High-Voltage Tolerant Electrolyte for Lithium-Ion Batteries

Luoqian Li, Mumin Rao, Hong Chen, Shijun Liao

Prog Chem ›› 2024, Vol. 36 ›› Issue (10) : 1456-1472.

PDF(18337 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(18337 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (10) : 1456-1472. DOI: 10.7536/PC240310
综述

High-Voltage Tolerant Electrolyte for Lithium-Ion Batteries

Author information +
History +

Abstract

With the rapid development of consumer intelligent electronic devices and electric vehicles, the development of lithium-ion batteries with high energy density has become a very urgent and important issue. Using high-voltage electrode materials and enhancing the work voltage of batteries is an effective pathway to realize the high energy density of battery. However, the conventional carbonate-based electrolyte will undergo oxidation reactions when the voltage is higher than 4.3 V, which will lead to electrolyte decomposition, and finally resulting in the failure of the battery. Actually, it has become one of the main bottlenecks in the development of high-voltage batteries. In order to solve this problem, researchers have carried out a lot of exploration in the design of high-voltage electrolyte in recent years, and made many important research achievements. This review introduces the failure mechanism of batteries under high voltage, and focuses on the strategies and research progress in suppressing high voltage failure from the perspective of electrolytes in recent years, indicates the challenges still existing in the design of high-voltage electrolyte, and finally prospects the future developments of high voltage lithium-ion battery electrolyte.

Contents

1 Introduction

2 Failure mechanism of high-voltage batteries

2.1 Electrolyte decomposition

2.2 Transition metal ion leaching

2.3 HF erosion

3 Progress on high-voltage electrolyte

3.1 Improvement of intrinsic stability of electrolyte

3.2 Construction of stable CEI Layer

3.3 Scavenge H2O and HF

4 Conclusion and outlook

Key words

lithium-ion batteries / high voltage electrolyte / solvent / additive / failure mechanism

Cite this article

Download Citations
Luoqian Li , Mumin Rao , Hong Chen , et al. High-Voltage Tolerant Electrolyte for Lithium-Ion Batteries[J]. Progress in Chemistry. 2024, 36(10): 1456-1472 https://doi.org/10.7536/PC240310

