Development of Protein Separation Membranes and Their Progress

Junping Miao, Zhaoqian Zhang, Shaopeng Xin, Yunxia Hu

Prog Chem ›› 2025, Vol. 37 ›› Issue (2) : 195-210.

PDF(24005 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(24005 KB)
Prog Chem ›› 2025, Vol. 37 ›› Issue (2) : 195-210. DOI: 10.7536/PC240312
Review

Development of Protein Separation Membranes and Their Progress

Author information +
History +

Abstract

Membrane separation technology has been intensively used in numerous applications such as seawater desalination, water treatment and reuse, fine separation and product concentration, biomedical treatment and so forth owing to its low operation temperature, easy operation process, modularity, and high separation efficiency. However, due to membrane materials, membrane structures, and membrane manufacturing technology, the trade-off behavior between the water flux and the rejection rate of conventional separation membranes has become a technical bottleneck. The preparation of high-performance separation membranes using proteins as membrane materials is expected to break the trade-off behavior of conventional separation membranes. Protein separation membrane works super-efficiently for the target separation and transport, as well as the antibacterial and antifouling properties, where an emerging membrane material of proteins can transport the solute due to their inherent specific water or ion channels, rich binding sites with metal ions, regular nanostructures or low-cost and multifunctional. In this review, the widely implemented membrane materials and fabrication strategies for protein separation membranes are summarized in detail, and the research progress of the various protein separation membranes is described. Furthermore, the challenges faced by protein separation membranes are comprehensively reviewed. This review provides some insights into the construction and prospect of protein separation membranes.

Contents

1 Introduction

2 Novel protein materials for membrane fabrication

2.1 Protein containing channels

2.2 Protein containing rich binding sites with metal ions

2.3 Protein containing regular nanostructures

2.4 Low-cost and multifunctional protein

3 Fabrication methods of protein separation membranes

3.1 Amyloid-like assembly

3.2 Interfacial polymerization

3.3 Layer-by-layer self-assembly

3.4 Mussel-inspired biomimetic co-deposition

3.5 Other methods

4 Research progress of protein separation membranes

4.1 Aquaporin biomimetic separation membranes

4.2 Lysozyme separation membranes

4.3 Protein separation membrane for chelating metal ions

4.4 Other protein separation membrane

5 Conclusion and outlook

Key words

protein / protein separation membrane / permeability / selectivity / construction

Cite this article

Download Citations
Junping Miao , Zhaoqian Zhang , Shaopeng Xin , et al. Development of Protein Separation Membranes and Their Progress[J]. Progress in Chemistry. 2025, 37(2): 195-210 https://doi.org/10.7536/PC240312

