Microbubble/Droplet Manipulation Based on Marangoni Effect

Zhenlin Wei, Hongfei Wang, Yaliang Chen, Junbo Xing, Dayong Li

Prog Chem ›› 2024, Vol. 36 ›› Issue (10) : 1541-1558.

PDF(171645 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(171645 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (10) : 1541-1558. DOI: 10.7536/PC240215
综述

Microbubble/Droplet Manipulation Based on Marangoni Effect

Author information +
History +

Abstract

Microbubbles and microdroplets, when exposed to a uniform temperature gradient/solute concentration gradient, will undergo thermal capillary migration/solute migration, leading to the emergence of the Marangoni effect at the gas-liquid interface. This effect plays a crucial role in manipulating microbubbles or microdroplets, offering valuable applications in various fields including biology, chemistry, medicine, materials science, and micromanufacturing. In this review, provided are an overview of recent advancements about the Marangoni effect of microbubbles/droplets under different driving modes, and demonstrate the driving principle and characteristics of photothermal Marangoni effect, thermal gradient-driven Marangoni effect and solute Marangoni effect. We focus on the dynamic changes of microdroplets induced by photothermal Marangoni effect, the movement principles of droplets on diverse hydrophobic surfaces, the manipulation processes of bubble movement and bubble separation under laser irradiation, and the typical instances of bubble/droplet separation, droplet evaporation and mixing achieved through thermal gradient-driven Marangoni effect and solute Marangoni effect. Furthermore, recent applications of the Marangoni effect in microbubble/droplet manipulation are highlighted and the promising future prospects for further development and utilization of this phenomenon are discussed.

Contents

1 Introduction

2 Driving principle of the Marangoni effect

3 Temperature driven Marangoni effect

3.1 Photothermal Marangoni effect of microdroplets/ bubbles

3.2 Thermal gradient Marangoni effect of microdroplets/ bubbles

4 Microdroplet/bubble solute Marangoni effect

5 Application based on microdroplet/bubble Marangoni effect

5.1 Preparation of surface microstructure

5.2 Bubble-pen lithography

5.3 Multiphase droplet drive

5.4 Droplet motor

5.5 Emulsion energy supply

6 Conclusion and prospect

Key words

microbubble/droplet manipulation / Marangoni effect / interfacial flows / thermal gradient / concentration gradient

Cite this article

Download Citations
Zhenlin Wei , Hongfei Wang , Yaliang Chen , et al . Microbubble/Droplet Manipulation Based on Marangoni Effect[J]. Progress in Chemistry. 2024, 36(10): 1541-1558 https://doi.org/10.7536/PC240215

