Single Crystallization of Layered Nickel-Rich Cathode Materials

Luqi Hao, Xinyu Zhu, Yongjian Li, Qing Huang, Ning Li, Yuefeng Su

Prog Chem ›› 2024, Vol. 36 ›› Issue (10) : 1581-1593.

PDF(16933 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(16933 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (10) : 1581-1593. DOI: 10.7536/PC240301
综述

Single Crystallization of Layered Nickel-Rich Cathode Materials

Author information +
History +

Abstract

Nickel-rich-manganese-cobalt oxide (NMC) ternary cathode materials are considered to be one of the most promising cathode materials for lithium-ion batteries due to their high specific capacity and high power. However, most of the current nickel-rich ternary layered materials are polycrystalline particles, and their volumetric energy density and cyclic stability are not satisfactory. Therefore, independent and well-dispersed single-crystal nickel-rich ternary layered materials (SC-NMCs) can be used as the best candidates to replace polycrystalline nickel-rich ternary cathodes. In this paper, we systematically review how to synthesize SC-NMCs and their corresponding relationship with the properties of single-crystal from the perspectives of precursor preparation, material sintering and lithium salt supplementation. Secondly, the performance advantages of SC-NMCs compared with polycrystalline materials are comprehensively summarized, especially the morphology without cracks between particles, which shows good cycling performance. Thirdly, in view of the disadvantages and challenges of the current SC-NMCs, the modification strategies of SC-NMCs, such as element doping, surface modification and double modification, are comprehensively introduced. This review puts forward innovative views on the synthesis and modification of SC-NMCs and provides directional guidance for the application and development of single-crystal nickel-rich ternary layered cathode materials for next-generation lithium-ion batteries.

Contents

1 Introduction

2 The development process of SC-NMCs

2.1 From low to high nickel

2.2 From PC-NMCs to SC-NMCs

3 Basic properties and advantages of SC-NMCs

3.1 Free of intergranular cracks

3.2 High compacting density

3.3 High-voltage stability

4 The synthesis of SC-NMCs

4.1 Solid-phase reaction high-temperature calcination

4.2 Multi-step calcination

4.3 Molten-salt method

5 The modification of SC-NMCs

5.1 Elemental doping

5.2 Coating

5.3 Double modification

6 Conclusion and outlook

Key words

nickel-rich cathode materials / single-crystal / synthesis / modification strategy

Cite this article

Download Citations
Luqi Hao , Xinyu Zhu , Yongjian Li , et al . Single Crystallization of Layered Nickel-Rich Cathode Materials[J]. Progress in Chemistry. 2024, 36(10): 1581-1593 https://doi.org/10.7536/PC240301