References

[1]
Elimelech M, Phillip W A. Science, 2011, 333(6043): 712.
[2]
Logan B E, Elimelech M. Nature, 2012, 488(7411): 313.
[3]
Fane A G, Wang R, Hu M X. Angew. Chem. Int. Ed., 2015, 54(11): 3368.
[4]
Lin L G, Zheng T T, Qiang R R. China Text. Lead., 2018(S1): 99.
(林立刚, 郑甜甜, 强荣荣. 纺织导报, 2018(S1): 99.).
[5]
Godiya C B, Park B J. Environ. Chem. Lett., 2022, 20(3): 1801.
[6]
Park H B, Kamcev J, Robeson L M, Elimelech M, Freeman B D. Science, 2017, 356(6343): eaab0530.
[7]
Hu Y. Front. Membr. Sci. Technol., 2023, 2: 1177528.
[8]
Zhang R, Tian J, Gao S, Van der Bruggen B. J. Mater. Chem. A, 2020, 8(18): 8831.
[9]
Ishibashi K. Aquaporins, 2009, 190: 251.
[10]
Tang C, Wang Z, Petrinić I, Fane A G, Hélix-Nielsen C. Desalination, 2015, 368: 89.
[11]
Li X, Wang R, Wicaksana F, Tang C, Torres J, Fane A G. J. Membr. Sci., 2014, 450: 181.
[12]
Porter C J, Werber J R, Zhong M, Wilson C J, Elimelech M. ACS Nano, 2020, 14(9): 10894.
[13]
Gu Z Y, Gong C, Yang W Z, Yu S L, Yao Q H. Chem. Ind. Eng. Prog., 2018, 37(3): 1037 (in Chinese).
(顾正阳, 龚超, 杨望臻, 于水利, 姚启翰. 化工进展, 2018, 37(3): 1037.
[14]
Zeng Y J, Zhang L, Chen H L. Strategic Study of CAE., 2014, 16(7): 10.
(曾艳军, 张林, 陈欢林. 中国工程科学, 2014, 16(7): 10.).
[15]
Kaufman Y, Grinberg S, Linder C, Heldman E, Gilron J, Shen Y, Kumar M, Lammertink R G H, Freger V. J. Membr. Sci., 2014, 457: 50.
[16]
Wang H, Chung T S, Tong Y W, Meier W, Chen Z, Hong M, Jeyaseelan K, Armugam A. Soft Matter, 2011, 7(16): 7274.
[17]
Duong P H H, Chung T S, Jeyaseelan K, Armugam A, Chen Z, Yang J, Hong M. J. Membr. Sci., 2012, 409: 34.
[18]
Wang H, Chung T S, Tong Y W, Jeyaseelan K, Armugam A, Chen Z, Hong M, Meier W. Small, 2012, 8(8): 1185.
[19]
Ding W, Cai J, Yu Z, Wang Q, Xu Z, Wang Z, Gao C. J. Mater. Chem. A, 2015, 3(40): 20118.
[20]
Kaufman Y, Grinberg S, Linder C, Heldman E, Gilron J, Freger V. Langmuir, 2013, 29(4): 1152.
[21]
Sun G, Chung T S, Jeyaseelan K, Armugam A. Colloids Surf. B, 2013, 102: 466.
[22]
Lee C S, Kim I, Jang J W, Yoon D S, Lee Y J. Adv. Sci., 2021, 8(20): e2101882.
[23]
Sun G, Chung T S, Jeyaseelan K, Armugam A. RSC Adv., 2013, 3(2): 473.
[24]
Qi S, Wang R, Chaitra G K M, Torres J, Hu X, Fane A G. J. Membr. Sci., 2016, 508: 94.
[25]
Zhao Y, Qiu C, Li X, Vararattanavech A, Shen W, Torres J, Hélix-Nielsen C, Wang R, Hu X, Fane A G, Tang C Y. J. Membr. Sci., 2012, 423: 422.
[26]
Li X, Chou S, Wang R, Shi L, Fang W, Chaitra G, Tang C Y, Torres J, Hu X, Fane A G. J. Membr. Sci., 2015, 494: 68.
[27]