References

[1]
Thomson J. Lond. Edinb. Dublin Philos. Mag. J. Sci., 1855, 10(67): 330.
[2]
Marangoni C. Sull'espansione delle goccie d'un liquido galleggianti sulla superfice di altro liquido (Fratelli Fusi). 1865.
[3]
Hu X W, Sun M, Zheng J G, Jiang H Q. IOP Conf. Ser. Earth Environ. Sci., 2021, 675(1): 012187.
[4]
Nabavizadeh S A, Eshraghi M, Felicelli S D, Tewari S N, Grugel R N. Int. J. Multiphase Flow, 2019, 116: 137.
[5]
Young N O, Goldstein J S, Block M J. J. Fluid Mech., 1959, 6(3): 350.
[6]
Ashkin A, Dziedzic J M, Bjorkholm J E, Chu S. Opt. Lett., 1986, 11(5): 288.
[7]
Cazabat A M, Heslot F, Troian S M, Carles P. Nature, 1990, 346(6287): 824.
[8]
Villers D, Platten J K. J. Fluid Mech., 1992, 234: 487.
[9]
Antanovskii L K. Phys. Fluids, 1995, 7(4): 747.
[10]
Saiz E, Tomsia A P. Nat. Mater., 2004, 3(12): 903.
[11]
Sempels W, De Dier R, Mizuno H, Hofkens J, Vermant J. Nat. Commun., 2013, 4: 1757.
[12]
Kim H, Muller K, Shardt O, Afkhami S, Stone H A. Nat. Phys., 2017, 13(11): 1105.
[13]
Lu Y, Fan D Q, Wang Y D, Xu H L, Lu C H, Yang X F. ACS Nano, 2021, 15(6): 10366.
[14]
Wu H, Chen Y, Xu W, Xin C, Wu T, Feng W, Yu H, Chen C, Jiang S, Zhang Y. Nat. Commun., 2023, 14(1): 20.
[15]
Linde H, Velarde M G, Waldhelm W, Loeschcke K, Wierschem A. Ind. Eng. Chem. Res., 2005, 44(5): 1396.
[16]
Zhang Y, Zheng L C, Zhang X X. Acta Phys. Sin., 2009, 58(8): 5501.
(张艳, 郑连存, 张欣欣. 物理学报, 2009, 58(08): 5501.)
[17]
Hershey A V. Phys. Rev., 1939, 56(2): 204.
[18]
Berg S. Phys. Fluids, 2009, 21(3): 032105.
[19]
Chen S Y, Yuan X G, Fu B, Yu K. Front. Chem. Sci. Eng., 2011, 5(4): 448.
[20]
Nagelberg S, Totz J F, Mittasch M, Sresht V, Zeininger L, Swager T M, Kreysing M, Kolle M. Phys. Rev. Lett., 2021, 127(14): 144503.
[21]
Wang F L, Dong L H, Wang Z Y, Chen B Y, Zhu Y J, Tong Z, Wang H M, Wang Y L. Surf. Interfaces, 2024, 44: 103710.
[22]
Chen J, Shen C Q, Wang H, Zhang C B. Acta Phys. Sin., 2019, 68(7): 183.
(陈俊, 沈超群, 王贺, 张程宾. 物理学报, 2019, 68(7): 183.)
[23]
OShaughnessy S M, Robinson A J. Microgravity Sci. Technol., 2008, 20(3): 319.
[24]
OShaughnessy S M, Robinson A J. Heat Transf. Eng., 2009, 30(13): 1096.
[25]
OShaughnessy S M, Robinson A J. Ann. N Y Acad. Sci., 2009, 1161(1): 304.
[26]
Bezuglyi B A, Ivanova N A. Tech. Phys. Lett., 2002, 28(10): 828.
[27]
Ivanova N A, Bezuglyi B A. J. Appl. Mech. Tech. Phys., 2005, 46(5): 691.
[28]
Buffone C, Sefiane K, Christy J R E. Phys. Fluids, 2005, 17(5): 052104.
[29]
Wang H, Peng X F, Christopher D M, Lin W K, Pan C. Int. J. Heat Fluid Flow, 2005, 26(3): 485.
[30]
Baroud C N, Robert de Saint Vincent M, Delville J P. Lab a Chip, 2007, 7(8): 1029.
[31]
