Effect of Synthesis Conditions on The Properties of Cathode Materials for Lithium-Ion Batteries

Hang Li, Li Wang, Youzhi Song, Zhiguo Zhang, Aimin Du, Xiangming He

Prog Chem ›› 2024, Vol. 36 ›› Issue (9) : 1304-1315.

PDF(27072 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(27072 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (9) : 1304-1315. DOI: 10.7536/PC240203
Review

Effect of Synthesis Conditions on The Properties of Cathode Materials for Lithium-Ion Batteries

Author information +
History +

Abstract

Layered transition metal oxides(LiTMO2)are candidate cathode materials for high-energy-density lithium-ion batteries,primarily owing to their high theoretical specific capacity.Nevertheless,the persistent challenge of chemical-mechanical failure during charge-discharge cycling has impeded its progressive development.In numerous prior investigations,researchers have diligently explored the cycling failure of this material family,presenting a spectrum of modification strategies aimed at addressing this issue including doping,coating,surface or grain boundary modification.Given the impact of lattice defects and heterogeneous structures introduced throughout the synthesis process cannot be overlooked,a comprehensive comprehension of the influence exerted by various controlling factors on the structural formation of materials is imperative.This review aims to elucidate the ramifications of control factors,including precursor,lithium salt,sintering temperature,holding time,and sintering atmosphere,on the material structure during the synthesis process.The objective is to provide the battery community with valuable insights on strategies to synthesize high-performance LiTMO2materials 。

Contents

1 Introduction

2 Structural characteristics of high-performance LiTMO2

3 Reduction of inherent defects formed in the synthesis process

3.1 Effect of precursors on the inherent defects in LiTMO2

3.2 Effect of lithium salt species on the structure of LiTMO2

3.3 Effect of sintering regime on the structure of LiTMO2

3.4 Effect of sintering atmosphere and oxygen partial pressure on the structure of LiTMO2

3.5 Water-washing process

4 Conclusion and outlook

Key words

lithium-ion batteries / layered transition metal oxides cathode materials / synthesis / structure / performances

Cite this article

Download Citations
Hang Li , Li Wang , Youzhi Song , et al . Effect of Synthesis Conditions on The Properties of Cathode Materials for Lithium-Ion Batteries[J]. Progress in Chemistry. 2024, 36(9): 1304-1315 https://doi.org/10.7536/PC240203