Wang M, Wang Z, Wang X, Wang S, Ding W, Gao C. Environ. Sci. Technol., 2015, 49(6): 3761.
[28]
Sun G, Chung T S, Chen N, Lu X, Zhao Q. RSC Adv., 2013, 3(24): 9178.
[29]
Li J M, Liu Z H, Shang Z L. Journal of Hebei Normal University, 2005, 29(5): 519.
(李俊敏, 刘朝晖, 尚忠林. 河北师范大学学报, 2005, 29(5): 519.).
[30]
Saeki D, Yamashita T, Fujii A, Matsuyama H. Desalination, 2015, 375: 48.
[31]
Doyle D A, Cabral J M, Pfuetzner R A, Kuo A, Gulbis J M, Cohen S L, Chait B T, MacKinnon R. Science, 1998, 280(5360): 69.
[32]
Wang K W. Science, 2006, 4: 13.
(王克威. 科学, 2006, 4: 13.)
[33]
Noskov S Y, Roux B. Biophys. Chem., 2006, 124(3): 279.
[34]
Finkelstein A, Andersen O S. J. Membr. Biol., 1981, 59(3): 155.
[35]
Jensen M O, Mouritsen O G. Biophys. J., 2006, 90(7): 2270.
[36]
Uzun L, Türkmen D, Yılmaz E, Bektaş S, Denizli A. Colloids Surf. A Physicochem. Eng. Aspects, 2008, 330(2-3): 161.
[37]
Yang S, Fu S, Liu H, Zhou Y, Li X. J Appl. Polym. Sci., 2011, 119(2): 1204.
[38]
Qin L, Yan L, Chen J, Liu T, Yu H, Du B. Ind. Eng. Chem. Res., 2016, 55(27): 7344.
[39]
Chen Y, Zhao W, Yang X, Li Y. Polym. Bull., 2019, 76(3): 1081.
[40]
Song X, Niu Y, Zhang P, Zhang C, Zhang Z, Zhu Y, Qu R. Fuel, 2017, 199: 91.
[41]
Yang F, Yang P. Macromol. Rapid Commun., 2022, 43(3): 2100669.
[42]
Al-Sogair F M, Operschall B P, Sigel A, Sigel H, Schnabl J, Sigel R K O. Chem. Rev., 2011, 111(8): 4964.
[43]
Sigel A, Operschall B P, Sigel H. Coordin. Chem. Rev., 2012, 256(1-2): 260.
[44]
Wan S, Ma Z, Xue Y, Ma M, Xu S, Qian L, Zhang Q. Ind. Eng. Chem. Res., 2014, 53(9): 3629.
[45]
Anirudhan T S, Shainy F, Deepa J R. Chem. Ecol., 2019, 35(3): 235.
[46]
Hua R, Li Z. Chem. Eng. J., 2014, 249: 189.
[47]
Murphy J M, Powell B A, Brumaghim J L. Coord. Chem. Rev., 2020, 412: 213253.
[48]
Sun Y Y, Tang K M, Yang M Y, Zhu L J. Bulletin of Sericulture, 2016, 47(2): 26.
(孙越宜, 唐科梦, 杨明英, 朱良均. 蚕桑通报, 2016, 47(2): 26.)
[49]
Schneider C, Rajmohan R S, Zarebska A, Tsapekos P, Hélix-Nielsen C. Sci. Total Environ., 2019, 647: 1021.
[50]
Hao M H. Master Dissertation of Shandong Normal University, 2019.
(郝明浩. 山东师范大学硕士论文, 2019.).
[51]
Zhang Q, Zhang S, Zhao Z, Liu M, Yin X, Zhou Y, Wu Y, Peng Q. J. Clean. Prod., 2020, 255: 120297.
[52]
Peydayesh M, Bolisetty S, Mohammadi T, Mezzenga R. Langmuir, 2019, 35(11): 4161.
[53]
Peydayesh M, Pauchard M, Bolisetty S, Stellacci F, Mezzenga R. Chem. Commun., 2019, 55(74): 11143.
[54]
Pan S, Zhai Z, Yang K, Xiang Y, Tang S, Zhang Y, Jiao T, Zhang Q, Yuan D. Sep. Purif. Technol., 2022, 289: 120806.
