Organic Multifunctional Luminescent Materials Based on Modified Phenyl Derivatives

Yan Bing, Xusen Yao, Bing Mao, Xiangyang Zhuang, Hongji Jiang

Prog Chem ›› 2024, Vol. 36 ›› Issue (10) : 1490-1519.

PDF(50325 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(50325 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (10) : 1490-1519. DOI: 10.7536/PC240206
综述

Organic Multifunctional Luminescent Materials Based on Modified Phenyl Derivatives

Author information +
History +

Abstract

The photoelectric properties of organic luminescent materials with large conjugated structures are closely related to molecular structure and intermolecular interaction. As a basic rigid conjugated unit between large π conjugation and C=X, phenyl has the characteristics of high stability, simple structure and direct relationship between structure and properties, and is the best model compound for studying the excited state properties of obtained luminescent materials. However, phenyl is a liquid at room temperature and becomes a solid at generally harsh low temperatures. Therefore, if the phenyl is fixed in a variety of environmentally responsive skeletons containing heteroatoms, and its condensed state structure and excited state properties will be effectively studied in a wide range, it will solve the important scientific problem of how the phenyl emollients can emit light under different aggregation states. In this paper, the recent advances in the modification of phenyl by heterocycles, conjugation extension of phenyl, substitution of peripheral heteroatoms, bridge between phenyl and other combined strategies are reviewed. The applications of modified phenyl in the synthesis of fluorescent materials, metal-organic complexes or clusters phosphorescent materials, thermally-activated delayed fluorescent materials, aggregation-induced luminescent materials and pure organic room temperature phosphorescent materials were reviewed according to different luminescence mechanisms. Finally, the future research focus and development prospect of organic multifunctional luminescent materials based on modified phenyl are also prospected.

Contents

1 Introduction

2 Fluorescent material based on phenyl derivatives

3 Metal-organic complexes or clusters phosphorescent materials based on phenyl derivatives

4 Thermally activated delayed fluorescence materials based on phenyl derivatives

5 Aggregation-induced emission materials based on phenyl derivatives

6 Pure organic room temperature phosphorescent materials based on phenyl derivatives

7 Organic multifunctional luminescent materials based on phenyl derivatives

Key words

phenyl / chemically modified / organic multifunctional luminescent materials / fluorescence / metal-organic complexes or clusters phosphorescence / thermally activated delayed fluorescence / aggregation-induced emission / pure organic room temperature phosphorescence

Cite this article

Download Citations
Yan Bing , Xusen Yao , Bing Mao , et al . Organic Multifunctional Luminescent Materials Based on Modified Phenyl Derivatives[J]. Progress in Chemistry. 2024, 36(10): 1490-1519 https://doi.org/10.7536/PC240206

