Intracellular Single Strand DNA and High-Throughput Analysis Techniques

Ruiqi Li, Weiyi Lai, Hailin Wang

Prog Chem ›› 2024, Vol. 36 ›› Issue (9) : 1283-1290.

PDF(3841 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(3841 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (9) : 1283-1290. DOI: 10.7536/PC240304
Review

Intracellular Single Strand DNA and High-Throughput Analysis Techniques

Author information +
History +

Abstract

During many life processes such as replication,transcription,double-strand breaks repair and so on,double-stranded DNA will temporarily unwind and form single strand DNA(ssDNA).ssDNA may affect genomic stability and may also participate in the formation of non-B DNA structure,which in turn regulates and influences many key cellular processes.This review briefly describes the causes of the formation of single-stranded DNA,the structures containing single-stranded DNA and their possible functions in cells,and summarizes some high-throughput analysis techniques of single-stranded DNA,which provides the method inspiration for the subsequent ssDNA research and promotes the further development of ssDNA analysis techniques and methods。

Contents

1 Overview of ssDNA

2 Formation and function of ssDNA

3 ssDNA sequencing methods

3.1 ssDNA-seq

3.2 KAS-seq

3.3 DRIP-seq

3.4 R-ChIP

3.5 SMRF-seq

3.6 MapR

3.7 G4 ChIP-seq

3.8 G4 CUT&Tag

4 Conclusion and outlook

Key words

single strand DNA / R-loop / G-quadruplex / high-throughput sequencing

Cite this article

Download Citations
Ruiqi Li , Weiyi Lai , Hailin Wang. Intracellular Single Strand DNA and High-Throughput Analysis Techniques[J]. Progress in Chemistry. 2024, 36(9): 1283-1290 https://doi.org/10.7536/PC240304