References

[1]
Li W D, Erickson E M, Manthiram A. Nat. Energy, 2020, 5(1): 26.
[2]
Sharma S S, Manthiram A. Energy Environ. Sci., 2020, 13(11): 4087.
[3]
Tarascon J M, Armand M. Nature, 2001, 414(6861): 359.
[4]
Blomgren G E. J. Electrochem. Soc., 2016, 164(1): A5019.
[5]
Shi J L, Xiao D D, Ge M Y, Yu X Q, Chu Y, Huang X J, Zhang X D, Yin Y X, Yang X Q, Guo Y G, Gu L, Wan L J. Adv. Mater., 2018, 30(9): 1705575.
[6]
Liu L H, Li M C, Chu L H, Jiang B, Lin R X, Zhu X P, Cao G Z. Prog. Mater. Sci., 2020, 111: 100655.
[7]
Myung S T, Maglia F, Park K J, Yoon C S, Lamp P, Kim S J, Sun Y K. ACS Energy Lett., 2017, 2(1): 196.
[8]
Li W D, Asl H Y, Xie Q, Manthiram A. J. Am. Chem. Soc., 2019, 141(13): 5097.
[9]
Liu W, Li X F, Xiong D B, Hao Y C, Li J W, Kou H R, Yan B, Li D J, Lu S G, Koo A, Adair K, Sun X L. Nano Energy, 2018, 44: 111.
[10]
Maleki Kheimeh Sari H, Li X F. Adv. Energy Mater., 2019, 9(39): 1970151.
[11]
Xu C, Märker K, Lee J H, Mahadevegowda A, Reeves P J, Day S J, Groh M F, Emge S P, Ducati C, Layla Mehdi B, Tang C C, Grey C P. Nat. Mater., 2021, 20(1): 84.
[12]
Kim J, Ma H, Cha H, Lee H, Sung J, Seo M, Oh P, Park M, Cho J. Energy Environ. Sci., 2018, 11(6): 1449.
[13]
Zhang H L, Liu H, Piper L F J, Whittingham M S, Zhou G W. Chem. Rev., 2022, 122(6): 5641.
[14]
Hu Q, Wu Y Z, Ren D S, Liao J Y, Song Y Z, Liang H M, Wang A P, He Y F, Wang L, Chen Z H, He X M. Energy Storage Mater., 2022, 50: 373.
[15]
Li H, Wang L, Song Y Z, Wu Y Q, Zhang H, Du A M, He X M. Small, 2023, 19(32): 2302208.
[16]
Zhao J Q, Zhang W, Huq A, Misture S T, Zhang B L, Guo S M, Wu L J, Zhu Y M, Chen Z H, Amine K, Pan F, Bai J M, Wang F. Adv. Energy Mater., 2017, 7(3): 1601266.
[17]
Wang D W, Kou R H, Ren Y, Sun C J, Zhao H, Zhang M J, Li Y, Huq A, Peter Ko J Y, Pan F, Sun Y K, Yang Y, Amine K, Bai J M, Chen Z H, Wang F. Adv. Mater., 2017, 29(39): 1606715.
[18]
Zhang M J, Teng G F, Chen-Wiegart Y C K, Duan Y D, Ko J Y P, Zheng J X, Thieme J, Dooryhee E, Chen Z H, Bai J M, Amine K, Pan F, Wang F. J. Am. Chem. Soc., 2018, 140(39): 12484.
[19]
Menon A S, Khalil S, Ojwang D O, Edström K, Gomez C P, Brant W R. Dalton Trans., 2022, 51(11): 4435.
[20]
Huang B, Cheng L, Li X Z, Zhao Z W, Yang J W, Li Y W, Pang Y Y, Cao G Z. Small, 2022, 18(20): 2107697.
[21]
Park H, Park H, Song K, Song S H, Kang S, Ko K H, Eum D, Jeon Y, Kim J, Seong W M, Kim H, Park J, Kang K. Nat. Chem., 2022, 14(6): 614.
[22]
Jo S, Han J, Seo S, Kwon O S, Choi S, Zhang J, Hyun H, Oh J, Kim J, Chung J, Kim H, Wang J, Bae J, Moon J, Park Y C, Hong M H, Kim M, Liu Y J, Sohn I, Jung K, Lim J. Adv. Mater., 2023, 35(10): 2370067.
[23]
Hua W B, Chen M Z, Schwarz B, Knapp M, Bruns M, Barthel J, Yang X S, Sigel F, Azmi R, Senyshyn A, Missiul A, Simonelli L, Etter M, Wang S N, Mu X K, Fiedler A, Binder J R, Guo X D, Chou S L, Zhong B H, Indris S, Ehrenberg H. Adv. Energy Mater., 2019, 9(8): 1970022.
[24]
Huang Z Y, Chu M H, Wang R, Zhu W M, Zhao W G, Wang C Q, Zhang Y J, He L H, Chen J, Deng S H, Mei L W, Kan W H, Avdeev M, Pan F, Xiao Y G. Nano Energy, 2020, 78: 105194.