Basu A S, Gianchandani Y B. J. Micromech. Microeng., 2008, 18(11): 115031.
[32]
Delville J P, Robert de Saint Vincent M, Schroll R D, Chraïbi H, Issenmann B, Wunenburger R, Lasseux D, Zhang W W, Brasselet E. J. Opt. A: Pure Appl. Opt., 2009, 11(3): 034015.
[33]
Hwang H, Papadopoulos P, Fujii S, Wooh S. Adv. Funct. Mater., 2022, 32(15): 2111311.
[34]
Park S, Liu L H, Demirkır C, van der Heijden O, Lohse D, Krug D, Koper M T M. Nat. Chem., 2023, 15(11): 1532.
[35]
Park J, Ryu J, Sung H J, Kim H. J. Colloid Interface Sci., 2020, 561: 408.
[36]
Nath S, Ricard G, Jin P L, Bouillant A, Quere D. Soft Matter, 2022, 18(38): 7422.
[37]
Karbalaei A, Kumar R, Cho H. Micromachines, 2016, 7(1): 13.
[38]
Namura K, Nakajima K, Kimura K, Suzuki M. Appl. Phys. Lett., 2016, 108(7): 071603.
[39]
Muñoz-Pérez F M, Ortega-Mendoza J G, Padilla-Vivanco A, Toxqui-Quitl C, Sarabia-Alonso J A, Ramos-García R. Front. Phys., 2020, 8: 585590.
[40]
Morris C J, Parviz B A. J. Micromech. Microeng., 2006, 16(5): 972.
[41]
Hu X Z, Chen Y P, Ni B Q, Yu X J. Acta Phys-chim. Sin., 1998, 14(2): 136.
(胡学铮, 陈烨璞, 倪邦庆, 虞学俊. 物理化学学报, 1998, 14(2): 136.)
[42]
Cira N J, Benusiglio A, Prakash M. Nature, 2015, 519(7544): 446.
[43]
Lu H H, Yang Y M, Maa J R. Ind. Eng. Chem. Res., 1997, 36(2): 474.
[44]
Lu H H, Yang Y M, Maa J R. Ind. Eng. Chem. Res., 1996, 35(6): 1921.
[45]
Takahashi K, Weng J G, Tien C L. Microscale Thermophys. Eng., 1999, 3(3): 169.
[46]
Takeuchi H, Motosuke M, Honami S. Heat Transfer Eng., 2012, 33(3): 234.
[47]
Farahi R H, Passian A, Zahrai S, Lereu A L, Ferrell T L, Thundat T. Ultramicroscopy, 2006, 1068-9: 815.
[48]
Farahi R H, Passian A, Ferrell T L, Thundat T. Appl. Phys. Lett., 2004, 85(18): 4237.
[49]
Basu A S, Gianchandani Y B. Appl. Phys. Lett., 2007, 90(3): 034102.
[50]
Butzhammer L, Köhler W. Microfluid. Nanofluid., 2017, 21(10): 155.
[51]
Sha Y, Cheng H, Yu G C. Prog. Chem., 2003, 15(01): 9.
(沙勇, 成弘, 余国琮. 化学进展, 2003, 15(01): 9.)
[52]
Tang X X, Chen H Y, Wang J J, Wang Z J, Zang D Y. Acta Phys. Sin., 2023, 72(19): 194.
(唐修行, 陈泓樾, 王婧婧, 王志军, 臧渡洋. 物理学报, 2023, 72(19): 194.)
[53]
Qin W G, Wang J, Ji W J, Zhao W J, Chen C, Lan D, Wang Y R. Acta Phys. Sin., 2022, 71(06): 359.
(秦威广, 王进, 纪文杰, 赵文景, 陈聪, 蓝鼎, 王育人. 物理学报, 2022, 71(06): 359.)
[54]
Hu X Z. Acta Phys-chim. Sin., 1997, 13(10): 873.
(胡学铮. 物理化学学报, 1997, 13(10): 873.)
[55]
Wu K. Acta Phys-chim. Sin., 2019, 35(11): 1183.
(吴凯. 物理化学学报, 2019, 35(11): 1183.)
[56]
Hu H, Larson R G. Langmuir, 2005, 21(9): 3972.
[57]
Savino R, Paterna D, Favaloro N. J. Thermophys. Heat Transf., 2002, 16(4): 562.
[58]
Girard F, Antoni M, Faure S, Steinchen A. Langmuir, 2006, 22(26): 11085.
