed M I, Zhao C, Xu Q. Appl. Catal. B Environ., 2021, 298: 120615.
[33]
Liao W R, Xie K, Liu L J, Wang X Y, Luo Y, Liang S J, Liu F J, Jiang L L. J. Energy Chem., 2021, 62: 359.
[34]
Li Y J, Ma L Y, Fu Y X, Zhang C, Shi Y F, Xu Y H, Li J H. J. Electroanal. Chem., 2022, 905: 115981.
[35]
Zhang H, Song B, Zhang W W, Cheng Y W, Chen Q W, Lu K. Chem. Sci., 2022, 13(33): 9498.
[36]
Yang M L, Jin Z X, Wang C L, Cao X X, Wang X M, Ma H Y, Pang H J, Tan L C, Yang G X. ACS Appl. Mater. Interfaces, 2021, 13(46): 55040.
[37]
Du C F, Yang L, Tang K W, Fang W, Zhao X Y, Liang Q H, Liu X H, Yu H, Qi W H, Yan Q Y. Mater. Chem. Front., 2021, 5(5): 2338.
[38]
Fan G L, Xu W C, Li J H, Chen J L, Yu M, Ni Y X, Zhu S L, Su X C, Cheng F Y. Adv. Mater., 2021, 33(42): 2101126.
[39]
Murmu S, Paul S, Kapse S, Thapa R, Chattopadhyay S, Abharana N, Jha S N, Bhattacharyya D, Ghorai U K. J. Mater. Chem. A, 2021, 9(25): 14477.
[40]
Li G Z, Pan Z F, Lin H, An L. J. Alloys Compd., 2021, 875: 160006.
[41]
Lu J W, Han Y, Yao L, Yu Y M, Ma J, Yang T, Hu J, Huang H. J. Alloys Compd., 2023, 948: 169547.
[42]
Ghorai U K, Paul S, Ghorai B, Adalder A, Kapse S, Thapa R, Nagendra A, Gain A. ACS Nano, 2021, 15(3): 5230.
[43]
He C, Wu Z Y, Zhao L, Ming M, Zhang Y, Yi Y P, Hu J S. ACS Catal., 2019, 9(8): 7311.
[44]
Li C, Xu R Z, Ma S X, Xie Y H, Qu K G, Bao H F, Cai W W, Yang Z H. Chem. Eng. J., 2021, 415: 129018.
[45]
Wang C L, Yang M L, Wang X M, Ma H Y, Tian Y, Pang H J, Tan L C, Gao K Q. J. Colloid Interface Sci., 2022, 609: 815.
[46]
Li W Y, Ye Y X, Zhang S B, Liang C H, Zhang H M. Inorg. Chem. Front., 2021, 8(17): 4026.
[47]
Zhang Y Z, Hu J, Zhang C X, Qi Q L, Luo S X, Chen K D, Liu L F, Leung M K H. J. Mater. Chem. A, 2021, 9(8): 5060.
[48]
Ren J T, Chen L, Liu Y P, Yuan Z Y. J. Mater. Chem. A, 2021, 9(18): 11370.
[49]
Wen L L, Li X Y, Zhang R, Liang H W, Zhang Q T, Su C L, Zeng Y J. ACS Appl. Mater. Interfaces, 2021, 13(12): 14181.
[50]
Huang S S, Gao C Y, Xin P J, Wang H T, Liu X, Wu Y, He Q Q, Jiang Y, Hu Z J, Chen Z W. Sustain. Energy Fuels, 2021, 5(10): 2640.
[51]
Wang Y Z, Li H E, Wang D, Deng S L, Xi Y K, Guo Y Y, Zhou J S, Hao X F, Li Z P, Gao F M. Int. J. Hydrog. Energy, 2021, 46(27): 14351.
[52]
Zhang L, Jiao S L, Tan X, Yuan Y L, Xiang Y, Zeng Y J, Qiu J Y, Peng P, Smith S C, Huang H W. Nano Res., 2021, 14(5): 1457.
[53]
Zhao M Z, Guo C Y, Gao L F, Kuang X, Yang H, Ma X J, Liu C Q, Liu X J, Sun X, Wei Q. Inorg. Chem. Front., 2021, 8(13): 3266.
[54]
Wang Y H, Dong J H, Tan Z Q, Wang X F, Song X Z. J. Mater. Chem. A, 2023, 11(21): 11048.
[55]
Ma B Y, Zhao H T, Li T S, Liu Q, Luo Y S, Li C B, Lu S Y, Asiri A M, Ma D W, Sun X P. Nano Res., 2021, 14(3): 555.
[56]
Han X Q, Lang Z L, Zhang F Y, Xu H L, Su Z M. Appl. Surf. Sci., 2022, 579: 152214.
[57]
Wang Y, Zhang Y N, Gao Y, Wang D B. J. Colloid Interface Sci., 2023, 646: 176.
[58]
Guo Y L, Cheng Y H, Li Q Q, Chu K. J. Energy Chem., 2021, 56: 259.
[59]
Chu K, Gu W C, Li Q Q, Liu Y P, Tian Y, Liu W M. J. Energy Chem., 2021, 53: 82.
[60]
Lv X W, Liu X L, Gao L J, Liu Y P, Yuan Z Y. J. Mater. Chem. A, 2021, 9(7): 4026.
[61]
