Influence of Sulfate Reducing Bacteria Competition on Wastewater Treatment in Electrochemical Systems

Yaoyao He, Weichao Li, Zhangyi Chen, Hai Chang, Jie Wang, Yun Wu

Prog Chem ›› 2024, Vol. 36 ›› Issue (10) : 1473-1489.

PDF(18694 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(18694 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (10) : 1473-1489. DOI: 10.7536/PC240308
综述

Influence of Sulfate Reducing Bacteria Competition on Wastewater Treatment in Electrochemical Systems

Author information +
History +

Abstract

Sulfate reducing bacteria (SRB) is a kind of bacteria widely existing in the water environment, which plays an important role in the wastewater treatment process. Bacterial competition in the water treatment process is a common microbial behavior, and it is also a method to improve wastewater treatment efficiency. However, the regulation of SRB flora is affected by many factors in its practical application, which makes it difficult to control. In recent years, the introduction of electrochemistry can interfere with the electron transfer process of SRB flora, and can improve sulfate removal efficiency by regulating the competition process of flora. However, there is a lack of summary on the microbial community behavior of SRB in a water environment and the impact of the microbial electrochemical system on the competitive behavior of SRB. To fill these knowledge gaps, the metabolic behavior of SRB and other flora, the utilization of electron donors by SRB and the factors affecting the competition of SRB flora were reviewed in this study. The relationship between electron transfer pathways and the competition of SRB flora in microbial electrochemistry was summarized, and its future development and challenges were comprehensively discussed.

Contents

1 Introduction

2 The microbial community relationship of sulfate reducing bacteria in water environment

2.1 Symbiotic relationship

2.2 Competitive relationships

2.3 Competitive objects of sulfate-reducing bacteria in different environments

3 The utilization pathways of electron donors in sulfate reducing bacteria

3.1 Thermodynamically utilizing electron donors in SRB

3.2 The effect of electromediation on SRB microbiota

3.3 SRB energy-saving hydrogen production pathway

4 Regulating and controlling factors of sulfate reducing bacterial community

4.1 The influence of external electric field

4.2 Conducting medium

4.3 The impact of carbon source (type and carbon sulfur ratio) on SRB

4.4 OLR and HRT

4.5 pH

4.6 Temperature

5 Conclusion and outlook

Key words

sulfate reducing bacteria / microbial competition / microbial electrochemistry / electron donor / electron mediated / carbon sulfur ratio (C/S)

Cite this article

Download Citations
Yaoyao He , Weichao Li , Zhangyi Chen , et al . Influence of Sulfate Reducing Bacteria Competition on Wastewater Treatment in Electrochemical Systems[J]. Progress in Chemistry. 2024, 36(10): 1473-1489 https://doi.org/10.7536/PC240308