References

[1]
Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Nature, 2012, 492(7428): 234.
[2]
Li X, Zheng L F, Tang W, Ye S H, Ma J, Jiang H J. New J. Chem., 2022, 46(33): 16121.
[3]
Rajamalli P, Senthilkumar N, Gandeepan P, Huang P Y, Huang M J, Ren-Wu C Z, Yang C Y, Chiu M J, Chu L K, Lin H W, Cheng C H. J. Am. Chem. Soc., 2016, 138(2): 628.
[4]
Mukherjee S, Thilagar P. Chem. Commun., 2015, 51(55): 10988.
[5]
Carretero A S, Castillo A S, Gutiérrez A F. Crit. Rev. Anal. Chem., 2005, 35(1): 3.
[6]
Galletta M, Puntoriero F, Campagna S, Chiorboli C, Quesada M, Goeb S, Ziessel R. J. Phys. Chem. A, 2006, 110(13): 4348.
[7]
Liao Q Y, Gao Q H, Wang J Q, Gong Y B, Peng Q, Tian Y, Fan Y Y, Guo H J, Ding D, Li Q Q, Li Z. Angew. Chem. Int. Ed., 2020, 59(25): 9946.
[8]
Ekambaram R, Enkvist E, Manoharan G B, Ugandi M, Kasari M, Viht K, Knapp S, Issinger O G, Uri A. Chem. Commun., 2014, 50(31): 4096.
[9]
Xing C, Liu J X, Chen F, Li Y Y, Lv C J, Peng Q C, Hou H W, Li K. Chem. Commun., 2020, 56(30): 4220.
[10]
Yu X, Gao Y C, Li H W, Wu Y. Macromol. Rapid Commun., 2020, 41(14): 2000198.
[11]
Leung N L C, Xie N, Yuan W Z, Liu Y, Wu Q Y, Peng Q, Miao Q, Lam J W Y, Tang B Z. Chem. Eur. J., 2014, 20(47): 15349.
[12]
Hong Y N, Lam J W Y, Tang B Z. Chem. Commun., 2009(29): 4332.
[13]
Watson M D, Fechtenkötter A, Müllen K. Chem. Rev., 2001, 101(5): 1267.
[14]
Ren T B, Xu W, Zhang W, Zhang X X, Wang Z Y, Xiang Z, Yuan L, Zhang X B. J. Am. Chem. Soc., 2018, 140(24): 7716.
[15]
Kim H M, Cho B R. Chem. Rev., 2015, 115(11): 5014.
[16]
Liu X G, Qiao Q L, Tian W M, Liu W J, Chen J, Lang M J, Xu Z C. J. Am. Chem. Soc., 2016, 138(22): 6960.
[17]
Xiang Z, Wang Z Y, Ren T B, Xu W, Liu Y P, Zhang X X, Wu P, Yuan L, Zhang X B. Chem. Commun., 2019, 55(76): 11462.
[18]
Beppu T, Tomiguchi K, Masuhara A, Pu Y J, Katagiri H. Angew. Chem. Int. Ed., 2015, 54(25): 7332.
[19]
Lavis L D, Raines R T. ACS Chem. Biol., 2014, 9(4): 855.
[20]
Liu C, Jiao X J, Wang Q, Huang K, He S, Zhao L C, Zeng X S. Chem. Commun., 2017, 53(77): 10727.
[21]
Kobayashi H, Ogawa M, Alford R, Choyke P L, Urano Y. Chem. Rev., 2010, 110(5): 2620.
[22]
Mandal M, Chatterjee T, Das A, Mandal S, Sen A, Ta M, Mandal P K. J. Phys. Chem. C, 2019, 123(40): 24786.
[23]
Tang B L, Wang C G, Wang Y, Zhang H Y. Angew. Chem. Int. Ed., 2017, 56(41): 12543.
[24]
Kim H, Park W, Kim Y, Filatov M, Choi C H, Lee D. Nat. Commun., 2021, 12(1): 5409.
[25]
Zhang H K, Zhao Z, McGonigal P R, Ye R Q, Liu S J, Lam J W Y, Kwok R T K, Yuan W Z, Xie J P, Rogach A L, Tang B Z. Mater. Today, 2020, 32: 275.
[26]
Zhang H, Tang B Z. J. Am. Chem. Soc. Au., 2021, 1(11): 1805.
[27]
Yamaguchi Y, Matsubara Y, Ochi T, Wakamiya T, Yoshida Z I. J. Am. Chem. Soc., 2008, 130(42): 13867.
[28]
Tu W H, Xiong Z P, Zhang Z T, Zhang J Y, Wang L, Xie Y, Wang Y P, Zhang H K, Sun J Z, Tang B Z. Smart Mol., 2023, 1(2): e20220006.
[29]
Braendle A, Perevedentsev A, Cheetham N J, Stavrinou P N, Schachner J A, Mösch-Zanetti N C, Niederberger M, Caseri W. Chimia, 2017, 71(10): 733.
[30]
Perevedentsev A, Francisco-López A, Shi X Y, Braendle A, Caseri W R, Goñi A R, Campoy-Quiles M. Macromolecules, 2020, 53(17): 7519.
[31]