[55]
Bolisetty S, Reinhold N, Zeder C, Orozco M N, Mezzenga R. Chem. Commun., 2017, 53(42): 5714.
[56]
Bolisetty S, Mezzenga R. Nat. Nanotechnol., 2016, 11(4): 365.
[57]
Wu C X. Master Dissertation of Soochow University, 2020.
(吴晨星. 苏州大学硕士论文, 2020.).
[58]
Gore P M, Naebe M, Wang X, Kandasubramanian B. Chem. Eng. J., 2019, 374: 437.
[59]
Chen T. Master Dissertation of Southwest Petroleum University, 2015.
(陈婷. 西南石油大学硕士论文, 2015).
[60]
Sun D, Meng G, Sun S, Guo W, Hai J, Su J, Song Y, Chen F, Wang B. Environ. Sci. Nano, 2021, 8(11): 3408.
[61]
Li Z, Zhou G, Dai H, Yang M, Fu Y, Ying Y, Li Y. J. Mater. Chem. A, 2018, 6(8): 3402.
[62]
Mruthunjayappa M H, Kotrappanavar N S, Mondal D. J. Hazard. Mater., 2022, 424: 127561.
[63]
Rastogi S, Kandasubramanian B. Environ. Sci. Pollut. Res., 2020, 27(1): 210.
[64]
Gao A, Xie K, Song X, Zhang K, Hou A. Ecol. Eng., 2017, 99: 343.
[65]
Ling S, Jin K, Kaplan D L, Buehler M J. Nano Lett, 2016, 16(6): 3795.
[66]
Wang Y, Guo J, Zhou L, Ye C, Omenetto F G, Kaplan D L, Ling S. Adv. Funct. Mater., 2018, 28(52): 1805305.
[67]
Lv L, Han X, Zong L, Li M, You J, Wu X, Li C. ACS Nano, 2017, 11(8): 8178.
[68]
Zhao F, Peydayesh M, Ying Y, Mezzenga R, Ping J. ACS Appl. Mater. Interfaces, 2020, 12(21): 24521.
[69]
Ling S, Qin Z, Huang W, Cao S, Kaplan D L, Buehler M J. Sci. Adv., 2017, 3(4): e1601939.
[70]
Tan X, Zhao W, Mu T. Green Chem., 2018, 20(15): 3625.
[71]
Vinayagam V, Murugan S, Kumaresan R, Narayanan M, Sillanpää M, Vo D V N, Kushwaha O S. Chemosphere, 2022, 301: 134635.
[72]
Chanana M, Correa-Duarte M A, Liz-Marzán L M. Small, 2011, 7(18): 2650.
[73]
An B, Wu X, Li M, Chen Y, Li F, Yan X, Wang J, Li C, Brennan C. Int. J. Food Sci. Technol., 2016, 51(12): 2621.
[74]
Kong B, Xiong Y L. J. Agric. Food Chem., 2006, 54(16): 6059.
[75]
Zhang S, Zhang J, Fang W, Zhang Y, Wang Q, Jin J. Nano Lett, 2018, 18(10): 6563.
[76]
Zhang J, Zhou K, Wang Q. Small, 2016, 12(36): 4955.
[77]
Zhou K, Li F, Dai G, Meng C, Wang Q. Biomacromolecules, 2013, 14(8): 2593.
[78]
Bruckman M A, Soto C M, McDowell H, Liu J L, Ratna B R, Korpany K V, Zahr O K, Blum A S. ACS Nano, 2011, 5(3): 1606.
[79]
Andrews S C, Arosio P, Bottke W, Briat J F, Darl M v, Harrison P M, Laulhkre J P, Levi S, Lobremx S, Yewdall S J. J. Inorg. Biochem., 1992, 41: 161.
[80]
van Rijn P, Tutus M, Kathrein C, Mougin N C, Park H, Hein C, Schürings M P, Böker A. Adv. Funct. Mater., 2014, 24(43): 6762.
[81]
Peng X, Jin J, Nakamura Y, Ohno T, Ichinose I. Nat. Nanotechnol., 2009, 4(6): 353.