[59]
Kazemi M A, Saber S, Elliott J A W, Nobes D S. Int. J. Heat Mass Transf., 2021, 181: 122042.
[60]
Schmitt M, Stark H. Phys. Fluids, 2016, 28(1):012106.
[61]
Saeedian Tareie Z, Latifi H, Parchegani S, Soltanlou K. Opt. Laser Technol., 2019, 120: 105749.
[62]
Yang Q J, Mao Q, Cao W. Colloids Surf. A Physicochem. Eng. Aspects, 2022, 639: 128385.
[63]
Liu H H, Zhang Y H. J. Comput. Phys., 2015, 280: 37.
[64]
Chandramohan A, Dash S, Weibel J A, Chen X M, Garimella S V. Langmuir, 2016, 32(19): 4729.
[65]
Li Z D, Zhao J F, Qin W T. J. Eng. Thermophys-Rus., 2010, 31(6): 979.
(李震东, 赵建福, 秦文韬. 工程热物理学报, 2010, 31(6): 979.)
[66]
Kawaji M, Gamache O, Hwang D H, Ichikawa N, Viola J P, Sygusch J. J. Cryst. Growth. 2003, 2583-4: 420.
[67]
Hendarto E, Gianchandani Y B. J. Micromech. Microeng., 2011, 21(11): 115028.
[68]
Li H N, Yang Y J, Zhu X, Ye D D, Yang Y, Wang H, Chen R, Liao Q. Soft Matter, 2023, 19(38): 7323.
[69]
Basu A S, Yee S Y, Gianchandani Y B. 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS). Hyogo, Japan. IEEE, 2007: 401.
[70]
Motosuke M, Hoshi A, Honami S. ICNMM., 2012, 73304: 97.
[71]
Tarafdar S, Tarasevich Y Y, Dutta Choudhury M, Dutta T, Zang D Y. Adv. Condens. Matter Phys., 2018, 2018: 5214924.
[72]
Deng H H, Zhang M, Liu H. Sci. China Chem., 2023, 53(7): 1172.
(邓环环, 张敏, 刘欢. 中国科学: 化学, 2023, 53(7): 1172.)
[73]
Gupta K, Kolwankar K M, Gore B, Dharmadhikari J A, Dharmadhikari A K. Phys. Fluids, 2020, 32(12): 121701.
[74]
Goy N A, Bruni N, Girot A, Delville J P, Delabre U. Soft Matter, 2022, 18(41): 7949.
[75]
Saeedian Tareie Z, Latifi H, Soltanlou K, Heidariazar A, Mahdi Majidof M, Lafouti M. Results Opt., 2023, 10: 100347.
[76]
Arita Y, Richards J M, Mazilu M, Spalding G C, Skelton Spesyvtseva S E, Craig D, Dholakia K. ACS Nano, 2016, 10(12): 11505.
[77]
Ashkin A. PNAS., 1997, 94(10): 4853.
[78]
Ashkin A, Dziedzic J M. Phys. Rev. Lett., 1977, 38(23): 1351.
[79]
Huo C A, Qiu S J, Liang Q M, Geng B J, Lei Z C, Wang G, Zou Y L, Tian Z Q, Yang Y. Acta Phys. Chim. Sin., 2023: 2303037.
[80]
Barthes M, Reynard C, Santini R, Tadrist L. Europhys. Lett., 2007, 77(1): 14001.
[81]
Namura K, Nakajima K, Suzuki M. Nanotechnology, 2018, 29(6): 065201.
[82]
Namura K, Nakajima K, Kimura K, Suzuki M. Appl. Phys. Lett., 2015, 106(4): 043101.
[83]
Xu C L, Shi Y C, Jin X X, Lei Z S, Zhong Y B, Guo J H. Appl. Mech. Mater., 2014, 624: 262.
[84]
Darwish A, Abdelgawad M. 2019 IEEE 14th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). Bangkok, Thailand. IEEE, 2019. 524.
[85]
Inbaoli A, Sujith Kumar C S, Jayaraj S. Appl. Therm. Eng., 2022, 214: 118805.
[86]