References

[1]
Shibata T, Iwasaki W, Hirota K. Comput. Struct. Biotechnol. J., 2020, 18: 3350.
[2]
Mathad R I, Yang D Z. Telomeres and Telomerase: Methods and Protocols, Zhou S Y, (Ed.), 2011. 77.
[3]
Wang G L, Vasquez K M. Proc. Natl. Acad. Sci. U. S. A., 2004, 101(37): 13448.
[4]
Guiblet W M, Cremona M A, Harris R S, Chen D, Eckert K A, Chiaromonte F, Huang Y F, Makova K D. Nucleic Acids Res., 2021, 49(3): 1497.
[5]
Bacolla A, Tainer J A, Vasquez K M, Cooper D N. Nucleic Acids Res., 2016, 44(12): 5673.
[6]
Boyer A S, Grgurevic S, Cazaux C, Hoffmann J S. J. Mol. Biol., 2013, 425(23): 4767.
[7]
Petermann E, Lan L, Zou L. Nat. Rev. Mol. Cell Bio., 2022, 23: 521.
[8]
García-Muse T, Aguilera A. Cell, 2019, 179(3): 604.
[9]
Nikolova E N, Kim E, Wise A A, O’Brien P J, Andricioaei I, Al-Hashimi H M. Nature, 2011, 470(7335): 498.
[10]
Bochman M L, Paeschke K, Zakian V A. Nat. Rev. Genet., 2012, 13(11): 770.
[11]
Jain A, Wang G L, Vasquez K M. Biochimie, 2008, 90(8): 1117.
[12]
Hoogsteen K. Acta Crystallogr., 1959, 12(10): 822.
[13]
Sinden R R, Pytlos-Sinden M J, Potaman V N. Front. Biosci., 2007, 12(12): 4788.
[14]
Smith G R. Genes Dev., 2008, 22(19): 2612.
[15]
Brázda V, Laister R C, Jagelská E B, Arrowsmith C. BMC Mol. Biol., 2011, 12(1): 33.
[16]
Zhao J H, Bacolla A, Wang G L, Vasquez K M. Cell. Mol. Life Sci., 2010, 67(1): 43.
[17]
Gottipati P, Helleday T. Mutagenesis, 2009, 24(3): 203.
[18]
Richard D J, Bolderson E, Khanna K K. Crit. Rev. Biochem. Mol. Biol., 2009, 44(2-3): 98.
[19]
Santos-Pereira J M, Aguilera A. Nat. Rev. Genet., 2015, 16(10): 583.
[20]
Xu C L, Li C Y, Chen J W, Xiong Y, Qiao Z B, Fan P Y, Li C H, Ma S Y, Liu J, Song A X, Tao B L, Xu T, Xu W, Chi Y Y, Xue J Y, Wang P, Ye D, Gu H Z, Zhang P, Wang Q, Xiao R J, Cheng J D, Zheng H, Yu X L, Zhang Z, Wu J, Liang K W, Liu Y J, Lu H S, Chen F X. Nature, 2023, 621(7979): 610.
[21]
Duquette M L, Handa P, Vincent J A, Taylor A F, Maizels N. Genes Dev., 2004, 18(13): 1618.
[22]
Bikard D, Loot C, Baharoglu Z, Mazel D. Microbiol. Mol. Biol. Rev., 2010, 74(4): 570.
[23]
Aguilera A, García-Muse T. Mol. Cell, 2012, 46(2): 115.
[24]
Pan X, Jiang N, Chen X, Zhou X, Ding L, Duan F. Hereditas, 2014, 36(12): 1185.
[25]
Helmrich A, Ballarino M, Tora L. Mol. Cell, 2011, 44(6): 966.
[26]
Paulsen R D, Soni D V, Wollman R, Hahn A T, Yee M C, Guan A N, Hesley J A, Miller S C, Cromwell E F, Solow-Cordero D E, Meyer T, Cimprich K A. Mol. Cell, 2009, 35(2): 228.
[27]
Mortusewicz O, Herr P, Helleday T. EMBO J., 2013, 32(4): 493.
[28]
Bermejo R, Lai M, Foiani M. Mol. Cell, 2012, 45(6): 710.
[29]
Castellano-Pozo M, García-Muse T, Aguilera A. EMBO Rep., 2012, 13(10): 923.
[30]
Chaudhuri J, Alt F W. Nat. Rev. Immunol., 2004, 4(7): 541.
[31]
Pecori R, Di Giorgio S, Paulo Lorenzo J, Nina Papavasiliou F. Nat. Rev. Genet., 2022, 23(8): 505.
[32]
Aguilera A. EMBO J., 2002, 21(3): 195.
[33]
Wold M S. Annu. Rev. Biochem., 1997, 66: 61.
[34]
Zou L E, Elledge S J. Science, 2003, 300(5625): 1542.
[35]
Chen H, Lisby M, Symington L. Mol. Cell, 2013, 50(4): 589.
[36]
Anindya R. DNA Repair, 2020, 87: 102804.
[37]
Minocherhomji S, Hickson I D. Trends Cell Biol., 2014, 24(5): 321.
[38]
Nakanishi K, Shima A, Fukuda M, Fujita S. Mech. Ageing Dev., 1979, 10(3-4): 273.
[39]
Kinniburgh A J. Nucleic Acids Res., 1989, 17(19): 7771.
[40]
Saglio G, Borrello M G, Guerrasio A, Sozzi G, Serra A, Di Celle P F, Foa R, Ferrarini M, Roncella S, Pignatti C B, Marradi P, Izzo P, Soler J, Pierotti M. Genes Chromosom. Cancer, 1993, 8(1): 1.
[41]
Blaszak R T, Potaman V, Sinden R R, Bissler J J. Nucleic Acids Res., 1999, 27(13): 2610.
[42]
Watnick T J, Piontek K B, Cordal T M, Weber H, Gandolph M A, Qian F, Lens X M, Neumann H P H, Germino G G. Hum. Mol. Genet., 1997, 6(9): 1473.
[43]
Grabczyk E, Mancuso M, Sammarco M C. Nucleic Acids Res., 2007, 35(16): 5351.
[44]
Lin Y F, Dent S Y R, Wilson J H, Wells R D, Napierala M. Proc. Natl. Acad. Sci. U. S. A., 2010, 107(2): 692.