[82]
Abe S, Maity B, Ueno T. Chem. Commun., 2016, 52(39): 6496.
[83]
Wimley W C. Curr. Opin. Struct. Biol., 2003, 13(4): 404.
[84]
Lian Z X, Ma Z S, Wei J, Liu H. Process. Biochem., 2012, 47(2): 201.
[85]
Yang F, Tao F, Li C, Gao L, Yang P. Nat Commun, 2018, 9: 5443.
[86]
Fang J, Liu G, Chen C, Lin C, Zhang B, Jin H, Chen Y, Lu J, Zhu L. Sep. Purif. Technol., 2021, 254: 117585.
[87]
Wu M, Yang F, Yang J, Zhong Q, Körstgen V, Yang P, Müller-Buschbaum P, Xu Z K. Nano Lett., 2020, 20(12): 8760.
[88]
Yang F, Yan Z, Zhao J, Miao S, Wang D, Yang P. J. Mater. Chem. A, 2020, 8(6): 3438.
[89]
Gu J, Su Y, Liu P, Li P, Yang P. ACS Appl. Mater. Interfaces, 2017, 9(1): 198.
[90]
Huang Y N, Yang P, Yang F C, Chang C Y. J. Membr. Sci., 2021, 635: 119537.
[91]
Remanan S, Samantaray P K, Bose S, Das N C. Microporous Mesoporous Mater., 2021, 316: 110945.
[92]
Zhao J, Zhang Y, Su Y, Liu J, Zhao X, Peng J, Jiang Z. J. Membr. Sci., 2013, 445: 1.
[93]
Chen X, Hu Y, Wilson G S. Biosens. Bioelectron., 2002, 17(11-12): 1005.
[94]
Salahshoori I, Montazeri N, Yazdanbakhsh A, Golriz M, Farhadniya R, Khonakdar H. ACS Appl. Mater. Interfaces, 2023, 15(26): 31185.
[95]
Rastogi L, Arunachalam J. Colloids Surf. B Biointerfaces, 2013, 108: 134.
[96]
Zhu L P, Jiang J H, Zhu B K, Xu Y Y. Colloids Surf B Biointerfaces, 2011, 86(1): 111.
[97]
Ma F, Cai C, Zhao X, Ahmad H, Liu C. Desalination, 2020, 496: 114732.
[98]
Liu J, Chu T, Cheng M, Su Y, Zou G, Hou S. J. Membr. Sci., 2023, 668: 121198.
[99]
Homaeigohar S, Tsai T Y, Zarie E S, Elbahri M, Young T H, Boccaccini A R. Mater. Sci. Eng. C, 2020, 116: 111248.
[100]
Yu X, Sun S, Zhou L, Miao Z, Zhang X, Su Z, Wei G. Nanomaterials, 2019, 9(2): 276.
[101]
Sipe J D, Cohen A S. J. Struct. Biol., 2000, 130(2-3): 88.
[102]
Li C, Qin R, Liu R, Miao S, Yang P. Biomater Sci, 2018, 6(3): 462.
[103]
Li C, Xu L, Zuo Y, Yang P. Biomater Sci, 2018, 6(4): 836.
[104]
Han Q, Tao F, Yang P. Macromol Biosci, 2023, 23(11): 2300172.
[105]
Tao F, Han Q, Liu K Q, Yang P. Angew. Chem. Int. Ed., 2017, 56(43): 13440.
[106]
Xu Y, Liu Y, Hu X, Qin R, Su H, Li J, Yang P. Angew. Chem. Int. Ed., 2020, 132(7): 2872.
[107]
Hu X, Tian J, Li C, Su H, Qin R, Wang Y, Cao X, Yang P. Adv. Mater., 2020, 32(23): e2000128.
[108]
Gao A, Wu Q, Wang D, Ha Y, Chen Z, Yang P. Adv. Mater., 2016, 28(3): 579.
[109]
Gu J, Miao S, Yan Z, Yang P. Colloid Interface Sci Commun., 2018, 22: 42.
[110]
Yang P. Macromol Biosci, 2012, 12(8): 1053.