Sarabia-Alonso J A, Ortega-Mendoza J G, Ramírez-San-Juan J C, Zaca-Morán P, Ramírez-Ramírez J, Padilla-Vivanco A, Muñoz-Pérez F M, Ramos-García R. Opt. Express, 2020, 28(12): 17672.
[87]
Sarabia-Alonso J A, Ortega-Mendoza J G, Ascencio-Rodríguez J A, Ramos-García R, Dholakia K, Spalding G C. Proc. of SPIE., 2022, 12198:117.
[88]
Miniewicz A, Quintard C, Orlikowska H, Bartkiewicz S. Phys. Chem. Chem. Phys., 2017, 19(28): 18695.
[89]
Namura K, Nakajima K, Kimura K, Suzuki M. J. Nanophoton., 2016, 10(3): 1.
[90]
Namura K, Nakajima K, Suzuki M. Sci. Rep., 2017, 7: 45776.
[91]
Zhan H Y, Yuan Z C, Li Y, Zhang L, Liang H, Zhao Y H, Wang Z G, Zhao L, Feng S L, Liu Y H. Nat. Commun., 2023, 14: 6158.
[92]
Miniewicz A, Bartkiewicz S, Orlikowska H, Dradrach K. Sci. Rep., 2016, 6: 34787.
[93]
Hu M, Wang F, Chen L, Huo P, Li Y Q, Gu X, Chong K L, Deng D S. Nat. Commun., 2022, 13: 5749.
[94]
Li X L, Wang F L, Xia C L, Le The H, Bomer J G, Wang Y L. Small, 2023, 19(49): e2302939.
[95]
Schwabe D, Scharmann A. Adv. Space Res., 1988, 8(12): 175.
[96]
Larkin B K. AlChE. J., 1970, 16(1): 101.
[97]
O'Shaughnessy S M, Robinson A J. Int. J. Therm. Sci., 2014, 78: 101.
[98]
Bratukhin Y K, Kostarev K G, Viviani A, Zuev A L. Exp. Fluids, 2005, 38(5): 594.
[99]
Lin S X, Zhu B J, Yi Y W, Zhang Y, Liu P Y, Ma M. Chin. J. Comput. Mech., 2019, 36(1): 52.
(林圣享, 朱宝杰, 易义武, 张莹, 刘佩尧, 马明. 计算力学学报, 2019, 36(1): 52.)
[100]
Gerber F, Waton G, Krafft M P, Vandamme T F. Artif. Cells Blood Substit. Biotechnol., 2007, 35(1): 119.
[101]
Jang H J, Park M A, Sirotkin F V, Yoh J J. Appl. Phys. B, 2013, 113(3): 417.
[102]
Fournier J B, Cazabat A M. Europhys. Lett., 1992, 20(6): 517.
[103]
Wang Z A, Guo H, Rong X, Dong G F. Acta Phys-Chim. Sin., 2019, 35(11): 1259.
(王子昂, 郭航, 荣欣, 董桂芳. 物理化学学报, 2019, 35(11): 1259.)
[104]
Han G B, Wu J T, Xu X M. Acta Phys. Chim. Sin., 2000, 16(6): 507.
(韩国彬, 吴金添, 徐晓明. 物理化学学报, 2000, 16(6): 507.)
[105]
Carles P, Cazabat A M. Colloids Surf., 1989, 41: 97.
[106]
Karpitschka S, Liebig F, Riegler H. Langmuir, 2017, 33(19): 4682.
[107]
Christy J R E, Hamamoto Y, Sefiane K. Phys. Rev. Lett., 2011, 106(20): 205701.
[108]
Yiantsios S G, Serpetsi S K, Doumenc F, Guerrier B. Int. J. Heat Mass Transf., 2015, 89: 1083.
[109]
Baumgartner D A, Shiri S, Sinha S, Karpitschka S, Cira N J. Proc. Natl. Acad. Sci. U. S. A., 2022, 119(19): e2120432119.
[110]
Bratsun D, Kostarev K, Mizev A, Aland S, Mokbel M, Schwarzenberger K, Eckert K. Micromachines, 2018, 9(11): 600.
[111]
Huang Y R, Huang R W, Ma X, Li Z Z, Teng H H. Acta Mech. Sinica-Prc., 2023, 1.
(黄彦如, 黄睿雯, 马雪, 李真珍, 滕宏辉. 力学学报, 2023, 1.)
[112]
Han G B. Acta Phys-Chim. Sin., 1998, 14(8): 709.
