Dissolved Aluminum Measurement Methods and Their Application in Atmospheric Aerosol Research

Tianyu Zhang, Zhenming Zhu, Fu Wang, Lanxiadi Chen, Rui Li, Mingjin Tang

Prog Chem ›› 2024, Vol. 36 ›› Issue (9) : 1401-1411.

PDF(11206 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(11206 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (9) : 1401-1411. DOI: 10.7536/PC240205
Review

Dissolved Aluminum Measurement Methods and Their Application in Atmospheric Aerosol Research

Author information +
History +

Abstract

Atmospheric deposition of desert dust aerosol is a major source of key nutrients for surface seawater In open oceans,significantly impacting marine biogeochemistry and primary productivity.As a tracer for desert dust aerosol,aluminum(Al)is widely used to estimate deposition fluxes of desert dust aerosol into the oceans,and dissolved Al concentrations in surface seawater and aerosol particles are key parameters for using this method to estimate desert dust deposition fluxes into the oceans.in this paper,we first review separation,extraction and detection methods used to measure dissolved Al in seawater and aerosol samples,and discuss their principles,advantages,limitations and applicability.After advances in aerosol Al solubility are systematically reviewed,we point out that the uncertainties in aerosol Al solubility are the bottleneck which currently limits accurate estimations of desert dust deposition fluxes into the oceans,and further analyze the sources of these uncertainties.in the final,we also outline research directions for dissolved Al analysis and aerosol Al solubility research。

Contents

1 Introduction

2 Pretreatment methods for dissolved aluminum

2.1 Filtration

2.2 Separation and preconcentration methods for seawater samples

2.3 Extraction methods for soil and aerosol samples

3 Detection methods for dissolved aluminum

3.1 UV-Visible spectrophotometry

3.2 Fluorescence spectrophotometry

3.3 Atomic spectrometry

3.4 Inductively coupled plasma mass spectrometry

4 Research progress of aerosol aluminum solubility

5 Conclusion and outlook

Key words

dissolved aluminum / surface seawater / atmospheric aerosol / separation and extraction / detection methods

Cite this article

Download Citations
Tianyu Zhang , Zhenming Zhu , Fu Wang , et al . Dissolved Aluminum Measurement Methods and Their Application in Atmospheric Aerosol Research[J]. Progress in Chemistry. 2024, 36(9): 1401-1411 https://doi.org/10.7536/PC240205