References

[1]
Myung S T, Maglia F, Park K J, Yoon C S, Lamp P, Kim S J, Sun Y K. ACS Energy Lett., 2017, 2(1): 196.
[2]
Dai L Q, Li N, Chen L, Su Y F, Chen C M, Su F Y, Bao L Y, Chen S, Wu F. Chin. J. Chem., 2021, 39(2): 345.
[3]
Li N, Sallis S, Papp J K, McCloskey B D, Yang W L, Tong W. Nano Energy, 2020, 78: 105365.
[4]
Luo Y H, Wei H X, Tang L B, Huang Y D, Wang Z Y, He Z J, Yan C, Mao J, Dai K H, Zheng J C. Energy Storage Mater., 2022, 50: 274.
[5]
Mu L Q, Kan W H, Kuai C G, Yang Z J, Li L X, Sun C J, Sainio S, Avdeev M, Nordlund D, Lin F. ACS Appl. Mater. Interfaces, 2020, 12(11): 12874.
[6]
Tan X R, Zhang M L, Li J, Zhang D Y, Yan Y X, Li Z M. Ceram. Int., 2020, 46(14): 21888.
[7]
Wu F, Liu N, Chen L, Su Y F, Tan G Q, Bao L Y, Zhang Q Y, Lu Y, Wang J, Chen S, Tan J. Nano Energy, 2019, 59: 50.
[8]
Fan X M, Hu G R, Zhang B, Ou X, Zhang J F, Zhao W G, Jia H P, Zou L F, Li P, Yang Y. Nano Energy, 2020, 70: 104450.
[9]
Peng F, Chu Y Q, Li Y, Pan Q C, Yang G C, Zhang L X, Hu S J, Zheng F H, Wang H Q, Li Q Y. J. Energy Chem., 2022, 71: 434.
[10]
Ran A H, Chen S X, Cheng M, Liang Z, Li B H, Zhou G M, Kang F Y, Zhang X, Wei G D. J. Mater. Chem. A, 2022, 10(37): 19680.
[11]
Mizushima K, Jones P C, Wiseman P J, Goodenough J B. Mater. Res. Bull., 1980, 15(6): 783.
[12]
Manthiram A, Song B H, Li W D. Energy Storage Mater., 2017, 6: 125.
[13]
De Biasi L, Schiele A, Roca-Ayats M, Garcia G, Brezesinski T, Hartmann P, Janek J. ChemSusChem, 2019, 12(10): 2240.
[14]
Li Y J, Zhu X Y, Su Y F, Xu L F, Chen L, Cao D Y, Li N, Wu F. Small, 2024, 20(23): 2307292.
[15]
Xu L F, Chen S, Su Y F, Shen X, He J Z, Avdeev M, Kan W H, Zhang B, Fan W F, Chen L, Cao D Y, Lu Y, Wang L, Wang M, Bao L Y, Zhang L, Li N, Wu F. ACS Appl. Mater. Interfaces, 2023, 15(47): 54559.
[16]
Whittingham M S. Chem. Rev., 2004, 104(10): 4271.
[17]
Ohzuku T, Makimura Y. Chem. Lett., 2001, 30(7): 642.
[18]
Hou P Y, Gong M S, Tian Y H, Li F. J. Colloid Interface Sci., 2024, 653: 129.
[19]
Yin S Y, Deng W T, Chen J, Gao X, Zou G Q, Hou H S, Ji X B. Nano Energy, 2021, 83: 105854.
[20]
Wang L M, Su Q M, Shi W H, Wang C B, Li H, Wang Y T, Du G H, Zhang M, Zhao W Q, Ding S K, Xu B S. Electrochim. Acta, 2022, 435: 141411.
[21]
Bianchini M, Roca-Ayats M, Hartmann P, Brezesinski T, Janek J. Angew. Chem., 2019, 131(31): 10542.
[22]
Li J, Zhong W T, Deng Q, Zhang Q M, Yang C H. Int. J. Extrem. Manuf., 2022, 4(4): 042004.
[23]
Wu F, Li Q, Chen L, Wang Z R, Chen G, Bao L Y, Lu Y, Chen S, Su Y F. Acta Phys. Chim. Sin., 2020, 38(5): 2007017.
[24]
Niu S J, Xu J M, Wu K, Liang C D, Zhu G B, Qu Q T, Zheng H H. Mater. Chem. Phys., 2021, 260: 124046.
[25]
Kim W S, Kim S B, Jang I C, Lim H H, Lee Y S. J. Alloys Compd., 2010, 492(1-2): L87.
[26]
Luo D, Cui J X, Zhang B K, Fan J M, Liu P Z, Ding X K, Xie H X, Zhang Z H, Guo J J, Pan F, Lin Z. Adv. Funct. Mater., 2021, 31(14): 2009310.