Wang L, Xiong Z P, Sun J Z, Huang F H, Zhang H K, Tang B Z. Angew. Chem. Int. Ed., 2024, 63(8): e202318245.
[32]
Noda H, Nakanotani H, Adachi C. Sci. Adv., 2018, 4(6): eaao6910.
[33]
Jeon S O, Lee J Y. J. Mater. Chem., 2012, 22(21): 10537.
[34]
Zhang Q W, Fang D, Jiang H J, Zhang X W, Zhang H M. Org. Electron., 2015, 27: 173.
[35]
Su Y J, Huang H L, Li C L, Chien C H, Tao Y T, Chou P T, Datta S, Liu R S. Adv. Mater., 2003, 15(11): 884.
[36]
Song W, Lee J Y. Adv. Opt. Mater., 2017, 5(9): 1600901.
[37]
Di D W, Romanov A S, Yang L, Richter J M, Rivett J P H, Jones S, Thomas T H, Abdi Jalebi M, Friend R H, Linnolahti M, Bochmann M, Credgington D. Science, 2017, 356(6334): 159.
[38]
Lee D, Ma X, Jung J, Jeong E J, Hashemi H, Bregman A, Kieffer J, Kim J. Phys. Chem. Chem. Phys., 2015, 17(29): 19096.
[39]
Chen X F, Xu C, Wang T, Zhou C, Du J J, Wang Z P, Xu H X, Xie T Q, Bi G Q, Jiang J, Zhang X P, Demas J N, Trindle C O, Luo Y, Zhang G Q. Angew. Chem. Int. Ed., 2016, 55(34): 9872.
[40]
Sun X X, Zhang B C, Li X Y, Trindle C O, Zhang G Q. J. Phys. Chem. A, 2016, 120(29): 5791.
[41]
Elbjeirami O, Burress C N, Gabbaï F P, Omary M A. J. Phys. Chem. C, 2007, 111(26): 9522.
[42]
Zhan S Z, Ding F, Liu X W, Zhang G H, Zheng J, Li D. Inorg. Chem., 2019, 58(19): 12516.
[43]
Zheng J, Lu Z, Wu K, Ning G H, Li D. Chem. Rev., 2020, 120(17): 9675.
[44]
Burress C, Elbjeirami O, Omary M A, Gabbaï F P. J. Am. Chem. Soc., 2005, 127(35): 12166.
[45]
Zhang Z Y, Ye D Q, Gao Q Q, Shi Z C, Xie M, Zhan S Z, Huang Y L, Ning G H, Li D. Inorg. Chem. Front., 2021, 8(9): 2299.
[46]
Chen W J, Tian Z M, Li Y G, Jiang Y Q, Liu M H, Duan P F. Chem. Eur. J., 2018, 24(66): 17444.
[47]
Garain S, Sarkar S, Chandra Garain B, Pati S K, George S J. Angew. Chem. Int. Ed., 2022, 61(11): e202115773.
[48]
Huang Z Z, He Z Y, Ding B B, Tian H, Ma X. Nat. Commun., 2022, 13(1): 7841.
[49]
Lin X H, Wang J, Ding B B, Ma X, Tian H. Angew. Chem. Int. Ed., 2021, 60(7): 3459.
[50]
Guang L Y, Lu Y, Zhang Y F, Liao R, Wang F. Angew. Chem. Int. Ed., 2024, 63(8): e202315362.
[51]
Zeng C J, Chen Y X, Kirschbaum K, Lambright K J, Jin R C. Science, 2016, 354(6319): 1580.
[52]
Xie J Z, Yan H B, Sundén B, Xie G N. Appl. Therm. Eng., 2019, 153: 692.
[53]
Zang L, Che Y K, Moore J S. Acc. Chem. Res., 2008, 41(12): 1596.
[54]
Ouyang X, Wang M, Guo L, Cui C, Liu T, Ren Y, Zhao Y, Ge Z, Guo X, Xie G, Li J, Fan C, Wang L. Angew. Chem. Int. Ed., 2020, 59(29): 11836.
[55]
Hossain S, Imai Y, Motohashi Y, Chen Z H, Suzuki D, Suzuki T, Kataoka Y, Hirata M, Ono T, Kurashige W, Kawawaki T, Yamamoto T, Negishi Y. Mater. Horiz., 2020, 7(3): 796.
[56]
Kang X, Zhu M Z. Chem. Soc. Rev., 2019, 48(8): 2422.
[57]
Wu Z N, Liu J L, Gao Y, Liu H W, Li T T, Zou H Y, Wang Z G, Zhang K, Wang Y, Zhang H, Yang B. J. Am. Chem. Soc., 2015, 137(40): 12906.
[58]
Ai L, Jiang W R, Liu Z Y, Liu J L, Gao Y, Zou H Y, Wu Z N, Wang Z G, Liu Y, Zhang H, Yang B. Nanoscale, 2017, 9(34): 12618.
[59]
Kolay S, Maity S, Bain D, Chakraborty S, Patra A. Nanoscale Adv., 2021, 3(19): 5570.
[60]
Yi R H, Liu G Y, Luo Y T, Wang W Y, Tsai H Y, Lin C H, Shen H L, Chang C H, Lu C W. Chem. Eur. J., 2021, 27(51): 12998.
[61]