References

[1]
Cano Z P, Banham D, Ye S Y, Hintennach A, Lu J, Fowler M, Chen Z W. Nat. Energy, 2018, 3(4): 279.
[2]
Wang L L, Chen B B, Ma J, Cui G L, Chen L Q. Chem. Soc. Rev., 2018, 47(17): 6505.
[3]
Hu M, Pang X L, Zhou Z. J. Power Sources. 2013, 237: 229.
[4]
Song Y M, Han J G, Park S, Lee K T, Choi N S. J. Mater. Chem. A. 2014, 2(25): 9506.
[5]
Gauthier M, Carney T J, Grimaud A, Giordano L, Pour N, Chang H H, Fenning D P, Lux S F, Paschos O, Bauer C, Maglia F, Lupart S, Lamp P, Shao-Horn Y. J. Phys. Chem. Lett., 2015, 6(22): 4653.
[6]
Wang Y T, Xing L D, Li W S, Bedrov D. J. Phys. Chem. Lett., 2013, 4(22): 3992.
[7]
Tebbe J L, Fuerst T F, Musgrave C B. ACS Appl. Mater. Interfaces, 2016, 8(40): 26664.
[8]
Rinkel B L D, Hall D S, Temprano I, Grey C P. J. Am. Chem. Soc., 2020, 142(35): 15058.
[9]
Mao M, Huang B H, Li Q D, Wang C C, He Y B, Kang F Y. Nano Energy, 2020, 78: 105282.
[10]
Jia H, Xu Y B, Burton S D, Gao P Y, Zhang X H, Matthews B E, Engelhard M H, Zhong L R, Bowden M E, Xiao B W, Han K S, Wang C M, Xu W. ACS Appl. Mater. Interfaces, 2020, 12(49): 54893.
[11]
Piao J Y, Sun Y G, Duan S Y, Cao A M, Wang X L, Xiao R J, Yu X Q, Gong Y, Gu L, Li Y T, Liu Z J, Peng Z Q, Qiao R M, Yang W L, Yang X Q, Goodenough J B, Wan L J. Chem, 2018, 4(7): 1685.
[12]
Rynearson L, Antolini C, Jayawardana C, Yeddala M, Hayes D, Lucht B L. Angew. Chem. Int. Ed., 2024, 63(5): e202317109.
[13]
Sharifi-Asl S, Lu J, Amine K, Shahbazian-Yassar R. Adv. Energy Mater., 2019, 9(22): 1900551.
[14]
Morin H R, Graczyk D G, Tsai Y, Lopykinski S, Iddir H, Garcia J C, Dietz Rago N, Trask S, Flores L, Son S B, Zhang Z C, Johnson N M, Bloom I. ACS Appl. Energy Mater., 2020, 3(3): 2565.
[15]
Li D W, Wang Y K. J. Electrochem. Soc., 2020, 167(14): 140511.
[16]
Wang C, Xing L D, Vatamanu J, Chen Z, Lan G Y, Li W S, Xu K. Nat. Commun., 2019, 10: 3423.
[17]
Tornheim A, Sharifi-Asl S, Garcia J C, Bareño J, Iddir H, Shahbazian-Yassar R, Zhang Z C. Nano Energy, 2019, 55: 216.
[18]
Tebbe J L, Fuerst T F, Musgrave C B. J. Power Sources. 2015, 297: 427.
[19]
Dong Z Y, Wei J Q, Yue H Y, Zhang K X, Wang L, Li X N, Zhang Z T, Yang W G, Yang S T. J. Colloid Interface Sci., 2021, 595: 35.
[20]
Xing L D, Borodin O, Smith G D, Li W S. J. Phys. Chem. A, 2011, 115(47): 13896.
[21]
Wu Z, Zeng G, Yin J, Chiang C-L, Zhang B, Chen J, Yan Y, Zhang H, Zhou S, Wang Q, Kuai X, Lin Y-G, Qiao Y, Sun S-G. ACS Energy Lett., 2023, 8(11): 4806
[22]
Tan J, Matz J, Dong P, Shen J F, Ye M X. Adv. Energy Mater., 2021, 11(16): 2100046.
[23]
Cai W L, Deng Y, Deng Z W, Jia Y, Li Z H, Zhang X M, Xu C, Zhang X Q, Zhang Y, Zhang Q. Adv. Energy Mater., 2023, 13(31): 2301396.
[24]
Zhang W N, Guo Y Q, Yang T, Wang Y H, Kong X R, Liao X B, Zhao Y. Energy Storage Mater., 2022, 51: 317.
[25]