References

[1]
Hans Wedepohl K. Geochim. Cosmochim. Acta, 1995, 59(7): 1217.
[2]
Stimmler P, Obst M, Stein M, Goeckede M, Hockmann K, Schaller J. Chemosphere, 2023, 335: 139087.
[3]
Chandra J, Keshavkant S. Chemosphere, 2021, 278: 130384.
[4]
Chauhan D K, Yadav V, Vaculík M, Gassmann W, Pike S, Arif N, Singh V P, Deshmukh R, Sahi S, Tripathi D K. Crit. Rev. Biotechnol., 2021, 41(5): 715.
[5]
Tyagi W, Yumnam J S, Sen D, Rai M. Sci. Rep., 2020, 10: 4580.
[6]
Lin Q W, Ma J M, Peng X, Sun J, Liu B Y, Wu Z B. Ecol. Environ. Sci., 2019, 28(9): 1915 (in Chinese).
蔺庆伟, 马剑敏, 彭雪, 孙健, 刘碧云, 吴振斌. 生态环境学报, 2019, 28(9): 1915.
[7]
Napolitano G, Capriello T, Venditti P, Fasciolo G, La Pietra A, Trifuoggi M, Giarra A, Agnisola C, Ferrandino I. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol., 2023, 271: 109633.
[8]
Zhou L B, Tan Y H, Huang L M, Fortin C, Campbell P G C. Biogeochemistry, 2018, 139(2): 123.
[9]
Jickells T D, Baker A R, Chance R. Phil. Trans. R. Soc. A., 2016, 374(2081): 20150286.
[10]
Duce R A, Liss P S, Merrill J T, Atlas E L, Buat-Menard P, Hicks B B, Miller J M, Prospero J M, Arimoto R, Church T M, Ellis W, Galloway J N, Hansen L, Jickells T D, Knap A H, Reinhardt K H, Schneider B, Soudine A, Tokos J J, Tsunogai S, Wollast R, Zhou M. Glob. Biogeochem. Cycles, 1991, 5(3): 193.
[11]
Measures C I, Brown E T, The Impact of Desert Dust Across the Mediterranean, Dordrecht: Springer Netherlands, 1996. 301.
[12]
Measures C I, Vink S. Glob. Biogeochem. Cycles, 2000, 14(1): 317.
[13]
Singh N D, Chinni V, Singh S K. Geochim. Cosmochim. Acta, 2020, 268: 160.
[14]
Maring H B, Duce R A. Earth Planet. Sci. Lett., 1987, 84(4): 381.
[15]
Zhang H H, Li R, Huang C P, Li X F, Dong S W, Wang F, Li T T, Chen Y Z, Zhang G H, Ren Y, Chen Q C, Huang R J, Chen S Y, Xue T, Wang X M, Tang M J. Atmos. Chem. Phys., 2023, 23(6): 3543.
[16]
Zhang R, Cao J J, Tang Y R, Arimoto R, Shen Z X, Wu F, Han Y M, Wang G H, Zhang J Q, Li G H. Sci. Total Environ., 2014, 472: 1121.
[17]
Baker A R, Jickells T D, Witt M, Linge K L. Mar. Chem., 2006, 98(1): 43.
[18]
Menzel Barraqueta J L, Samanta S, Achterberg E P, Bowie A R, Croot P, Cloete R, De Jongh T, Gelado-Caballero M D, Klar J K, Middag R, Loock J C, Remenyi T A, Wenzel B, Roychoudhury A N. Front. Mar. Sci., 2020, 7: 468.
[19]
Xu H R, Weber T. Glob. Biogeochem. Cycles, 2021, 35(9): e2021GB007049.
[20]
Gehlen M, Heinze C, Maier-Reimer E, Measures C I. Glob. Biogeochem. Cycles, 2003, 17(1): 1028.
[21]
Morton P L, Landing W M, Hsu S C, Milne A, Aguilar-Islas A M, Baker A R, Bowie A R, Buck C S, Gao Y, Gichuki S, Hastings M G, Hatta M, Johansen A M, Losno R, Mead C, Patey M D, Swarr G, Vandermark A, Zamora L M. Limnol. Oceanogr. Meth., 2013, 11(2): 62.
[22]
Sohrin Y, Urushihara S, Nakatsuka S, Kono T, Higo E, Minami T, Norisuye K, Umetani S. Anal. Chem., 2008, 80(16): 6267.
[23]
Zhang H H, Li R, Dong S W, Wang F, Zhu Y J, Meng H, Huang C P, Ren Y, Wang X F, Hu X D, Li T T, Peng C, Zhang G H, Xue L K, Wang X M, Tang M J. J. Geophys. Res. Atmos., 2022, 127(1): e2021jd036070.
[24]
Resing J A, Measures C I. Anal. Chem., 1994, 66(22): 4105.
[25]
Dierssen H, Balzer W, Landing W M. Mar. Chem., 2001, 73(3-4): 173.
[26]