[25]
Wang F, Zhang Y, Zou J Z, Liu W J, Chen Y P. J. Alloys Compd., 2013, 558: 172.
[26]
Shi P R, Qu G X, Cai S K, Kang Y J, Fa T, Xu C. J. Am. Ceram. Soc., 2018, 101(9): 4076.
[27]
Li J Y, Manthiram A. Adv. Energy Mater., 2019, 9(45): 1970179.
[28]
Wang J L, Liu C J, Xu G L, Miao C, Wen M Y, Xu M B, Wang C J, Xiao W. Chem. Eng. J., 2022, 438: 135537.
[29]
Zheng F H, Yang C H, Xiong X H, Xiong J W, Hu R Z, Chen Y, Liu M L. Angew. Chem. Int. Ed., 2015, 54(44): 13058.
[30]
Schipper F, Bouzaglo H, Dixit M, Erickson E M, Weigel T, Talianker M, Grinblat J, Burstein L, Schmidt M, Lampert J, Erk C, Markovsky B, Major D T, Aurbach D. Adv. Energy Mater., 2018, 8(4): 1701682.
[31]
Cho J H, Park J H, Lee M H, Song H K, Lee S Y. Energy Environ. Sci., 2012, 5(5): 7124.
[32]
Qing R P, Shi J L, Xiao D D, Zhang X D, Yin Y X, Zhai Y B, Gu L, Guo Y G. Adv. Energy Mater., 2016, 6(6): 1670035.
[33]
Wang L L, Ma J, Wang C, Yu X R, Liu R, Jiang F, Sun X W, Du A B, Zhou X H, Cui G L. Adv. Sci., 2019, 6(12): 1900355.
[34]
Zhao S Q, Guo Z Q, Yan K, Wan S W, He F R, Sun B, Wang G X. Energy Storage Mater., 2021, 34: 716.
[35]
Csernica P M, Kalirai S S, Gent W E, Lim K, Yu Y S, Liu Y Z, Ahn S J, Kaeli E, Xu X, Stone K H, Marshall A F, Sinclair R, Shapiro D A, Toney M F, Chueh W C. Nat. Energy, 2021, 6(6): 642.
[36]
Sathiya M, Abakumov A M, Foix D, Rousse G, Ramesha K, Saubanère M, Doublet M, Vezin H, Laisa C P, Prakash A S, Gonbeau D, VanTendeloo G, Tarascon J M. Nat. Mater., 2015, 14(2): 230.
[37]
Wang C Y, Wang X L, Zhang R, Lei T J, Kisslinger K, Xin H L. Nat. Mater., 2023, 22(2): 235.
[38]
Delmas C, Fouassier C, Hagenmuller P. Phys. B+C, 1980, 99(1-4): 81.
[39]
Bi Y J, Tao J H, Wu Y Q, Li L Z, Xu Y B, Hu E Y, Wu B B, Hu J T, Wang C M, Zhang J G, Qi Y, Xiao J. Science, 2020, 370(6522): 1313.
[40]
Jung C H, Kim D H, Eum D, Kim K H, Choi J, Lee J, Kim H H, Kang K, Hong S H. Adv. Funct. Mater., 2021, 31(18): 2010095.
[41]
Wei H X, Tang L B, Huang Y D, Wang Z Y, Luo Y H, He Z J, Yan C, Mao J, Dai K H, Zheng J C. Mater. Today, 2021, 51: 365.
[42]
Luo Y H, Pan Q L, Wei H X, Huang Y D, Tang L B, Wang Z Y, He Z J, Yan C, Mao J, Dai K H, Zhang X H, Zheng J C. Nano Energy, 2022, 102: 107626.
[43]
Xiao P, Li W H, Chen S, Li G, Dai Z J, Feng M D, Chen X, Yang W S. ACS Appl. Mater. Interfaces, 2022, 14(28): 31851.
[44]
Duan Y D, Yang L Y, Zhang M J, Chen Z H, Bai J M, Amine K, Pan F, Wang F. J. Mater. Chem. A, 2019, 7(2): 513.
[45]
Pokle A, Weber D, Bianchini M, Janek J, Volz K. Small, 2023, 19(4): 2205508.
[46]
Ahmed S, Pokle A, Schweidler S, Beyer A, Bianchini M, Walther F, Mazilkin A, Hartmann P, Brezesinski T, Janek J, Volz K. ACS Nano, 2019, 13(9): 10694.
[47]
Song S H, Kim H S, Kim K S, Hong S, Jeon H, Lim J, Jung Y H, Ahn H, Jang J D, Kim M H, Seo J H, Kwon J H, Kim D, Lee Y J, Han Y S, Park K Y, Kim C, Yu S H, Park H, Jin H M, Kim H. Adv. Funct. Mater., 2024, 34(3): 2306654.
[48]
Yao L, Li Y P, Gao X P, Cai M L, Jin J, Yang J H, Xiu T P, Song Z, Badding M E, Wen Z Y. Energy Storage Mater., 2021, 36: 179.