[27]
Liu W, Wang M, Gao X L, Zhang W D, Chen J T, Zhou H H, Zhang X X. J. Alloys Compd., 2012, 543: 181.
[28]
Xie Q, Li W D, Manthiram A. Chem. Mater., 2019, 31(3): 938.
[29]
Liu W, Oh P, Liu X E, Lee M J, Cho W, Chae S, Kim Y, Cho J. Angew. Chem. Int. Ed., 2015, 54(15): 4440.
[30]
Ni L S, Guo R T, Deng W T, Wang B W, Chen J, Mei Y, Gao J Q, Gao X, Yin S Y, Liu H Q, Zhang S, Zou G Q, Hou H S, Ji X B. Chem. Eng. J., 2022, 431: 133731.
[31]
Qian G N, Zhang Y T, Li L S, Zhang R X, Xu J M, Cheng Z J, Xie S J, Wang H, Rao Q L, He Y S, Shen Y B, Chen L W, Tang M, Ma Z F. Energy Storage Mater., 2020, 27: 140.
[32]
Deng X M, Zhang R, Zhou K, Gao Z Y, He W, Zhang L H, Han C P, Kang F Y, Li B H. Energy Environ. Mater., 2023, 6(3): e12331.
[33]
Abdollahifar M, Cavers H, Scheffler S, Diener A, Lippke M, Kwade A. Adv. Energy Mater., 2023, 13(40): 2300973.
[34]
Han X Y, Meng Q F, Sun T L, Sun J T. J. Power Sources. 2010, 195(10): 3047.
[35]
Kim Y. ACS Appl. Mater. Interfaces, 2012, 4(5): 2329.
[36]
Fu F, Xu G L, Wang Q, Deng Y P, Li X, Li J T, Huang L, Sun S G. J. Mater. Chem. A, 2013, 1(12): 3860.
[37]
Li J, Cameron A R, Li H Y, Glazier S, Xiong D J, Chatzidakis M, Allen J, Botton G A, Dahn J R. J. Electrochem. Soc., 2017, 164(7): A1534.
[38]
Wang L, Wu B R, Mu D B, Liu X J, Peng Y Y, Xu H L, Liu Q, Gai L, Wu F. J. Alloys Compd., 2016, 674: 360.
[39]
Cho W, Lim Y J, Lee S M, Kim J H, Song J H, Yu J S, Kim Y J, Park M S. ACS Appl. Mater. Interfaces, 2018, 10(45): 38915.
[40]
Xu X, Huo H, Jian J Y, Wang L G, Zhu H, Xu S, He X S, Yin G P, Du C Y, Sun X L. Adv. Energy Mater., 2019, 9(15): 1970051.
[41]
Bi Y J, Tao J H, Wu Y Q, Li L Z, Xu Y B, Hu E Y, Wu B B, Hu J T, Wang C M, Zhang J G, Qi Y, Xiao J. Science, 2020, 370(6522): 1313.
[42]
Wang J P, Lu X B, Zhang Y C, Zhou J H, Wang J X, Xu S M. J. Energy Chem., 2022, 65: 681.
[43]
Zhang Z, Hong B, Yi M Y, Fan X M, Zhang Z A, Huang X B, Lai Y Q. Chem. Eng. J., 2022, 445: 136825.
[44]
Nam G, Hwang J, Kang D H, Oh S, Chae S, Yoon M, Ko M. J. Energy Chem., 2023, 79: 562.
[45]
Croy J R, Balasubramanian M, Gallagher K G, Burrell A K. Acc. Chem. Res., 2015, 48(11): 2813.
[46]
Wu F, Liu N, Chen L, Li N, Dong J Y, Lu Y, Tan G Q, Xu M Z, Cao D Y, Liu Y F, Chen Y B, Su Y F. J. Energy Chem., 2021, 62: 351.
[47]
Liu Y L, Harlow J, Dahn J. J. Electrochem. Soc., 2020, 167(2): 020512.
[48]
Logan E R, Hebecker H, Ma X W, Quinn J, HyeJeong Y, Kumakura S, Paulsen J, Dahn J R. J. Electrochem. Soc., 2020, 167(6): 060530.
[49]
Duan J G, Wu C, Cao Y B, Huang D H, Du K, Peng Z D, Hu G R. J. Alloys Compd., 2017, 695: 91.
[50]
Yang X R, Chen J W, Zheng Q F, Tu W Q, Xing L D, Liao Y H, Xu M Q, Huang Q M, Cao G Z, Li W S. J. Mater. Chem. A. 2018, 6(33): 16149.
[51]
Li N, Sallis S, Papp J K, Wei J, McCloskey B D, Yang W L, Tong W. ACS Energy Lett., 2019, 4(12): 2836.
[52]