Sun Y Q, Lei Y L, Liao L S, Hu W P. Angew. Chem. Int. Ed., 2017, 56(35): 10249.
[62]
Goushi K, Yoshida K, Sato K, Adachi C. Nat. Photonics, 2012, 6(4): 253.
[63]
Sun L J, Zhu W G, Wang W, Yang F X, Zhang C C, Wang S F, Zhang X T, Li R J, Dong H L, Hu W P. Angew. Chem. Int. Ed., 2017, 56(27): 7831.
[64]
Liu Y J, Zeng Q X, Zou B, Liu Y, Xu B, Tian W J. Angew. Chem. Int. Ed., 2018, 57(48): 15670.
[65]
Grepioni F, DAgostino S, Braga D, Bertocco A, Catalano L, Ventura B. J. Mater. Chem. C. 2015, 3(36): 9425.
[66]
Lei Y L, Jin Y, Zhou D Y, Gu W, Shi X B, Liao L S, Lee S T. Adv. Mater., 2012, 24(39): 5345.
[67]
Wang Y, Zhu W G, Du W N, Liu X F, Zhang X T, Dong H L, Hu W P. Angew. Chem. Int. Ed., 2018, 57(15): 3963.
[68]
Sun L J, Hua W J, Liu Y, Tian G J, Chen M X, Chen M X, Yang F X, Wang S F, Zhang X T, Luo Y, Hu W P. Angew. Chem. Int. Ed., 2019, 58(33): 11311.
[69]
Zhou H Y, Zhang D W, Li M, Chen C F. Angew. Chem. Int. Ed., 2022, 61(15): e202117872.
[70]
Xue M M, Huang C C, Yuan Y, Zhang Y X, Fung M K, Liao L S. Chem. Commun., 2017, 53(1): 263.
[71]
Albrecht K, Matsuoka K, Fujita K, Yamamoto K. Angew. Chem. Int. Ed., 2015, 54(19): 5677.
[72]
Mei Q B, Weng J N, Tong B H, Tian R Q, Jiang Y Z, Hua Q F, Huang W. Acta Phys. -Chim. Sin., 2014, 30(4): 589.
(梅群波, 翁洁娜, 童碧海, 田汝强, 蒋渊知, 华庆芳, 黄维. 物理化学学报, 2014, 30(3): 332.)
[73]
Yoon J, Kim S K, Kim H J, Choi S, Jung S W, Lee H, Kim J Y, Yoon D W, Han C W, Chae W S, Kwon J H, Cho M J, Choi D H. Chem., 2020, 26(69): 16383.
[74]
Endo A, Sato K, Yoshimura K, Kai T, Kawada A, Miyazaki H, Adachi C. Appl. Phys. Lett., 2011, 98(8):083302.
[75]
Lin T A, Chatterjee T, Tsai W L, Lee W K, Wu M J, Jiao M, Pan K C, Yi C L, Chung C L, Wong K T, Wu C C. Adv. Mater., 2016, 28(32): 6976.
[76]
Hirata S, Sakai Y M, Masui K, Tanaka H, Lee S Y, Nomura H, Nakamura N, Yasumatsu M, Nakanotani H, Zhang Q S, Shizu K, Miyazaki H, Adachi C. Nat. Mater., 2015, 14(3): 330.
[77]
Braveenth R, Lee H, Kim S, Raagulan K, Kim S, Kwon J H, Chai K Y. J. Mater. Chem. C. 2019, 7(25): 7672.
[78]
Achelle S, Hodée M, Massue J, Fihey A, Katan C. Dyes Pigm., 2022, 200: 110157.
[79]
Nakao K, Sasabe H, Komatsu R, Hayasaka Y, Ohsawa T, Kido J. Adv. Opt. Mater., 2017, 5(6): 1600843.
[80]
Salah L, Etherington M K, Shuaib A, Danos A, Nazeer A A, Ghazal B, Prlj A, Turley A T, Mallick A, McGonigal P R, Curchod B F E, Monkman A P, Makhseed S. J. Mater. Chem. C. 2021, 9(1): 189.
[81]
Kato Y, Sasabe H, Hayasaka Y, Watanabe Y, Arai H, Kido J. J. Mater. Chem. C. 2019, 7(11): 3146.
[82]
Krotkus S, Matulaitis T, Diesing S, Copley G, Archer E, Keum C, Cordes D B, Slawin A M Z, Gather M C, Zysman-Colman E, Samuel I D W. Front. Chem., 2021, 8: 572862.
[83]
Aizawa N, Tsou C J, Park I S, Yasuda T. Polym. J., 2017, 49(1): 197.
[84]
Wang F F, Cao X D, Mei L, Zhang X W, Hu J, Tao Y T. Chin. J. Chem., 2018, 36(3): 241.
[85]
Chen J K, Zeng J J, Zhu X Y, Guo J J, Zhao Z J, Tang B Z. CCS Chem., 2021, 3(12): 230.
[86]
Lee J, Aizawa N, Numata M, Adachi C, Yasuda T. Adv. Mater., 2017, 29(4): 1604856.
[87]
Shaikh A M, Sharma B K, Chacko S, Kamble R M. RSC Adv., 2016, 6(65): 60084.
[88]
Pander P, Swist A, Motyka R, Soloducho J, Dias F B, Data P. J. Mater. Chem. C. 2018, 6(20): 5434.