[45]
Reddy K, Tam M, Bowater R P, Barber M, Tomlinson M, Nichol Edamura K, Wang Y H, Pearson C E. Nucleic Acids Res., 2011, 39(5): 1749.
[46]
Loomis E W, Sanz L A, Chédin F, Hagerman P J. PLoS Genet., 2014, 10(4): e1004294.
[47]
McIvor E I, Polak U, Napierala M. RNA Biol., 2010, 7(5): 551.
[48]
Hasanova Z, Klapstova V, Porrua O, Stefl R, Sebesta M. Nucleic Acids Res., 2023, 51(6): 2818.
[49]
Gatti V, De Domenico S, Melino G, Peschiaroli A. Cell Death Discov., 2023, 9: 145.
[50]
Negrini S, Gorgoulis V G, Halazonetis T D. Nat. Rev. Mol. Cell Biol., 2010, 11(3): 220.
[51]
Belotserkovskii B P, Mirkin S M, Hanawalt P C. Chem. Rev., 2013, 113(11): 8620.
[52]
Hill S J, Rolland T, Adelmant G, Xia X F, Owen M S, Dricot A, Zack T I, Sahni N, Jacob Y, Hao T, McKinney K M, Clark A P, Reyon D, Tsai S Q, Joung J K, Beroukhim R, Marto J A, Vidal M, Gaudet S, Hill D E, Livingston D M. Genes Dev., 2014, 28(17): 1957.
[53]
Crossley M P, Song C L, Bocek M J, Choi J H, Kousouros J N, Sathirachinda A, Lin C, Brickner J R, Bai G S, Lans H, Vermeulen W, Abu-Remaileh M, Cimprich K A. Nature, 2023, 613(7942): 187.
[54]
Thandapani P, Song J W, Gandin V, Cai Y T, Rouleau S G, Garant J M, Boisvert F M, Yu Z B, Perreault J P, Topisirovic I, Richard S. eLife, 2015, 4: 06234.
[55]
Haeusler A R, Donnelly C J, Periz G, Simko E A J, Shaw P G, Kim M S, Maragakis N J, Troncoso J C, Pandey A, Sattler R, Rothstein J D, Wang J O. Nature, 2014, 507(7491): 195.
[56]
Chambers V S, Marsico G, Boutell J M, Di Antonio M, Smith G P, Balasubramanian S. Nat. Biotechnol., 2015, 33(8): 877.
[57]
Kouzine F, Wojtowicz D, Yamane A, Resch W, Kieffer-Kwon K R, Bandle R, Nelson S, Nakahashi H, Awasthi P, Feigenbaum L, Menoni H, Hoeijmakers J, Vermeulen W, Ge H, Przytycka T, Levens D, Casellas R. Cell, 2013, 153(5): 988.
[58]
Wu T, Lyu R T, You Q C, He C. Nat. Meth., 2020, 17(5): 515.
[59]
Boguslawski S J, Smith D E, Michalak M A, Mickelson K E, Yehle C O, Patterson W L, Carrico R J. J. Immunol. Meth., 1986, 89(1): 123.
[60]
Ginno P, Lott P, Christensen H, Korf I, Chédin F. Mol. Cell, 2012, 45(6): 814.
[61]
Dumelie J G, Jaffrey S R. eLife, 2017, 6: 28306.
[62]
Wahba L, Costantino L, Tan F J, Zimmer A, Koshland D. Genes Dev., 2016, 30(11): 1327.
[63]
Nadel J, Athanasiadou R, Lemetre C, Wijetunga N A, Ó Broin P, Sato H, Zhang Z D, Jeddeloh J, Montagna C, Golden A, Seoighe C, Greally J M. Epigenet. Chromatin, 2015, 8(1): 46.
[64]
Sanz L A, Chédin F. Nat. Protoc., 2019, 14(6): 1734.
[65]
Phillips D D, Garboczi D N, Singh K, Hu Z L, Leppla S H, Leysath C E. J. Mol. Recognit., 2013, 26(8): 376.
[66]
Vanoosthuyse V. Non Coding RNA, 2018, 4(2): 9.
[67]
Hartono S R, Malapert A, Legros P, Bernard P, Chédin F, Vanoosthuyse V. J. Mol. Biol., 2018, 430(3): 272.
[68]
Cerritelli S M, Crouch R J. FEBS J., 2009, 276(6): 1494.
[69]
Chen J Y, Zhang X, Fu X D, Chen L. Nat. Protoc., 2019, 14(5): 1661.
[70]
Chen L, Chen J Y, Zhang X, Gu Y, Xiao R, Shao C W, Tang P, Qian H, Luo D J, Li H R, Zhou Y, Zhang D E, Fu X D. Mol. Cell, 2017, 68(4): 745.
[71]
Malig M, Chedin F. RNA-Chromatin Interactions: Methods and Protocols, Orom U A V(Ed.), 2020. 209.
[72]
Malig M, Hartono S R, Giafaglione J M, Sanz L A, Chedin F. J. Mol. Biol., 2020, 432(7): 2271.
[73]
Yan Q Q, Shields E J, Bonasio R, Sarma K. Cell Rep., 2019, 29(5): 1369.
[74]
Hänsel-Hertsch R, Spiegel J, Marsico G, Tannahill D, Balasubramanian S. Nat. Protoc., 2018, 13(3): 551.
[75]
Lyu J, Shao R, Kwong Yung P Y, Elsässer S J. Nucleic Acids Res., 2022, 50(3): e13.
[76]
Kaya-Okur H S, Wu S J, Codomo C A, Pledger E S, Bryson T D, Henikoff J G, Ahmad K, Henikoff S. Nat. Commun., 2019, 10: 1930.

Funding

National Natural Science Foundation of China(22234008)
National Natural Science Foundation of China(21927807)
National Natural Science Foundation of China(22021003)
National Natural Science Foundation of China(22274166)
PDF(3841 KB)

Accesses

Citation

Detail

Sections
Recommended

/