Su Y F, Zhang Q Y, Chen L, Bao L Y, Lu Y, Chen S, Wu F. J. Energy Chem., 2022, 65: 236.
[53]
Su Y F, Wang M, Zhang M X, Chen L, Li N, Chen L, Chen Y B, Liu J Y, Li Y L. J. Alloys Compd., 2022, 905: 164204.
[54]
Wei W F, Ding Z P, Chen C, Yang C, Han B, Xiao L, Liang C P, Gao P, Cho K. Acta Mater., 2021, 212: 116914.
[55]
Kong X B, Zhang Y G, Peng S Y, Zeng J, Zhao J B. ACS Sustainable Chem. Eng., 2020, 8(39): 14938.
[56]
Tan Z L, Li Y J, Xi X M, Jiang S J, Li X H, Shen X J, He Z J. ACS Appl. Mater. Interfaces, 2023, 15(6): 8555.
[57]
Sun J M, Cao D X, Yang D H, He P P, Dato M A, Cabana P J, Zhou P H. Angew. Chem. Int. Ed., 2022, 61(40): e202207225.
[58]
Li F, Kong L L, Sun Y Y, Jin Y C, Hou P Y. J. Mater. Chem. A. 2018, 6(26): 12344.
[59]
Wu N T, Wu H, Kim J K, Liu X M, Zhang Y. ChemElectroChem, 2018, 5(1): 78.
[60]
Hu D Z, Su Y F, Chen L, Li N, Bao L Y, Lu Y, Zhang Q Y, Wang J, Chen S, Wu F. J. Energy Chem., 2021, 58: 1.
[61]
Zhu H, Tang Y, Wiaderek K M, Borkiewicz O J, Ren Y, Zhang J, Ren J C, Fan L L, Li C C, Li D F, Wang X L, Liu Q. Nano Lett., 2021, 21(23): 9997.
[62]
Liao Q T, Guo S J, Qi M Y, Zhang S D, Ma P Z, Li J Y, Cao A M, Wan L J. Sustain. Energy Fuels, 2023, 7(19): 4805.
[63]
Luo B, Li H, Qi H Y, Liu Y, Zheng C B, Du W T, Zhang J F, Chen L. J. Energy Chem., 2024, 88: 327.
[64]
You B Z, Wang Z X, Shen F, Chang Y J, Peng W J, Li X H, Guo H J, Hu Q Y, Deng C W, Yang S, Yan G C, Wang J X. Small Meth., 2021, 5(8): 2100234.
[65]
Su Y F, Li L W, Chen G, Chen L, Li N, Lu Y, Bao L Y, Chen S, Wu F. Chin. J. Chem., 2021, 39(1): 189.
[66]
Hu D Z, Zhang Q Y, Tian J, Chen L, Li N, Su Y F, Bao L Y, Lu Y, Cao D Y, Yan K, Chen S, Wu F. ACS Appl. Mater. Interfaces, 2021, 13(5): 6286.
[67]
Jiang W, Fan X M, Zhu X X, Wu Z Z, Li Z H, Huang R Z, Zhao S, Zeng X M, Hu G R, Zhang B, Zhang S Q, Zhu L Y, Yan L J, Ling M, Wang L G, Liang C D. J. Power Sources. 2021, 508: 230335.
[68]
Lu H Q, Wu F, Su Y F, Li N, Chen S, Bao L Y. Acta Phys. Chim. Sin., 2010, 26(1): 51.
[69]
Liu X S, Shi J W, Zheng B Z, Chen Z R, Su Y, Zhang M J, Xie C P, Su M T, Yang Y. ACS Appl. Mater. Interfaces, 2021, 13(35): 41669.
[70]
Langdon J, Manthiram A. Energy Storage Mater., 2021, 37: 143.
[71]
Li J, Li H Y, Stone W, Weber R, Hy S, Dahn J R. J. Electrochem. Soc., 2017, 164(14): A3529.
[72]
Zhu Y Z, Wang K, Zheng S S, Wang H J, Dong J C, Li J F. Acta Phys. Chim. Sin., 2023: 2304040.
[73]
Zhang X, Hu G R, Peng Z D, Cao Y B, Li L Y, Tan C P, Wang Y Z, Wang W G, Du K. Ceram. Int., 2021, 47(18): 25680.
[74]
Guo F Y, Xie Y F, Zhang Y X. Nano Res., 2022, 15(3): 2052.
[75]
Li H Y, Li J, Zaker N, Zhang N, Botton G A, Dahn J R. J. Electrochem. Soc., 2019, 166(10): A1956.
[76]
Ryu H H, Namkoong B, Kim J H, Belharouak I, Yoon C S, Sun Y K. ACS Energy Lett., 2021, 6(8): 2726.
[77]