[89]
Siddiqui Q T, Awasthi A A, Bhui P, Muneer M, Chandrakumar K R S, Bose S, Agarwal N. J. Phys. Chem. C, 2019, 123(2): 1003.
[90]
Zhang Q S, Li J, Shizu K, Huang S P, Hirata S, Miyazaki H, Adachi C. J. Am. Chem. Soc., 2012, 134(36): 14706.
[91]
Liu M, Seino Y, Chen D C, Inomata S, Su S J, Sasabe H, Kido J. Chem. Commun., 2015, 51(91): 16353.
[92]
Cummings S D, Eisenberg R. J. Am. Chem. Soc., 1996, 118(8): 1949.
[93]
Ni F, Wu Z B, Zhu Z C, Chen T H, Wu K L, Zhong C, An K B, Wei D Q, Ma D G, Yang C L. J. Mater. Chem. C. 2017, 5(6): 1363.
[94]
Rao J C, Yang L Q, Li X F, Zhao L, Wang S M, Ding J Q, Wang L X. Angew. Chem. Int. Ed., 2020, 59(41): 17903.
[95]
Shao S Y, Hu J, Wang X D, Wang L X, Jing X B, Wang F S. J. Am. Chem. Soc., 2017, 139(49): 17739.
[96]
Yang Y, Zhao L, Wang S M, Ding J Q, Wang L X. Macromolecules, 2018, 51(23): 9933.
[97]
Ren Z J, Nobuyasu R S, Dias F B, Monkman A P, Yan S K, Bryce M R. Macromolecules, 2016, 49(15): 5452.
[98]
Zeng X, Luo J J, Zhou T, Chen T H, Zhou X, Wu K L, Zou Y, Xie G H, Gong S L, Yang C L. Macromolecules, 2018, 51(5): 1598.
[99]
Li C S, Ren Z J, Sun X L, Li H H, Yan S K. Macromolecules, 2019, 52(6): 2296.
[100]
Shao S Y, Wang S M, Xu X S, Yang Y, Lv J H, Ding J Q, Wang L X, Jing X B, Wang F S. Macromolecules, 2019, 52(9): 3394.
[101]
Liu S, Tian Y T, Yan L B, Wang S M, Zhao L, Tian H K, Ding J Q, Wang L X. Macromolecules, 2023, 56(3): 876.
[102]
Wong M Y, Zysman-Colman E. Adv. Mater., 2017, 29(22): 1605444.
[103]
Congrave D G, Drummond B H, Conaghan P J, Francis H, Jones S T E, Grey C P, Greenham N C, Credgington D, Bronstein H. J. Am. Chem. Soc., 2019, 141(46): 18390.
[104]
Kim J H, Yun J H, Lee J Y. Adv. Opt. Mater., 2018, 6(18): 1800255.
[105]
Kim D H, DAléo A, Chen X K, Sandanayaka A D S, Yao D D, Zhao L, Komino T, Zaborova E, Canard G, Tsuchiya Y, Choi E, Wu J W, Fages F, Brédas J L, Ribierre J C, Adachi C. Nat. Photonics, 2018, 12(2): 98.
[106]
Sudyoadsuk T, Chasing P, Kaewpuang T, Manyum T, Chaiwai C, Namuangruk S, Promarak V. J. Mater. Chem. C. 2020, 8(15): 5045.
[107]
Kumsampao J, Chaiwai C, Chasing P, Chawanpunyawat T, Namuangruk S, Sudyoadsuk T, Promarak V. Chem., 2020, 15(19): 3029.
[108]
Madayanad Suresh S, Hall D, Beljonne D, Olivier Y, Zysman-Colman E. Adv. Funct. Mater., 2020, 30(33): 1908677.
[109]
Hatakeyama T, Shiren K, Nakajima K, Nomura S, Nakatsuka S, Kinoshita K, Ni J P, Ono Y, Ikuta T. Adv. Mater., 2016, 28(14): 2777.
[110]
Hu Y X, Miao J S, Hua T, Huang Z Y, Qi Y Y, Zou Y, Qiu Y T, Xia H, Liu H, Cao X S, Yang C L. Nat. Photon., 2022, 16(11): 803.
[111]
Jin J B, Duan C B, Jiang H, Tao P, Xu H, Wong W Y. Angew. Chem. Int. Ed., 2023, 62(18): e202218947.
[112]
Mei J, Leung N L C, Kwok R T K, Lam J W Y, Tang B Z. Chem. Rev., 2015, 115(21): 11718.
[113]
Hu R R, Leung N L C, Tang B Z. Chem. Soc. Rev., 2014, 43(13): 4494.
[114]
Li Q Q, Li Z. Adv. Sci., 2017, 4(7): 1600484.
[115]
Cheng H B, Li Y Y, Tang B Z, Yoon J. Chem. Soc. Rev., 2020, 49(1): 21.
[116]
Yan D Y, Wu Q, Wang D, Tang B Z. Angew. Chem. Int. Ed., 2021, 60(29): 15724.
[117]
Liu B, Tang B Z. Angew. Chem. Int. Ed., 2020, 59(25): 9788.
[118]