Su C C, He M N, Cai M, Shi J Y, Amine R, Rago N D, Guo J C, Rojas T, Ngo A T, Amine K. Nano Energy, 2022, 92: 106720.
[26]
Wan H L, Xu J J, Wang C S. Nat. Rev. Chem., 2023, 8(1): 30.
[27]
Zhang J B, Zhang H K, Weng S T, Li R H, Lu D, Deng T, Zhang S Q, Lv L, Qi J C, Xiao X Z, Fan L W, Geng S J, Wang F H, Chen L X, Noked M, Wang X F, Fan X L. Nat. Commun., 2023, 14: 2211.
[28]
Hai F, Yi Y K, Guo J Y, Gao X, Chen W T, Tian X L, Tang W, Li M T. Chem. Eng. J., 2023, 472: 144993.
[29]
Holoubek J, Yu M Y, Yu S C, Li M Q, Wu Z H, Xia D W, Bhaladhare P, Gonzalez M S, Pascal T A, Liu P, Chen Z. ACS Energy Lett., 2020, 5(5): 1438.
[30]
Xu J J, Zhang J X, Pollard T P, Li Q D, Tan S, Hou S, Wan H L, Chen F, He H X, Hu E Y, Xu K, Yang X Q, Borodin O, Wang C S. Nature, 2023, 614(7949): 694.
[31]
Han S Y, Liu Y, Zhang H, Fan C J, Fan W Z, Yu L, Du X Y. Surf. Interface Anal., 2020, 52(6): 364.
[32]
Zhi H Z, Xing L D, Zheng X W, Xu K, Li W S. J. Phys. Chem. Lett., 2017, 8(24): 6048.
[33]
Lee S H, Hwang J Y, Park S J, Park G T, Sun Y K. Adv. Funct. Mater., 2019, 29(30): 1902496.
[34]
Wang X Y, Xue W D, Xu Z, Li Y, Li Y, Huang R Y. J. Electrochem. Soc., 2019, 166(4): A802.
[35]
Wang X Y, Xue W D, Hu K, Li Y, Li Y, Huang R Y. ACS Appl. Energy Mater., 2018, 1( 10): 5347.
[36]
Farhat D, Lemordant D, Jacquemin J, Ghamouss F. J. Electrochem. Soc., 2019, 166(14): A3487.
[37]
Hilbig P, Ibing L, Winter M, Cekic-Laskovic I. Energies, 2019, 12(15): 2869.
[38]
Narayanan Kirshnamoorthy A, Oldiges K, Winter M, Heuer A, Cekic-Laskovic I, Holm C, Smiatek J. Phys. Chem. Chem. Phys., 2018, 20(40): 25701.
[39]
Farhat D, Ghamouss F, Maibach J, Edström K, Lemordant D. ChemPhysChem, 2017, 18(10): 1333.
[40]
Duncan H, Salem N, Abu-Lebdeh Y. J. Electrochem. Soc., 2013, 160(6): A838.
[41]
Ehteshami N, Eguia-Barrio A, de Meatza I, Porcher W, Paillard E. J. Power Sources. 2018, 397: 52.
[42]
Li S P, Fang S, Li Z W, Chen W Y, Dou H, Zhang X G. Batter. Supercaps, 2022, 5(4): e202100416.
[43]
Ding K, Begin E J, Yuan S Y, Zhong M Y, Wang Y, Zhang Y J, Zeng X Y, Bao J L, Wang Y G. Adv. Energy Mater., 2023, 13(45): 2302443.
[44]
Peng Z, Cao X, Gao P, Jia H, Ren X, Roy S, Li Z, Zhu Y, Xie W, Liu D, Li Q, Wang D, Xu W, Zhang J G. Adv. Fun Mater., 2020, 30(24): 2001285
[45]
Lu D, Li R H, Rahman M M, Yu P Y, Lv L, Yang S, Huang Y Q, Sun C C, Zhang S Q, Zhang H K, Zhang J B, Xiao X Z, Deng T, Fan L W, Chen L X, Wang J P, Hu E Y, Wang C S, Fan X L. Nature, 2024, 627(8002): 101.
[46]
Moon H, Cho S J, Yu D E, Lee S Y. ENERGY ENVIRONMENTAL Mater., 2023, 6(3): 12383.
[47]
Xu K. Chem. Rev., 2014, 114(23): 11503.
[48]
Dong L W, Liu Y P, Chen D J, Han Y P, Ji Y P, Liu J P, Yuan B T, Dong Y F, Li Q, Zhou S Y, Zhong S J, Liang Y F, Yang M Q, Yang C H, He W D. Energy Storage Mater., 2022, 44: 527.
[49]
Su C C, He M N, Shi J Y, Amine R, Yu Z, Cheng L, Guo J C, Amine K. Energy Environ. Sci., 2021, 14(5): 3029.