[49]
Shi Y, Zhang M H, Fang C C, Meng Y S. J. Power Sources, 2018, 394: 114.
[50]
He P, Zhang M L, Wu J, Li Y J, Wang Y, Yan Y X, Zhang D Y, Sun X F. J. Alloys Compd., 2023, 967: 171822.
[51]
Xiao X, Wang L, Li J T, Zhang B, Hu Q, Liu J L, Wu Y Q, Gao J H, Chen Y B, Song S L, Zhang X Q, Chen Z H, He X M. Nano Energy, 2023, 113: 108528.
[52]
Yoon M, Dong Y H, Huang Y M, Wang B M, Kim J, Park J S, Hwang J, Park J, Kang S J, Cho J, Li J. Nat. Energy, 2023, 8(5): 482.
[53]
Zhao J Q, Wang H, Xie Z Q, Ellis S, Kuai X X, Guo J, Zhu X, Wang Y, Gao L J. J. Power Sources, 2016, 333: 43.
[54]
Huang H, Zhu H J, Gao J, Wang J T, Shao M H, Zhou W D. Angew. Chem. Int. Ed., 2024, 63(2): 2314457.
[55]
Hua W B, Wang K, Knapp M, Schwarz B, Wang S N, Liu H, Lai J, Müller M, Schökel A, Missyul A, Ferreira Sanchez D, Guo X D, Binder J R, Xiong J, Indris S, Ehrenberg H. Chem. Mater., 2020, 32(12): 4984.
[56]
Zhu W, Zhang J C, Luo J W, Zeng C H, Su H, Zhang J F, Liu R, Hu E Y, Liu Y S, Liu W D, Chen Y N, Hu W B, Xu Y H. Adv. Mater., 2023, 35(2): 2208974.
[57]
Lee S W, Kim H, Kim M S, Youn H C, Kang K, Cho B W, Roh K C, Kim K B. J. Power Sources, 2016, 315: 261.
[58]
Shim J H, Kim C Y, Cho S W, Missiul A, Kim J K, Ahn Y J, Lee S H. Electrochim. Acta, 2014, 138: 15.
[59]
Idris M S, West A R. J. Electrochem. Soc., 2012, 159(4): A396.
[60]
Qiu L, Song Y, Zhang M K, Liu Y H, Yang Z W, Wu Z G, Zhang H, Xiang W, Liu Y X, Wang G K, Sun Y, Zhang J, Zhang B, Guo X D. Adv. Energy Mater., 2022, 12(19): 2200022.
[61]
Wolfman M, Wang X P, Garcia J C, Barai P, Stubbs J E, Eng P J, Kahvecioglu O, Kinnibrugh T L, Madsen K E, Iddir H, Srinivasan V, Fister T T. Adv. Energy Mater., 2022, 12(16): 2102951.
[62]
Ju P, Ben L B, Li Y, Yu H L, Zhao W W, Chen Y Y, Zhu Y M, Huang X J. ACS Energy Lett., 2023, 8(9): 3800.
[63]
Xiong X H, Wang Z X, Yue P, Guo H J, Wu F X, Wang J X, Li X H. J. Power Sources, 2013, 222: 318.
[64]
Lee W, Lee S, Lee E, Choi M, Thangavel R, Lee Y, Yoon W S. Energy Storage Mater., 2022, 44: 441.
[65]
Huang X, Duan J, He J, Shi H, Li Y, Zhang Y, Wang D, Dong P, Zhang Y. Mater. Today Energy, 2020, 17: 100440.
[66]
Xu S, Du C Y, Xu X, Han G K, Zuo P J, Cheng X Q, Ma Y L, Yin G P. Electrochim. Acta, 2017, 248: 534.
[67]
Cai J Y, Yang Z Z, Zhou X W, Wang B N, Suzana A, Bai J M, Liao C, Liu Y Z, Chen Y B, Song S L, Zhang X Q, Wang L, He X M, Meng X B, Karami N, Ali Shaik Sulaiman B, Chernova N A, Upreti S, Prevel B, Wang F, Chen Z H. J. Energy Chem., 2023, 85: 126.
[68]
Sheng H, Meng X H, Xiao D D, Fan M, Chen W P, Wan J, Tang J L, Zou Y G, Wang F Y, Wen R, Shi J L, Guo Y G. Adv. Mater., 2022, 34(12): 2108947.

Funding

National Natural Science Foundation of China(22279070)
National Natural Science Foundation of China(U21A20170)
National Natural Science Foundation of China(22279071)
National Natural Science Foundation of China(52206263)
Ministry of Science and Technology of China(2019YFA0705703)
PDF(27072 KB)

Accesses

Citation

Detail

Sections
Recommended

/