Yang J C, Xu S Y, Yu J, Li Y J, He Z J, Wu F X, Zhang T, Hao S P, Jiang S J, Pan J W, Xi X M, Liu S W. Chem. Commun., 2023, 59(66): 9980.
[78]
Meng X H, Lin T, Mao H C, Shi J L, Sheng H, Zou Y G, Fan M, Jiang K C, Xiao R J, Xiao D D, Gu L, Wan L J, Guo Y G. J. Am. Chem. Soc., 2022, 144(25): 11338.
[79]
Yan P F, Zheng J M, Gu M, Xiao J, Zhang J G, Wang C M. Nat. Commun., 2017, 8: 14101.
[80]
Liu Y, Fan X M, Luo B, Zhao Z W, Shen J X, Liu Z H, Xiao Z M, Zhang B, Zhang J F, Ming L, Ou X. J. Colloid Interface Sci., 2021, 604: 776.
[81]
Zhang Y D, Liu J D, Xu W C, Lu Y, Ma H, Cheng F Y, Chen J. J. Power Sources. 2022, 535: 231445.
[82]
Zou Y G, Mao H C, Meng X H, Du Y H, Sheng H, Yu X Q, Shi J L, Guo Y G. Angew. Chem., 2021, 133(51): 26739.
[83]
Zhang D K, Liu Y, Feng L W, Qin W C. J. Solid State Chem., 2022, 306: 122796.
[84]
Kong X B, Yang H Y, Zhang Y G, Dai P P, Tang Y L, Zeng J, Zhao J B. Chem. Eng. J., 2023, 452: 139431.
[85]
Li M H, Cheng L, Zhang B, Deng P, Xiao Z M, Ming L, Zhao Y, Xu B H, Ou X. J. Alloys Compd., 2022, 907: 164489.
[86]
Zhang B, Cheng L, Deng P, Xiao Z M, Ming L, Zhao Y, Xu B H, Zhang J F, Wu B, Ou X. J. Alloys Compd., 2021, 872: 159619.
[87]
Feng Z, Zhang S, Rajagopalan R, Huang X B, Ren Y R, Sun D, Wang H Y, Tang Y G. ACS Appl. Mater. Interfaces, 2021, 13(36): 43039.
[88]
Wu F, Liu N, Chen L, Li N, Lu Y, Cao D Y, Xu M Z, Wang Z R, Su Y F. ACS Appl. Mater. Interfaces, 2021, 13(21): 24925.
[89]
Wu F, Wang M, Su Y F, Chen S, Xu B. J. Power Sources. 2009, 191(2): 628.
[90]
Su Y F, Chen G, Chen L, Li Q, Lu Y, Bao L Y, Li N, Chen S, Wu F. Chin. J. Chem., 2020, 38(12): 1817.
[91]
Su Y F, Zhang Q Y, Chen L, Bao L Y, Lu Y, Chen S, Wu F. Acta Phys. Chim. Sin., 2021, 31(3): 2005062.
[92]
Ando K, Yamada Y, Nishikawa K, Matsuda T, Imamura D, Kanamura K. ACS Appl. Energy Mater., 2018, 1(9): 4536.
[93]
Peng F, Zhang L X, Yang G C, Li Y H, Pan Q C, Li Y, Hu S J, Zheng F H, Wang H Q, Li Q Y. Chem. Eng. J., 2023, 451: 138911.
[94]
You L Z, Wen Y, Li G X, Chu B B, Wu J H, Huang T, Yu A S. J. Mater. Chem. A. 2022, 10(10): 5631.
[95]
Sahni K, Ashuri M, He Q R, Sahore R, Bloom I D, Liu Y Z, Kaduk J A, Shaw L L. Electrochim. Acta, 2019, 301: 8.
[96]
Xiong X H, Wang Z X, Yin X, Guo H J, Li X H. Mater. Lett., 2013, 110: 4.
[97]
Su Y F, Chen G, Chen L, Shi Q, Lv Z, Lu Y, Bao L Y, Li N, Chen S, Wu F. ChemSusChem, 2021, 14(8): 1955.
[98]
Li J, Zhong W T, Deng Q, Zhang Q M, Lin Z, Yang C H. Adv. Funct. Mater., 2023, 33(24): 2300127.
[99]
Tang L B, Liu Y, Wei H X, Yan C, He Z J, Li Y J, Zheng J C. J. Energy Chem., 2021, 55: 114.
[100]
Yang Z F, Chen L, Zhu H W, Zhu Y H, Jiang H, Li C Z. J. Mater. Sci. Technol., 2022, 125: 192.
[101]
Ou X, Liu T C, Zhong W T, Fan X M, Guo X Y, Huang X J, Cao L, Hu J H, Zhang B, Chu Y S, Hu G R, Lin Z, Dahbi M, Alami J, Amine K, Yang C H, Lu J. Nat. Commun., 2022, 13: 2319.
PDF(16933 KB)

Accesses

Citation

Detail

Sections
Recommended

/