Brown M T, Bruland K W, Limnol. Oceanogr.: Methods, 2008, 6(1): 87.
[27]
Sohrin Y, Bruland K W. Trac Trends Anal. Chem., 2011, 30(8): 1291.
[28]
Wang B S, Lee C P, Ho T Y. Talanta, 2014, 128: 337.
[29]
Zhang J, Xu H, Ren J L. Anal. Chim. Acta, 2000, 405(1-2): 31.
[30]
Rezaee M, Yamini Y, Khanchi A, Faraji M, Saleh A. J. Hazard. Mater., 2010, 178(1-3): 766.
[31]
Suárez R, Horstkotte B, Duarte C M, Cerdà V. Anal. Chem., 2012, 84(21): 9462.
[32]
Mandal S, Lahiri S. Microchem. J., 2022, 175: 107150.
[33]
Almeida Bezerra M, Ferreira da Mata Cerqueira U M, Ferreira S L C, Novaes C G, Novais F C, Valasques G S, Novaes da Silva B. Appl. Spectrosc. Rev., 2022, 57(4): 338.
[34]
Sang H B, Liang P, Du D. J. Hazard. Mater., 2008, 1541-3: 1127.
[35]
Ulusoy H İ, Gürkan R, Aksoy Ü, Akçay M. Microchem. J., 2011, 99(1): 76.
[36]
Şatıroğlu N, Tokgöz İ, Int. J. Environ. Anal. Chem., 2010, 90(7): 560.
[37]
Tabrizi A B. Food Chem., 2007, 100(4): 1698.
[38]
Santarossa D G, Talio M C, Fernández L P. Microchem. J., 2016, 129: 274.
[39]
Sombra L L, Luconi M O, Fernández L P, Olsina R A, Silva M F, Martı́nez L D. J. Pharm. Biomed. Anal., 2003, 30(5): 1451.
[40]
Al-Kindy S M Z, Suliman F O, Salama S B. Microchem. J., 2003, 74(2): 173.
[41]
Lu J S, Tian J Y, Guo N, Wang Y, Pan Y C. J. Hazard. Mater., 2011, 185(2-3): 1107.
[42]
Sun M, Liu G J, Wu Q H, Environmental Chemistry, 2013, 32(6): 1016.
(孙梅, 刘桂建, 吴强华, 环境化学, 2013, 32(06): 1016.).
[43]
Remenyi T A, Nesterenko P N, Bowie A R, Butler E C V, Haddad P R. Anal. Methods, 2011, 3(11): 2488.
[44]
Remenyi T, Nesterenko P, Bowie A, Butler E, Haddad P. Limnol. Oceanogr. Meth., 2012, 10(11): 832.
[45]
Zioła-Frankowska A, Kuta J, Frankowski M. Heliyon, 2015, 1(2): e00035.
[46]
Tessier A, Campbell P G C, Bisson M. Anal. Chem., 1979, 51(7): 844.
[47]
Ure A M, Quevauviller P, Muntau H, Griepink B. Int. J. Environ. Anal. Chem., 1993, 51(1-4): 135.
[48]
Fang H D, Chen J F, Duan J M, Chen J S, Lin Q J, Chen S H. Ecol. Environ. Sci., 2015, 24(11): 1872.
(方宏达, 陈锦芳, 段金明, 陈进生, 林清杰, 陈少华. 生态环境学报, 2015, 24(11): 1872.).
[49]
Baker A R, Li M P, Chance R. Glob. Biogeochem. Cycles, 2020, 34(6): e2019GB006510.
[50]
Sakata K, Sakaguchi A, Yamakawa Y, Miyamoto C, Kurisu M, Takahashi Y. Atmos. Chem. Phys., 2023, 23(17): 9815.
[51]
Xue J L, Ren J L. Marine Environmental Science, 2019, 38(06): 945.
(薛金林, 任景玲, 海洋环境科学, 2019, 38(06): 945. ).
[52]
Chang Y, Feng C, Qu J G, Zhang J. Environmental Science, 2015, 36(04): 1164.
(常燕, 冯冲, 瞿建国, 张经, 环境科学, 2015, 36(04): 1164.).
[53]
Measures C I, Sato T, Vink S, Howell S, Li Y H. Mar. Chem., 2010, 120(1-4): 144.
[54]
Zhou T J, Huang Y M, Yuan D X, Feng S C, Zhu Y, Ma J. Anal. Methods, 2016, 8(22): 4473.
[55]
Sklenářová H, Fialová B, Šandrejová J, Chocholouš P, Solich P. Anal. Methods, 2015, 7(13): 5530.
[56]
Shokrollahi A, Ghaedi M, Niband M S, Rajabi H R. J. Hazard. Mater., 2008, 151(2-3): 642.
[57]
Khanhuathon Y, Siriangkhawut W, Chantiratikul P, Grudpan K. J. Food Compos. Anal., 2015, 41: 45.
[58]
Luo M B, Bi S P. J. Inorg. Biochem., 2003, 97(1): 173.
[59]
Lian H Z, Kang Y F, Bi S P, Arkin Y, Shao D L, Li D N, Chen Y J, Dai L M, Gan N, Tian L. Talanta, 2004, 62(1): 43.
[60]
Norfun P, Pojanakaroon T, Liawraungrath S. Talanta, 2010, 82(1): 202.
[61]