[50]
Xue L G, Ueno K, Lee S Y, Angell C A. J. Power Sources. 2014, 262: 123.
[51]
Hou W B, Zhu D L, Ma S D, Yang W J, Yan H, Dai Y. J. Power Sources. 2022, 517: 230683.
[52]
McGrath L M, Rohan J F. Molecules, 2020, 25(24): 6002.
[53]
Roy B, Pal U, Kar M, MacFarlane D R. Curr. Opin. Green Sustain. Chem., 2022, 37: 100676.
[54]
Sun L Y, Morales-Collazo O, Xia H, Brennecke J F. J. Phys. Chem. B, 2015, 119(48): 15030.
[55]
Hayyan M, Mjalli F S, Ali Hashim M, AlNashef I M, Mei T X. J. Ind. Eng. Chem., 2013, 19(1): 106.
[56]
Rath P C, Wang Y W, Patra J, Umesh B, Yeh T J, Okada S, Li J, Chang J K. Chem. Eng. J., 2021, 415: 128904.
[57]
Xu G J, Shangguan X H, Dong S M, Zhou X H, Cui G L. Angew. Chem. Int. Ed., 2020, 59(9): 3400.
[58]
Fan X L, Chen L, Ji X, Deng T, Hou S, Chen J, Zheng J, Wang F, Jiang J J, Xu K, Wang C S. Chem, 2018, 4(1): 174.
[59]
Han C X, Chen G S, Ma Y, Ma J, Shui X, Dong S M, Xu G J, Zhou X H, Cui Z L, Qiao L X, Cui G L. Energy Mater., 2023, 3(6): 300052.
[60]
Zheng J M, Engelhard M H, Mei D H, Jiao S H, Polzin B J, Zhang J G, Xu W. Nat. Energy, 2017, 2(3): 17012.
[61]
Yamada Y, Chiang C H, Sodeyama K, Wang J H, Tateyama Y, Yamada A. ChemElectroChem, 2015, 2(11): 1627.
[62]
Gabryelczyk A, Ivanov S, Bund A, Lota G. J. Energy Storage. 2021, 43: 103226.
[63]
Svensson E, Haruta M, Inaba M, Doi T. The Journal of Physical Chemistry C, 2023, 127: 7921.
[64]
Zhang L F, Chai L L, Zhang L, Shen M, Zhang X L, Battaglia V S, Stephenson T, Zheng H H. Electrochim. Acta, 2014, 127: 39.
[65]
Chen L, Nian Q S, Ruan D G, Fan J J, Li Y C, Chen S Q, Tan L J, Luo X, Cui Z Z, Cheng Y F, Li C H, Ren X D. Chem. Sci., 2023, 14(5): 1184.
[66]
Yamada Y, Furukawa K, Sodeyama K, Kikuchi K, Yaegashi M, Tateyama Y, Yamada A. J. Am. Chem. Soc., 2014, 136(13): 5039.
[67]
Wu Z C, Li R H, Zhang S Q lv L, Deng T, Zhang H, Zhang R X, Liu J J, Ding S H, Fan L W, Chen L X, Fan X L. Chem, 2023, 9(3): 650.
[68]
Takada K, Yamada Y, Watanabe E, Wang J H, Sodeyama K, Tateyama Y, Hirata K, Kawase T, Yamada A. ACS Appl. Mater. Interfaces, 2017, 9(39): 33802.
[69]
Lee K, Kwon S H, Kim J, Park E, Kim I, Ahn H C, Coskun A, Choi J W. ACS Energy Lett., 2024, 9(5): 2201.
[70]
Ren X D, Chen S R, Lee H, Mei D H, Engelhard M H, Burton S D, Zhao W G, Zheng J M, Li Q Y, Ding M S, Schroeder M, Alvarado J, Xu K, Meng Y S, Liu J, Zhang J G, Xu W. Chem, 2018, 4(8): 1877.
[71]
Junyoung Mun T Y, Chang Young Choi, Ji Heon Ryu X, Young Gyu Kim S M O. Electrochemical and Solid-State Let., 2010, 13: A109.
[72]
Yan G C, Li X H, Wang Z X, Guo H J, Peng W J, Hu Q Y. J. Solid State Electrochem., 2016, 20(2): 507.
[73]
Zhou J H, Lian X Y, Shi Q T, Liu Y, Yang X Q, Bachmatiuk A, Liu L J, Sun J Y, Yang R Z, Choi J H, Rummeli M H. Adv. Energy Sustain. Res., 2022, 3(1): 2100140.
[74]