References

[1]
Diao C Y, Ye W Z, Yan J, Hao T W, Huang L, Chen Y H, Long J Y, Xiao T F, Zhang H G. J. Water Process. Eng., 2023, 52: 103537.
[2]
Agostino V, Rosenbaum M A. Frontiers in Energy Research, 2018, 6:55.
[3]
Su W T, Zhang L X, Tao Y, Zhan G Q, Li D X, Li D P. Electrochem. Commun., 2012, 22: 37.
[4]
Liang B, Cheng H Y, Van Nostrand J D, Ma J C, Yu H, Kong D Y, Liu W Z, Ren N Q, Wu L Y, Wang A J, Lee D J, Zhou J Z. Water Res., 2014, 54: 137.
[5]
Zhang L B, Jiang X B, Shen J Y, Xu K C, Li J S, Sun X Y, Han W Q, Wang L J. RSC Adv., 2016, 6(35): 29072.
[6]
Luo H P, Fu S Y, Liu G L, Zhang R D, Bai Y P, Luo X N. Bioresour. Technol., 2014, 167: 462.
[7]
Reeburgh W S. Earth Planet. Sci. Lett., 1976, 28(3): 337.
[8]
Bryant M P, Campbell L L, Reddy C A, Crabill M R. Appl. Environ. Microbiol., 1977, 33(5): 1162.
[9]
Zan F X, Hao T W. Bioresour. Technol., 2020, 298: 122536.
[10]
Li J, Tabassum S. Chem. Eng. J., 2022, 444: 136611.
[11]
Rapheal S V, Swaminathan K R, Lalitha K. J. Biosci., 2003, 28(2): 235.
[12]
Omil F, Lens P, Visser A, Hulshoff Pol L W, Lettinga G. Biotechnol. Bioeng., 1998, 57(6): 676.
[13]
Jing Z Q, Hu Y, Niu Q G, Liu Y Y, Li Y Y, Wang X C. Bioresour. Technol., 2013, 137: 349.
[14]
Chen H, Wu J, Liu B, Li Y Y, Yasui H. Bioresour. Technol., 2019, 280: 173.
[15]
Pozo, Guillermo, Sebastien Pongy, Jürg Keller, Pablo Ledezma, and Stefano Freguia. Water Res., 2017,126:411.
[16]
Blázquez E, Gabriel D, Baeza J A, Guisasola A. Water Res., 2016, 105: 395.
[17]
Kieu T Q H, Nguyen T Y, Do C L. Molecules, 2023, 28(17):619.
[18]
Qin Y L, Wei Q Y, Zhang Y Y, Li H X, Jiang Y R, Zheng J J. Ecotoxicology, 2021, 30(8): 1719.
[19]
Yan L, Ye J, Zhang P Y, Xu D, Wu Y, Liu J B, Zhang H B, Fang W, Wang B, Zeng G M. Bioresour. Technol., 2018, 259: 67.
[20]
Wu J, Niu Q G, Li L, Hu Y, Mribet C, Hojo T, Li Y Y. Sci. Total Environ., 2018, 636: 168.
[21]
Weijma J, Gubbels F, Hulshoff Pol L W, Stams A J M, Lens P, Lettinga G. Water Sci. Technol., 2002, 45(10): 75.
[22]
Rabus R, Venceslau S, Wohlbrand L, Voordouw G, Wall J, Pereira I. Advances in Microbial Physiology, Poole R(Ed.), 2015. 66:55-321.
[23]
Lu H, Wu D, Tang D T W, Chen G H, van Loosdrecht M C M, Ekama G. Water Sci. Technol., 2011, 63(10): 2149.
[24]
Wu D, Ekama G, Chui H, Wang B, Cui Y, Hao T, van Loosdrecht M, Chen G. Water Research, 2016, 100: 496.
[25]
Ren J Q, Wu G M, Xia Z, Wang M M, Wei J, Yang B, Hou Y, Lei L C, Wu D, Li Z J. AlChE. J., 2021, 67(8): e17309.
[26]
McInerney M J, Sieber J R, Gunsalus R P. Curr. Opin. Biotechnol., 2009, 20(6): 623.
[27]
Bethke C M, Sanford R A, Kirk M F, Jin Q, Flynn T M. Am. J. Sci., 2011, 311(3): 183.
[28]
Dolfing J, Hubert C R J. Front. Microbiol., 2017, 8: 2575.
[29]
Otwell A E, Carr A V, Majumder E L W, Ruiz M K, Wilpiszeski R L, Hoang L T, Webb B, Turkarslan S, Gibbons S M, Elias D A, Stahl D A, Siuzdak G, Baliga N S. mSystems, 2021, 6(1): 01025-20.
[30]
Scholten J C M, Murrell J C, Kelly D P. Arch. Microbiol., 2003, 179(2): 135.
[31]
Muyzer G, Stams A J M. Nat. Rev. Microbiol., 2008, 6(6): 441.
[32]
van Houten R T, Yun S Y, Lettinga G. Biotechnol. Bioeng., 1997, 55(5): 807.
[33]
van Houten B H G W, Roest K, Tzeneva V A, Dijkman H, Smidt H, Stams A J M. Water Res., 2006, 40(3): 553.
[34]
Parshina S N, Sipma J, Henstra A M, Stams A J M. Int. J. Microbiol., 2010, 2010: 319527.
[35]
Stams A J M, Plugge C M. Nat. Rev. Microbiol., 2009, 7(8): 568.