Sturala J, Etherington M K, Bismillah A N, Higginbotham H F, Trewby W, Aguilar J A, Bromley E H C, Avestro A J, Monkman A P, McGonigal P R. J. Am. Chem. Soc., 2017, 139(49): 17882.
[119]
Zhang H K, Zheng X Y, Xie N, He Z K, Liu J K, Leung N L C, Niu Y L, Huang X H, Wong K S, Kwok R T K, Sung H H Y, Williams I D, Qin A J, Lam J W Y, Tang B Z. J. Am. Chem. Soc., 2017, 139(45): 16264.
[120]
Zhang J Y, Hu L R, Zhang K H, Liu J K, Li X G, Wang H R, Wang Z Y, Sung H H Y, Williams I D, Zeng Z B, Lam J W Y, Zhang H K, Tang B Z. J. Am. Chem. Soc., 2021, 143(25): 9565.
[121]
Zhang H K, Zhao Z, Turley A T, Wang L, McGonigal P R, Tu Y J, Li Y Y, Wang Z Y, Kwok R T K, Lam J W Y, Tang B Z. Adv. Mater., 2020, 32(36): 2001457.
[122]
Xiong Z P, Zhang J Y, Sun J Z, Zhang H K, Tang B Z. J. Am. Chem. Soc., 2023, 145(38): 21104.
[123]
Gu J, Yue B B, Baryshnikov G V, Li Z Y, Zhang M, Shen S, Ågren H, Zhu L L. Research, 2021, 2021: 9862093.
[124]
Shen S, Baryshnikov G, Yue B B, Wu B, Li X P, Zhang M, Ågren H, Zhu L L. J. Mater. Chem. C. 2021, 9(35): 11707.
[125]
Lee C M, Choi C H, Joo T. Phys. Chem. Chem. Phys., 2020, 22(3): 1115.
[126]
Zhang H K, Du L L, Wang L, Liu J K, Wan Q, Kwok R T K, Lam J W Y, Phillips D L, Tang B Z. J. Phys. Chem. Lett., 2019, 10(22): 7077.
[127]
Gu L, Shi H F, Gu M X, Ling K, Ma H L, Cai S Z, Song L L, Ma C Q, Li H, Xing G C, Hang X C, Li J W, Gao Y R, Yao W, Shuai Z G, An Z F, Liu X G, Huang W. Angew. Chem. Int. Ed., 2018, 57(28): 8425.
[128]
Yang J, Zhen X, Wang B, Gao X M, Ren Z C, Wang J Q, Xie Y J, Li J R, Peng Q, Pu K Y, Li Z. Nat. Commun., 2018, 9: 840.
[129]
Jia X Y, Zhu L L. Acc. Chem. Res., 2023, 56(6): 655.
[130]
Chen T, Chen Z Q, Gong W L, Li C, Zhu M Q. Mater. Chem. Front., 2017, 1(9): 1841.
[131]
Cheng Y, Wang J, Qiu Z, Zheng X, Leung N L C, Lam J W Y, Tang B Z. Adv. Mater., 2017, 29(46): 1703900.
[132]
Sun H, Tang X X, Miao B X, Yang Y, Ni Z H. Sens. Actuat. B Chem., 2018, 267: 448.
[133]
Sun H, Sun S S, Han F F, Zhao Y, Li M D, Miao B X, Nie J, Zhang R, Ni Z H. Chem. Eng. J., 2021, 405: 127000.
[134]
Chen S Y, Pai M H, Liou G S. J. Mater. Chem. C. 2020, 8(22): 7454.
[135]
Ma L L, Liu M X, Liu X Y, Sun W, Lu Z L, Gao Y G, He L. J. Mater. Chem. B. 2020, 8(17): 3869.
[136]
Yin W, Li Y, Li N, Yang W Y, An H, Gao J R, Bi Y, Zhao N. Adv. Opt. Mater., 2020, 8(14): 1902027.
[137]
Wu F Y, Wang L Y, Tang H, Cao D R. Anal. Chem., 2019, 91(8): 5261.
[138]
Du F Y, Li D Q, Ge S, Xie S M, Tang M, Xu Z Q, Wang E J, Wang S M, Tang B Z. Dyes Pigm., 2021, 194: 109640.
[139]
Ruan Z J, Zheng H X, Deng C Y, Cheng X H, Ruan X, Lv S W, Chen Y M, Liu S S, Lin J Q. Dyes Pigm., 2022, 204: 110476.
[140]
Lower S K, El-Sayed M A. Chem. Rev., 1966, 66(2): 199.
[141]
Zhang T, Ma X, Wu H W, Zhu L L, Zhao Y L, Tian H. Angew. Chem. Int. Ed., 2020, 59(28): 11206.
[142]
Zhao W J, He Z K, Lam J W Y, Peng Q, Ma H L, Shuai Z G, Bai G X, Hao J H, Tang B Z. Chem, 2016, 1(4): 592.
[143]
Yang Z Y, Mao Z, Zhang X P, Ou D P, Mu Y X, Zhang Y, Zhao C Y, Liu S W, Chi Z G, Xu J R, Wu Y C, Lu P Y, Lien A L, Bryce M R. Angew. Chem. Int. Ed., 2016, 55(6): 2181.
[144]
Ali Fateminia S M, Mao Z, Xu S D, Yang Z Y, Chi Z G, Liu B. Angew. Chem. Int. Ed., 2017, 56(40): 12160.
[145]