Domínguez-Renedo O, Marta Navarro-Cuñado A, Ventas-Romay E, Asunción Alonso-Lomillo M. Talanta, 2019, 196: 131.
[62]
Ahmed M. Talanta, 1995, 42(8): 1135.
[63]
Hydes D J, Liss P S. Anal., 1976, 101(1209): 922.
[64]
Dammshäuser A, Wagener T, Croot P L. Geophys. Res. Lett., 2011, 38(24): L24601.
[65]
Artigue L, Wyatt N J, Lacan F, Mahaffey C, Lohan M C. Glob. Biogeochem. Cycles, 2021, 35(5): e2020GB006569.
[66]
de Almeida Pereira L, de Amorim I G, da Silva J B B. Talanta, 2004, 64(2): 395.
[67]
Quadros D P C, Rau M, Idrees M, Chaves E S, Curtius A J, Borges D L G. Spectrochim. Acta Part B At. Spectrosc., 2011, 66(5): 373.
[68]
Salomon S, Giamarchi P, Le Bihan A, Becker-Roß H, Heitmann U. Spectrochim. Acta Part B At. Spectrosc., 2000, 55(8): 1337.
[69]
Zhao J W, Mei T, Yan G Q, Tao M J, Chen Z Y. Phys. Test. Chem. Anal. Part B Chem. Anal., 2013, 49(3): 364.
(赵君威, 梅坛, 鄢国强, 陶美娟, 陈忠颖. 理化检验-化学分册, 2013, 49(3): 364.).
[70]
Tria J, Butler E C V, Haddad P R, Bowie A R. Anal. Chim. Acta, 2007, 588(2): 153.
[71]
Chance R, Jickells T D, Baker A R. Mar. Chem., 2015, 177: 45.
[72]
Minami T, Konagaya W, Zheng L J, Takano S, Sasaki M, Murata R, Nakaguchi Y, Sohrin Y. Anal. Chim. Acta, 2015, 854: 183.
[73]
Zheng L J, Minami T, Konagaya W, Chan C Y, Tsujisaka M, Takano S, Norisuye K, Sohrin Y. Geochim. Cosmochim. Acta, 2019, 254: 102.
[74]
Hsieh C C, You C F, Ho T Y. Mar. Chem., 2023, 253: 104268.
[75]
Shelley R U, Landing W M, Ussher S J, Planquette H, Sarthou G. Biogeosciences, 2018, 15(8): 2271.
[76]
MacKey K R M, Chien C T, Post A F, Saito M A, Paytan A. Front. Microbiol., 2015, 5: 794.
[77]
Qi Y X, Zhou Y. J. Mar. Meteor., 2021, 41(2): 1.
(齐宇轩, 周杨. 海洋气象学报, 2021, 41(2): 1. ).
[78]
Aghnatios C, Losno R, Dulac F. Biogeosciences, 2014, 11(17): 4627.
[79]
Shi Z B, Woodhouse M T, Carslaw K S, Krom M D, Mann G W, Baker A R, Savov I, Fones G R, Brooks B, Drake N, Jickells T D, Benning L G. Atmos. Chem. Phys., 2011, 11(16): 8459.
[80]
Li R, Zhang H H, Wang F, Ren Y, Jia S G, Jiang B, Jia X H, Tang Y J, Tang M J. Sci. Total Environ., 2022, 816: 151495.
[81]
Hsu S C, Wong G T F, Gong G C, Shiah F K, Huang Y T, Kao S J, Tsai F, Candice Lung S C, Lin F J, Lin I I, Hung C C, Tseng C M. Mar. Chem., 2010, 120(1-4): 116.
[82]
Guo L, Chen Y, Wang F J, Meng X, Xu Z F, Zhuang G S. Mar. Chem., 2014, 163: 19.
[83]
Baker A R, Croot P L. Mar. Chem., 2010, 120(1-4): 4.
[84]
Bibi I, Singh B, Silvester E. Geochim. Cosmochim. Acta, 2011, 75(11): 3237.
[85]
Bibi I, Singh B, Silvester E. Appl. Geochem., 2014, 51: 170.
[86]
Cappelli C, Yokoyama S, Cama J, Huertas F J. Geochim. Cosmochim. Acta, 2018, 227: 96.
[87]
Spokes L J, Jickells T D, Lim B. Geochim. Cosmochim. Acta, 1994, 58(15): 3281.
[88]
Buck C S, Landing W M, Resing J. Mar. Chem., 2013, 157: 117.
[89]
Buck C S, Landing W M, Resing J A, Measures C I. Mar. Chem., 2010, 120(1-4): 57.
[90]
Zhu M, Shi J H, Ben X Y, Qiu S, Gao H W, Yao X H. China Environmental Science, 2016, 36(11): 3245.
(朱敏, 石金辉, 贲孝宇, 仇帅, 高会旺, 姚小红, 中国环境科学, 2016, 36(11): 3245.)

Funding

National Natural Science Foundation of China(42277088)
Guangdong Basic and Applied Basic Research Foundation(2022A1515110371)
PDF(11206 KB)

Accesses

Citation

Detail

Sections
Recommended

/