[36]
Thauer R K, Kaster A K, Seedorf H, Buckel W, Hedderich R. Nat. Rev. Microbiol., 2008, 6(8): 579.
[37]
Kato S, Nakamura R, Kai F, Watanabe K, Hashimoto K. Environ. Microbiol., 2010, 12(12): 3114.
[38]
Schink B. Microbiol. Mol. Biol. Rev., 1997, 61(2): 262.
[39]
Kouzuma A, Kato S, Watanabe K. Front. Microbiol., 2015, 6: 477.
[40]
Malvankar N S, Lovley D R. Curr. Opin. Biotechnol., 2014, 27: 88.
[41]
Baek G, Kim J, Lee C. Bioresour. Technol., 2016, 222: 344.
[42]
Sasaki K, Sasaki D, Kamiya K, Nakanishi S, Kondo A, Kato S. Curr. Opin. Biotechnol., 2018, 50: 182.
[43]
Zhao Z Q, Zhang Y B, Holmes D E, Dang Y, Woodard T L, Nevin K P, Lovley D R. Bioresour. Technol., 2016, 209: 148.
[44]
Kato S, Igarashi K. MicrobiologyOpen, 2019, 8(3): e00647.
[45]
Dinh H T, Kuever J, Mußmann M, Hassel A W, Stratmann M, Widdel F. Nature, 2004, 427(6977): 829.
[46]
Kong Q, Ngo H H, Shu L, Fu R S, Jiang C H, Miao M S. J. Hazard. Mater., 2014, 279: 511.
[47]
Liu Y W, Zhang Y B, Ni B J. Water Res., 2015, 75: 292.
[48]
Ou C J, Shen J Y, Zhang S, Mu Y, Han W Q, Sun X Y, Li J S, Wang L J. Water Res., 2016, 101: 457.
[49]
Dong H R, Li L, Lu Y, Cheng Y J, Wang Y Y, Ning Q, Wang B, Zhang L H, Zeng G M. Environ. Int., 2019, 124: 265.
[50]
Baek G, Kim J, Kim J, Lee C. Energies, 2018, 11 (1):107.
[51]
Martins M, Pereira I A C. Int. J. Hydrog. Energy, 2013, 38(28): 12294.
[52]
Plugge C M, Zhang W W, Scholten J C M, Stams A J M. Front. Microbio., 2011, 2: 81.
[53]
Meherkotay S, Int. J. Hydrog. Energy, 2008, 33(1): 258.
[54]
Lee H S, Vermaas W F J, Rittmann B E. Trends Biotechnol., 2010, 28(5): 262.
[55]
Yu L, Duan J Z, Zhao W, Huang Y L, Hou B R. Electrochim. Acta, 2011, 56(25): 9041.
[56]
Aulenta F, Catapano L, Snip L, Villano M, Majone M. ChemSusChem, 2012, 5(6): 1080.
[57]
Kamaraj M, Ramachandran K K, Aravind J. Int. J. Environ. Sci. Technol., 2020, 17(1): 559.
[58]
Kim B H, Lim S S, Daud W R W, Gadd G M, Chang I S. Bioresour. Technol., 2015, 190: 395.
[59]
Lojou E, Durand M, Dolla A, Bianco P. Electroanalysis, 2002, 14(13): 913.
[60]
Croese E, Pereira M A, Euverink G J W, Stams A J M, Geelhoed J S. Appl. Microbiol. Biotechnol., 2011, 92(5): 1083.
[61]
Guo X S, Liu J X, Xiao B Y. Int. J. Hydrog. Energy, 2013, 38(3): 1342.
[62]
Singh N K, Kumari P, Singh R. Energy, 2021, 219: 119583.
[63]
Feng Y H, Zhang Y B, Quan X, Chen S. Water Res., 2014, 52: 242.
[64]
Zandvoort M H, Geerts R, Lettinga G, Lens P N L. Enzyme Microb. Technol., 2003, 332-3: 190.
[65]
Laiq Ur Rehman M, Iqbal A, Chang C C, Li W Z, Ju M T. Water Environ. Res., 2019, 91(10): 1253.
[66]
Prakash O, Mostafa A, Im S, Song Y C, Kang S, Kim D H. Bioresour. Technol., 2023, 369: 128430.
[67]
Loghavi L, Sastry S K, Yousef A E. Biotechnol. Prog., 2009, 25(1): 85.
[68]
Semenov I, Xiao S, Kang D, Schoenbach K H, Pakhomov A G. Bioelectrochemistry, 2015, 105: 65.
[69]
Thrash J C, Coates J D. Environ. Sci. Technol., 2008, 42(11): 3921.
[70]
Wang K, Sheng Y X, Cao H B, Yan K P, Zhang Y. Chem. Eng. J., 2017, 307: 150.
[71]
Liamleam W, Annachhatre A P. Biotechnol. Adv., 2007, 25(5): 452.
[72]
Tanaka Y, Sogabe M, Okumura K, Kurane R. Lett. Appl. Microbiol., 2002, 35(3): 242.
[73]
van den Brand T P H, Roest K, Chen G H, Brdjanovic D, van Loosdrecht M C M. World J. Microbiol. Biotechnol., 2015, 31(3): 507.
[74]
Zhang Z W, Yu Y, Xi H B, Zhou Y X. J. Clean. Prod., 2021, 317: 128343.
[75]