Chai Z F, Wang C, Wang J F, Liu F, Xie Y J, Zhang Y Z, Li J R, Li Q Q, Li Z. Chem. Sci., 2017, 8(12): 8336.
[146]
Hu Y Y, Yao J W, Xu Z, Wang Z F, Li L, Su S J, Ma D G, Huang F. Sci. China Chem., 2020, 63(7): 897.
[147]
Zhang Z Y, Chen Y, Liu Y. Angew. Chem. Int. Ed., 2019, 58(18): 6028.
[148]
Gong Y Y, Chen G, Peng Q, Yuan W Z, Xie Y J, Li S H, Zhang Y M, Tang B Z. Adv. Mater., 2015, 27(40): 6195.
[149]
Ma L W, Sun S Y, Ding B B, Ma X, Tian H. Adv. Funct. Mater., 2021, 31(17): 2010659.
[150]
Wu Z, Nitsch J, Schuster J, Friedrich A, Edkins K, Loebnitz M, Dinkelbach F, Stepanenko V, Würthner F, Marian C M, Ji L, Marder T B. Angew. Chem. Int. Ed., 2020, 59(39): 17137.
[151]
Sasabe H, Kato Y, Watanabe Y, Ohsawa T, Aizawa N, Fujiwara W, Pu Y J, Katagiri H, Kido J. Chem., 2019, 25(71): 16294.
[152]
Chen Y, Xie Y J, Li Z. J. Phys. Chem. Lett., 2022, 13(7): 1652.
[153]
Zhang X P, Xie T Q, Cui M X, Yang L, Sun X X, Jiang J, Zhang G Q. ACS Appl. Mater. Interfaces, 2014, 6(4): 2279.
[154]
Zhang G Q, Chen J B, Payne S J, Kooi S E, Demas J N, Fraser C L. J. Am. Chem. Soc., 2007, 129(29): 8942.
[155]
Chen X, Liu Z F, Jin W J. J. Phys. Chem. A, 2020, 124(14): 2746.
[156]
Głuchowski P, Stręk W, Lastusaari M, Hölsä J. Phys. Chem. Chem. Phys., 2015, 17(26): 17246.
[157]
Zhou B, Yan D P. Adv. Funct. Mater., 2018, 29(4): 1807599.
[158]
Gong Y Y, Zhao L F, Peng Q, Fan D, Yuan W Z, Zhang Y M, Tang B Z. Chem. Sci., 2015, 6(8): 4438.
[159]
Shimizu M, Kimura A, Sakaguchi H. Eur. J. Org. Chem., 2016, 2016(3): 467.
[160]
Liang X, Liu T T, Yan Z P, Zhou Y, Su J, Luo X F, Wu Z G, Wang Y, Zheng Y X, Zuo J L. Angew. Chem. Int. Ed., 2019, 58(48): 17220.
[161]
Zhu H, Liu J K, Wu Y T, Wang L, Zhang H K, Li Q, Wang H, Xing H, Sessler J L, Huang F H. J. Am. Chem. Soc., 2023, 145(20): 11130.
[162]
Xing Y, Wang Y J, Zhou L L, Zhu L L. Dyes Pigm., 2021, 186: 109032.
[163]
Wang X F, Xiao H Y, Chen P Z, Yang Q Z, Chen B, Tung C H, Chen Y Z, Wu L Z. J. Am. Chem. Soc., 2019, 141(12): 5045.
[164]
Lei Y X, Dai W B, Guan J X, Guo S, Ren F, Zhou Y D, Shi J B, Tong B, Cai Z X, Zheng J R, Dong Y P. Angew. Chem. Int. Ed., 2020, 59(37): 16054.
[165]
Ma X K, Zhang W, Liu Z X, Zhang H Y, Zhang B, Liu Y. Adv. Mater., 2021, 33(14): 2007476.
[166]
Kuila S, Ghorai A, Samanta P K, Siram R B K, Pati S K, Narayan K S, George S J. Chem., 2019, 25(70): 16007.
[167]
Jeon I R, Jeannin O, Clérac R, Rouzières M, Fourmigué M. Chem. Commun., 2017, 53(36): 4989.
[168]
Triguero S, Llusar R, Polo V, Fourmigué M. Cryst. Growth Des., 2008, 8(7): 2241.
[169]
Shen Q J, Pang X, Zhao X R, Gao H Y, Sun H L, Jin W J. CrystEngComm, 2012, 14(15): 5027.
[170]
Wang H, Hu R X, Pang X, Gao H Y, Jin W J. CrystEngComm, 2014, 16(34): 7942.
[171]
Liu Z F, Chen X, Wu W X, Zhang G Q, Li X, Li Z Z, Jin W J. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2020, 224: 117428.
[172]
Ishi-i T, Tanaka H, Kichise R, Davin C, Matsuda T, Aizawa N, Park I S, Yasuda T, Matsumoto T. Chem., 2021, 16(15): 2136.
[173]
Ishi-i T, Kichise R, Park I S, Yasuda T, Matsumoto T. J. Mater. Chem. C. 2023, 11(8): 3003.
[174]
Garain S, Singh A K, Peter S C, George S J. Mater. Res. Bull., 2021, 142: 111420.
[175]