Wu Y, Ren D, Liu X, Xu G L, Feng X, Zheng Y, Li Y, Yang M, Peng Y, Han X, Wang L, Chen Z, Ren Y, Lu L, He X, Chen J, Amine K, Ouyang M. Adv Energy Mater., 2021, 11(47):2102299.
[75]
He M N, Su C C, Peebles C, Feng Z X, Connell J G, Liao C, Wang Y, Shkrob I A, Zhang Z C. ACS Appl. Mater. Interfaces, 2016, 8(18): 11450.
[76]
Lai J W, Huang Y T, Zeng X Y, Zhou T T, Peng Z H, Li Z L, Zhang X, Ding K, Xu C, Ying Y, Cai Y P, Shang R, Zhao J W, Zheng Q F. ACS Energy Lett., 2023, 8(5): 2241.
[77]
Qian Y X, Kang Y Y, Hu S G, Shi Q, Chen Q, Tang X W, Xiao Y L, Zhao H J, Luo G F, Xu K, Deng Y H. ACS Appl. Mater. Interfaces, 2020, 12(9): 10443.
[78]
Yu Z Y, Bai M H, Song W F, Hong S, Hong B, Lai Y Q, Liu Y X. Ceram. Int., 2021, 47(1): 157.
[79]
Hsieh Y C, Thienenkamp J H, Huang C J, Tao H C, Rodehorst U, Hwang B J, Winter M, Brunklaus G. J. Phys. Chem. C, 2021, 125(1): 252.
[80]
Han J G, Park I, Cha J, Park S, Park S, Myeong S, Cho W, Kim S-S, Hong S Y, Cho J, Choi N S. ChemElectroChem, 2017, 4: 56.
[81]
Lim S H, Jung K, Lee K J, Mun J, Han Y K, Yim T. Int. J. Energy Res., 2021, 45(2): 2138.
[82]
Cha J, Han J G, Hwang J, Cho J, Choi N S. J. Power Sources. 2017, 357: 97.
[83]
Lu Z, Liu D, Dai K, Liu K L, Jing C Y, He W T, Wang W R, Zhang C X, Wei W F. Energy Storage Mater., 2023, 57: 316.
[84]
Wang X Y, Li S Y, Zhang W D, Wang D, Shen Z Y, Zheng J P, Zhuang H L, He Y, Lu Y Y. Nano Energy, 2021, 89: 106353.
[85]
Li Y X, Li W K, Shimizu R, Cheng D Y, Nguyen H, Paulsen J, Kumakura S, Zhang M H, Meng Y S. Adv. Energy Mater., 2022, 12(11): 2103033.
[86]
Wen S, Han Y, Wang P, Zhao D, Cui X, Zhang L, Li S. ACS Applied Energy Materials, 2021, 4: 12525.
[87]
Das S. J. Electroanal. Chem., 2020, 879.
[88]
Wu F L, Mullaliu A, Diemant T, Stepien D, Parac-Vogt T N, Kim J K, Bresser D, Kim G T, Passerini S. InfoMat, 2023, 5(8): e12462.
[89]
Cheng F Y, Zhang W, Li Q, Fang C, Han J T, Huang Y H. ACS Nano, 2023, 17(23): 24259.
[90]
Yang Y L, Wang H P, Zhu C L, Ma J M. Angew. Chem. Int. Ed., 2023, 62(22): e202300057.
[91]
Kong X B, Zhou R, Wang J, Zhao J B. ACS Appl. Energy Mater., 2019, 2(7): 4683.
[92]
Oh J, Kim J, Lee Y M, Kim J Y, Shin D O, Lee M J, Hong S, Lee Y G, Kim K M. Mater. Res. Bull., 2020, 132: 111008.
[93]
Zheng W C, Shi C G, Dai P, Huang Z, Lin J X, Chen H, Sun M L, Shen C H, Luo C X, Wang Q, Feng X, Wei Y M, Huang L, Sun S G. J. Mater. Chem. A. 2022, 10(41): 21912.
[94]
Xia J, Ma L, Dahn J R. J. Power Sources. 2015, 287: 377.
[95]
Janssen P, Schmitz R, Müller R, Isken P, Lex-Balducci A, Schreiner C, Winter M, Cekićler R, Is I, Schmitz R. Electrochim. Acta, 2014, 125: 101.
[96]
Zhao H J, Hu S G, Fan Y C, Wang Q R, Li J D, Yuan M M, Ma X Z, Wang J, Shao H Y, Deng Y H. Energy Storage Mater., 2024, 65: 103151.
[97]
Fan Z Q, Zhou X Z, Qiu J W, Yang Z, Lei C X, Hao Z Q, Li J H, Li L, Zeng R H, Chou S L. Angew. Chem. Int. Ed., 2023, 62(39): e202308888.