Li J X, Song B, Yao C C, Zhang Z H, Wang L, Zhang J. Nanomaterials, 2022, 12 (9):1496.
[76]
Qavami A, Ghasemi S. Mater. Sci. Eng. B, 2022, 275: 115492.
[77]
Chen L, Zhang R, Li Y H, Zhang Y J, Fang W, Zhang P Y, Zhang G M. Chem. Eng. J., 2023, 476: 146648.
[78]
Hassanein A, F Witarsa, S Lansing, L Qiu, and Y Liang. SUSTAINABILITY, 2020, 12 (20).
[79]
Hu J P, Zeng C P, Liu G L, Luo H P, Qu L, Zhang R D. Biochem. Eng. J., 2018, 133: 96.
[80]
Wang K, Zhang S H, Chen Z, Bao R B. Chem. Eng. J., 2018, 339: 442.
[81]
Zhang T, Gannon S M, Nevin K P, Franks A E, Lovley D R. Environ. Microbiol., 2010, 12(4): 1011.
[82]
Ye J, Hu A D, Cheng X Y, Lin W F, Liu X, Zhou S G, He Z. Water Res., 2018, 143: 240.
[83]
Lens P N L, Visser A, Janssen A J H, Hulshoff Pol L W, Lettinga G. Crit. Rev. Environ. Sci. Technol., 1998, 28(1): 41.
[84]
Zhao C R, Chen N, Liu T, Feng C P. J. Clean. Prod., 2023, 392: 136332.
[85]
Pan J J, Tan L Y, Fan Q Q, Cao X Y, Huang J, Gu Y K, Chen T M. Environ. Sci. Pollut. Res., 2022, 30(7): 18312.
[86]
Cao J Y, Zhang G J, Mao Z S, Li Y Y, Fang Z H, Yang C. Int. J. Miner. Process., 2012, 106-109: 58.
[87]
Dar S A, Kleerebezem R, Stams A J M, Kuenen J G, Muyzer G. Appl. Microbiol. Biotechnol., 2008, 78(6): 1045.
[88]
Mizuno O, Li Y Y, Noike T. Water Sci. Technol., 1994, 30(8): 45.
[89]
O’Reilly C, Colleran E. FEMS Microbiol. Ecol., 2006, 56(1): 141.
[90]
Kouas M, Torrijos M, Schmitz S, Sousbie P, Sayadi S, Harmand J. Bioresour. Technol., 2018, 254: 40.
[91]
Braz G H R, Fernandez-Gonzalez N, Lema J M, Carballa M. Chemosphere, 2019, 222: 323.
[92]
Chojnacka A, Szczesny P, Blaszczyk M, Zielenkiewicz U, Detman A, Salamon A, Sikora A. PLOS ONE 2015, 10 (5):e0128008.
[93]
Suryawanshi P C, Chaudhari A B, Kothari R M. Crit. Rev. Biotechnol., 2010, 30(1): 31.
[94]
Vanwonterghem I, Jensen P D, Rabaey K, Tyson G W. Sci. Rep., 2015, 5: 8496.
[95]
Croce S, Wei Q, D’Imporzano G, Dong R J, Adani F. Biotechnol. Adv., 2016, 34(8): 1289.
[96]
Aoyagi T, Hamai T, Hori T, Sato Y, Kobayashi M, Sato Y, Inaba T, Ogata A, Habe H, Sakata T. AMB Express, 2017, 7: 142.
[97]
Papirio S, Villa-Gomez D K, Esposito G, Pirozzi F, Lens P N L. Crit. Rev. Environ. Sci. Technol., 2013, 43(23): 2545.
[98]
Kikot P, Viera M, Mignone C, Donati E. Hydrometallurgy, 2010, 104(3-4): 494.
[99]
Sharma K, Derlon N, Hu S H, Yuan Z G. Water Res., 2014, 49: 175.
[100]
Chen Y G, Luo J Y, Yan Y Y, Feng L Y. Appl. Energy, 2013, 102: 1197.
[101]
Dai X H, Hu C L, Zhang D, Dai L L, Duan N N. Bioresour. Technol., 2017, 245: 598.
[102]
O’Flaherty V, Mahony T, O’Kennedy R, Colleran E. Process. Biochem., 1998, 33(5): 555.
[103]
Chen J L, Ortiz R, Steele T W J, Stuckey D C. Biotechnol. Adv., 2014, 32(8): 1523.
[104]
Yuan H P, Chen Y, Dai X H, Zhu N W. Energy, 2016, 116: 677.
[105]
Liu C, Yuan X, Zeng G, Li W, Li J. Bioresour. Technol., 2008, 99(4): 882.
[106]
Aüllo T, Ranchou-Peyruse A, Ollivier B, Magot M. Front. Microbiol., 2013, 4: 362.
[107]
Willis G, Nancucheo I, Hedrich S, Giaveno A, Donati E, Johnson D B. FEMS Microbiol. Ecol., 2019, 95(12): fiz175.
[108]
Omil F, Bakker C D, Hulshoff Pol L W, Lettinga G. Environ. Technol., 1997, 18(3): 255.
[109]
Kaksonen A H, Puhakka J A. Eng. Life Sci., 2007, 7(6): 541.

Funding

National Natural Science Foundation of China(51878448)
Cangzhou Institute of Tiangong University(TGCYY-F-0103)
PDF(18694 KB)

Accesses

Citation

Detail

Sections
Recommended

/