Wu Y N, Gui H Q, Ma L W, Zou L, Ma X. Dyes Pigm., 2022, 198: 110005.
[176]
Nidhankar A D, Goudappagouda, Mohana Kumari D S, Chaubey S K, Nayak R, Gonnade R G, Pavan Kumar G V, Krishnan R, Babu S S. Angew. Chem. Int. Ed., 2020, 59(31): 13079.
[177]
Chen B, Huang W H, Su H, Miao H, Zhang X P, Zhang G Q. Angew. Chem. Int. Ed., 2020, 59(25): 10023.
[178]
Xiong Y, Zhao Z, Zhao W J, Ma H L, Peng Q, He Z K, Zhang X P, Chen Y C, He X W, Lam J W Y, Tang B Z. Angew. Chem. Int. Ed., 2018, 57(27): 7997.
[179]
Su Y, Zhang Y F, Wang Z H, Gao W C, Jia P, Zhang D, Yang C L, Li Y B, Zhao Y L. Angew. Chem. Int. Ed., 2020, 59(25): 9967.
[180]
Wu H W, Chi W J, Chen Z, Liu G F, Gu L, Bindra A K, Yang G B, Liu X G, Zhao Y l. Adv. Funct. Mater., 2018, 29(10): 1807243.
[181]
Thomas H, Pastoetter D L, Gmelch M, Achenbach T, Schlögl A, Louis M, Feng X L, Reineke S. Adv. Mater., 2020, 32(19): 2000880.
[182]
Shu H Y, Li H, Rao J C, Chen L, Wang X, Wu X F, Tian H K, Tong H, Wang L X. J. Mater. Chem. C. 2020, 8(41): 14360.
[183]
Deng Y, Li P, Li J, Sun D, Li H. ACS Appl. Mater. Interfaces, 2021, 13(12): 14407.
[184]
Gutierrez G D, Sazama G T, Wu T, Baldo M A, Swager T M. J. Org. Chem., 2016, 81(11): 4789.
[185]
Garain S, Garain B C, Eswaramoorthy M, Pati S K, George S J. Angew. Chem. Int. Ed., 2021, 60(36): 19720.
[186]
Xu S, Wang W, Li H, Zhang J Y, Chen R F, Wang S, Zheng C, Xing G C, Song C Y, Huang W. Nat. Commun., 2020, 11: 4802.
[187]
Lv A Q, Gong W Q, Lv K Q, Ma Q, An Z F, Ma H L. Adv. Optical Mater., 2024, 12(7): 2301937.
[188]
Huang L L, Qian C, Ma Z Y. Chem., 2020, 26(52): 11914.
[189]
Wang T, Hu Z B, Nie X C, Huang L K, Hui M, Sun X, Zhang G Q. Nat. Commun., 2021, 12(1): 1364.
[190]
Wang C, Yu Y, Yuan Y H, Ren C Y, Liao Q Y, Wang J Q, Chai Z F, Li Q Q, Li Z. Matter, 2020, 2(1): 181.
[191]
Xie N, Wang J X, Huang T T, Zhao L P, Sun P, Lu G Y, Wang Y, Li C L. Adv. Optical Mater., 2022, 10(17): 2200767.
[192]
Liu H, Bian Z Y, Cheng Q Y, Lan L F, Wang Y, Zhang H Y. Chem. Sci., 2019, 10(1): 227.
[193]
Yang G, Ran Y, Wu Y M, Chen M Q, Bin Z Y, You J S. Aggregate, 2022, 3(2): e127.
[194]
Wang Y S, Yang J, Tian Y, Fang M M, Liao Q Y, Wang L W, Hu W P, Tang B Z, Li Z. Chem. Sci., 2020, 11(3): 833.
[195]
Wen Y T, Xiao S B, Liu H C, Tian X Z, De J B, Lu T, Yang Z Q, Zou D Y, Lv Y, Zhang S T, Su Q, Yang B. J. Mater. Chem. C. 2021, 9(48): 17511.
[196]
He G, Du L L, Gong Y Y, Liu Y L, Yu C B, Wei C, Yuan W Z. ACS Omega, 2019, 4(1): 344.
[197]
Zhang L, Li M, Hu T P, Wang Y F, Shen Y F, Yi Y P, Lu H Y, Gao Q Y, Chen C F. Chem. Commun., 2019, 55(81): 12172.
[198]
Sun J, Jia J, Zhao B, Yang J, Singh M, An Z, Wang H, Xu B, Huang W. Chin. Chem. Lett., 2021, 32(4): 1367.

Funding

National Natural Science Foundation of China(21574068)
Major Research Program from the State Ministry of Science and Technology(2012CB933301)
Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)(YX030003)
State Key Laboratory Program of State Key Laboratory of Molecular Engineering of Polymers (Fudan University-k2023-21)
State Key Laboratory ofLuminescent Materials and Devices (South China University of Technology-2023-skllmd-21)
PDF(50325 KB)

Accesses

Citation

Detail

Sections
Recommended

/