Li J D, Zheng M, Wei F, Dong C C, Xiu Z Y, Mu W, Zhou X, Ding Y N, Han X J. Chem. Eng. J., 2022, 431: 133383.
[62]
Liu Y Q, Huang L, Fang Y X, Zhu X Y, Dong S J. Nano Res., 2021, 14(8): 2711.
[63]
Ying H, Chen T T, Zhang C Y, Bi J H, Li Z H, Hao J C. J. Colloid Interface Sci., 2021, 602: 64.
[64]
He X J, Guo H R, Zhang X L, Liao T H, Zhu Y J, Tang H, Li T S, Chen J S. Int. J. Hydrog. Energy, 2021, 46(47): 24128.
[65]
Kafle A, Gupta D, Bordoloi A, Nagaiah T C. Nanoscale, 2022, 14(44): 16590.
[66]
Zhang Q K, Liu B L, Yu L P, Bei Y L, Tang B. ChemCatChem, 2020, 12(1): 334.
[67]
Wang C, Gu L L, Qiu S Y, Gao J, Zhang Y C, Wang K X, Zou J J, Zuo P J, Zhu X D. Appl. Catal. B Environ., 2021, 297: 120452.
[68]
Li T S, Xia J J, Xian H H, Chen Q R, Xu K, Gu Y, Luo Y L, Liu Q, Guo H R, Traversa E. Int. J. Hydrog. Energy, 2022, 47(6): 3550.
[69]
Song G X, Gao R, Zhao Z, Zhang Y J, Tan H Q, Li H B, Wang D D, Sun Z C, Feng M. Appl. Catal. B Environ., 2022, 301: 120809.
[70]
Yu S Q, Wang Q, Wang J W, Xiang Y, Niu X B, Li T S. Int. J. Hydrog. Energy, 2021, 46(27): 14331.
[71]
Zhao M Z, Guo C Y, Gao L F, Yang H, Liu C Q, Kuang X, Sun X, Wei Q. ChemCatChem, 2021, 13(23): 4990.
[72]
Xia J J, Guo H R, Cheng M Z, Chen C Y, Wang M K, Xiang Y, Li T S, Traversa E. J. Mater. Chem. A, 2021, 9(4): 2145.
[73]
Dong C C, Wei F, Li J D, Lu Q, Han X J. Mater. Today Energy, 2021, 22: 100884.
[74]
Li T S, Xia J J, Chen Q R, Xu K, Gu Y, Liu Q, Luo Y L, Guo H R, Traversa E. ACS Appl. Mater. Interfaces, 2021, 13(34): 40724.
[75]
Chen H J, Liang J, Li L, Zheng B Z, Feng Z S, Xu Z Q, Luo Y L, Liu Q, Shi X F, Liu Y, Gao S Y, Asiri A M, Wang Y, Kong Q Q, Sun X P. ACS Appl. Mater. Interfaces, 2021, 13(35): 41715.
[76]
Dong Y Y, Wang T, Hu S, Tang Y, Hu X T, Ye Y Y, Li H, Cao D. ACS Appl. Nano Mater., 2021, 4(10): 10370.
[77]
Cao N, Wei Z X, Xu J, Luo J, Guan A X, Al-Enizi A M, Ma J M, Zheng G F. J. Colloid Interface Sci., 2021, 588: 242.
[78]
Sun Y T, Ding S, Zhang C, Duan J J, Chen S. J. Mater. Chem. A, 2021, 9(3): 1603.
[79]
Lv X W, Liu Y P, Wang Y S, Liu X L, Yuan Z Y. Appl. Catal. B Environ., 2021, 280: 119434.
[80]
Tan J B, He X B, Yin F X, Liang X, Li G R. Int. J. Hydrog. Energy, 2021, 46(62): 31647.
[81]
Jiang T Y, Li L X, Li L H, Liu Y H, Zhang D X, Zhang D Q, Li H T, Mao B D, Shi W D. Chem. Eng. J., 2021, 426: 130650.
[82]
Liu P X, Jing P, Xu X, Liu B C, Zhang J. ACS Appl. Energy Mater., 2021, 4(11): 12128.
[83]
Liang X Y, Ren X F, Yang Q Y, Gao L G, Gao M F, Yang Y N, Zhu H D, Li G X, Ma T L, Liu A M. Nanoscale, 2021, 13(5): 2843.
[84]
Ye K, He Z Y, Wu F X, Wang Y M, Wang L, Cheng Y, Zhou Y H. Int. J. Hydrog. Energy, 2021, 46(71): 35319.
[85]
Cui Y H, Dong A Q, Qu Y B, Zhang J Y, Zhao M, Wang Z L, Jiang Q. Chem. Eng. J., 2021, 426: 131843.
[86]
He H Y, Ji L L, Wei Y J, Lv C, Wang T, Wang S, Chen Z F. J. Colloid Interface Sci., 2022, 608: 1489.
[87]
Kim H S, Choi J, Kong J M, Kim H, Yoo S J, Park H S. ACS Catal., 2021, 11(1): 435.
[88]
Wang J, Li G K, Wei T, Zhou S Z, Ji X Q, Liu X E. Nanoscale, 2021, 13(5): 3036.
PDF(4014 KB)

Accesses

Citation

Detail

Sections
Recommended

/