[98]
Ahn J, Yim T. J. Alloys Compd., 2021, 867: 159153.
[99]
Lan X W, Yang S S, Meng T, Zhang C S, Hu X L. Adv. Energy Mater., 2023, 13(16): 2203449.
[100]
Yuan X D, Dong T, Liu J X, Cui Y Y, Dong H T, Yuan D, Zhang H T. Angew. Chem. Int. Ed., 2023, 62(30): e202304121.
[101]
Zhang J B, Liu C W, Zhang H K, Li R H, Lv L, Lu D, Zhang S Q, Xiao X Z, Geng S J, Wang F H, Deng T, Chen L X, Fan X L. J. Mater. Chem. A. 2023, 11(16): 8766.
[102]
Jia R L, Dai H L, Tu X C, Sun C, Sun S H, Lai C. Adv. Energy Mater., 2023, 13(47): 2302747.
[103]
Lv L, Zhang H K, Wang J Z, Lu D, Zhang S Q, Li R H, Deng T, Chen L X, Fan X L. Small, 2024, 20(2): 2305464.
[104]
Qin Y P, Cheng H Y, Zhou J J, Liu M, Ding X L, Li Y H, Huang Y J, Chen Z L, Shen C, Wang D Y, Liu Y, Guo B K. Energy Storage Mater., 2023, 57: 411.
[105]
Li S Y, Zhang W D, Wu Q, Fan L, Wang X Y, Wang X, Shen Z Y, He Y, Lu Y Y. Angew. Chem. Int. Ed., 2020, 59(35): 14935.
[106]
Zheng Y Z, Xu N B, Chen S J, Liao Y, Zhong G M, Zhang Z R, Yang Y. ACS Appl. Energy Mater., 2020, 3(3): 2837.
[107]
Lu D, Lei X C, Weng S T, Li R H, Li J D, Lv L, Zhang H K, Huang Y Q, Zhang J B, Zhang S Q, Fan L W, Wang X F, Chen L X, Cui G L, Su D, Fan X L. Energy Environ. Sci., 2022, 15(8): 3331.
[108]
Ren Z Q, Qiu H Y, Fan C, Zhang S H, Zhang Q W, Ma Y L, Qiao L X, Wang S T, Xu G J, Cui Z L, Cui G L. Adv. Funct. Mater., 2023, 33(36): 2302411.
[109]
Huang T, Zheng X Z, Yan C F, Pan Y, Wu M X. J. Power Sources. 2023, 580: 233437.
[110]
Jiang H Z, Yang C, Chen M, Liu X W, Yin L M, You Y, Lu J. Angew. Chem. Int. Ed., 2023, 62(14): e202300238.
[111]
Liu J D, Wu M G, Li X, Wu D X, Wang H P, Huang J D, Ma J M. Adv. Energy Mater., 2023, 13(15): 2300084.
[112]
Shi C G, Shen C H, Peng X X, Luo C X, Shen L F, Sheng W J, Fan J J, Wang Q, Zhang S J, Xu B B, Xian J J, Wei Y M, Huang L, Li J T, Sun S G. Nano Energy, 2019, 65: 104084.
[113]
Bouayad H, Wang Z, Dupré N, Dedryvère R, Foix D, Franger S, Martin J F, Boutafa L, Patoux S, Gonbeau D, Guyomard D. J. Phys. Chem. C, 2014, 118(9): 4634.
[114]
Jiang S, Wu H H, Yin J Y, Wei Z H, Wu J H, Wei L, Gao D F, Xu X, Gao Y F. ChemSusChem, 2021, 14(9): 2067.
[115]
Fu A, Xu C J, Lin J D, Su Y, Zhang H T, Wu D Y, Zhang X Z, Xia M, Zhang Z R, Zheng J M, Yang Y. J. Mater. Chem. A. 2023, 11(7): 3703.
[116]
Liu X, Fu A, Lin J D, Zou Y, Liu G P, Wang W T, Wu D Y, Yang Y, Zheng J M, Ye L Y. ACS Appl. Energy Mater., 2023, 6(3): 2001.

Funding

National Natural Science Foundation of China(U22A20419)
National Natural Science Foundation of China(51971094)
Guangdong Provincial Key Research and Development Program(2023B0909060003)
Guangdong Provincial Key Research and Development Program(2020B0909040003)
PDF(18337 KB)

Accesses

Citation

Detail

Sections
Recommended

/