(韩国彬. 物理化学学报, 1998, 14(8): 709.)
[113]
Wang Z A, Guo H, Li J W, Wang L D, Dong G F. Adv. Mater. Interfaces, 2019, 6(8): 1801736.
[114]
Chen J, Wang Z H, Yang C, Mao Z S. Chem. Eng. Technol., 2015, 38(1): 155.
[115]
Zhang X Q, Chen H Y, Wang Z J, Wang N, Zang D Y. Materials, 2023, 16(14): 5168.
[116]
Hegde O, Chakraborty S, Kabi P, Basu S. Phys. Fluids, 2018, 30(12): 122103.
[117]
Wang Z Z, Chen J, Feng X, Mao Z S, Yang C. Chem. Eng. Sci., 2021, 233: 116401.
[118]
Zang D Y, Tarafdar S, Tarasevich Y Y, Dutta Choudhury M, Dutta T. Phys. Rep., 2019, 804: 1.
[119]
Zeng B L, Wang Y L, Diddens C, Zandvliet H J W, Lohse D. Phys. Rev. Fluids, 2022, 7(6): 064006.
[120]
Manjare M, Yang F C, Qiao R, Zhao Y P. J. Phys. Chem. C, 2015, 119(51): 28361.
[121]
Encarnación Escobar J M, Nieland J, van Houselt A, Zhang X H, Lohse D. Soft Matter, 2020, 16(18): 4520.
[122]
Shi J, Monticone F, Elias S, Wu Y, Ratchford D, Li X, Alu A. Nat. Commun., 2014, 5(1): 3896.
[123]
Ji P Y, Zhang X, Wan J, Zhang C S, Yang Q X, Zhang X M, Gan L Y, Xi Y. Surf. Interfaces, 2022, 33: 102290.
[124]
Shu Y, Porter B F, Soh E J H, Farmakidis N, Lim S, Lu Y, Warner J H, Bhaskaran H. Nano Lett., 2021, 21(9): 3827.
[125]
Lin L, Peng X, Mao Z, Li W, Yogeesh M N, Rajeeva B B, Perillo E P, Dunn A K, Akinwande D, Zheng Y. Nano Lett., 2016, 16(1): 701.
[126]
Liu C X, Jiang D J, Zhu G Q, Li Z Z, Zhang X J, Tian P, Wang D, Wang E G, Ouyang H, Xiao M, Li Z. ACS Appl. Mater. Interfaces, 2022, 14(19): 22206.
[127]
Hendarto E, Gianchandani Y B. 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference. June 5-9, 2011. Beijing, China. IEEE, 2011. 246.
[128]
Sun Y Y, Liu Y, Song B, Zhang H, Duan R M, Zhang D F, Dong B. Adv. Mater. Interfaces, 2019, 6(4): 1801965.
[129]
Song L, Cai J, Zhang S, Liu B, Zhao Y D, Chen W. Sensor Actuat. B-Chem., 2022, 358: 131523.
[130]
Lin X Y, Xu B R, Zhu H, Liu J R, Solovev A, Mei Y F. Research, 2020, 2020: 7659749.
[131]
Mo H Y, Yong Y M, Yu K, Chen W Q, Dai J L, Yang C. J. Comput. Phys., 2023, 481: 112037.
[132]
Zhang L D, Yuan Y H, Qiu X X, Zhang T, Chen Q, Huang X H. Langmuir, 2017, 33(44): 12609.
[133]
Zhang D N, Du X, Song X M, Wang H Z, Li X L, Jiang Y W, Wang M Y. SPE J., 2018, 23(3): 831.
[134]
Gallaire F, Meliga P, Laure P, Baroud C N. Phys. Fluids, 2014, 26(6): 062105.
[135]
Zhang L J, Zheng J, Wen B, Hu J. Sci. China Chem., 2024, 54(1): 85.
(张立娟, 郑晋, 文博, 胡钧. 中国科学: 化学, 2024, 54(1): 85.)
[136]
Jia F F, Sun K, Zhang P, Yin C C, Wang T Y. Phys. Rev. Fluids, 2020, 5(7): 073605.

Funding

National Natural Science Foundation of China(11972150)
PDF(171645 KB)

Accesses

Citation

Detail

Sections
Recommended

/