[111]
Liu R, Zhao J, Han Q, Hu X, Wang D, Zhang X, Yang P. Adv. Mater., 2018, 30(38): 1802851.
[112]
Liu Y C, Tao F, Miao S T, Yang P. Acc. Chem. Res., 2021, 54(15): 3016.
[113]
Wang D, Ha Y, Gu J, Li Q, Zhang L, Yang P. Adv. Mater., 2016, 28(34): 7414.
[114]
Saif B, Zhang W, Zhang X, Gu Q, Yang P. ACS Nano, 2019, 13(7): 7736.
[115]
Wittbecker E L, Morgan P W. J. Polym. Sci., 1959, 40(137): 289.
[116]
Cao Y, Ren Y L, Guo S W, Wan Y H, Luo J Q. Chemical Industry and Engineering progress, 2020, 39(6): 2125.
(曹阳, 任玉灵, 郭世伟, 万印华, 罗建泉. 化工进展, 2020, 39(6): 2125.)
[117]
Wang J, Qin L, Lin J, Zhu J, Zhang Y, Liu J, Van der Bruggen B, Chem. Eng. J., 2017, 323: 56.
[118]
Gui L, Dong J, Fang W, Zhang S, Zhou K, Zhu Y, Zhang Y, Jin J. Nano Lett., 2020, 20(8): 5821.
[119]
Liang Z, Yun Y, Wang M, Liu G, Lu P, Yang W, Li C. RSC Adv., 2019, 9(19): 10715.
[120]
Yang X L. Master Dissertation of Hebei University of Technology, 2015.
(杨秀丽. 河北工业大学硕士论文, 2015).
[121]
He S, Liang J M, Hu H L, Yuan J N, He J B, Ni Z F. Materials Review, 2016, 30(6): 1.
(何帅, 梁靖媚, 胡惠兰, 袁嘉男, 何剑波, 倪照飞. 材料导报, 2016, 30(6): 1.).
[122]
Reurink D M, Du F, Górecki R, Roesink H D W, de Vos W M. Membranes, 2020, 10(5): 103.
[123]
Wang S, Cai J, Ding W, Xu Z, Wang Z. Membranes, 2015, 5(3): 369.
[124]
Liang C, Zhao L, Qiao L, Du K. J Hazard. Mater., 2022, 425: 127886.
[125]
Hu Y X, An H X, Zhu H C, Gong G H. EP 115920649A, 2021.
(胡云霞, 安红匣, 朱寒超, 龚耿浩. EP 115920649A, 2021.).
[126]
Tian X X, Wang X, Peng W, Lu X L, Yu Y, Yuan X T. Membrane Science and Technology, 2021, 41(1): 152.
(田欣欣, 王暄, 彭维, 吕晓龙, 于越, 袁晓彤. 膜科学与技术, 2021, 41(1): 152.)
[127]
Lee H, Dellatore S M, Miller W M, Messersmith P B. Science, 2007, 318(5849): 426.
[128]
Liu Y, Bai Z, Lin G, Xia Y, Tong L, Li T, Liu C, Liu S, Jia K, Liu X. Appl. Surf. Sci., 2022, 602: 154264.
[129]
An H X. Master Dissertation of Tiangong University, 2023.
(安红匣. 天津工业大学硕士论文, 2023.).
[130]
Zhu H C. Master Dissertation of Tiangong University, 2022.
(朱寒超. Master Dissertation of Tiangong University, 2022.).
[131]
Tan C J, Tong Y W. Anal Bioanal Chem, 2007, 389(2): 369.
[132]
Tan C J, Chua H G, Ker K H, Tong Y W. Anal. Chem., 2008, 80(3): 683.
[133]
Xie W, He F, Wang B, Chung T S, Jeyaseelan K, Armugam A, Tong Y W. J. Mater. Chem. A, 2013, 1(26): 7592.
[134]
Zhao Y, Vararattanavech A, Li X, HélixNielsen C, Vissing T, Torres J, Wang R, Fane A G, Tang C Y. Environ. Sci. Technol., 2013, 47(3): 1496.
[135]
Discher B M, Won Y Y, Ege D S, Lee J C M, Bates F S, Discher D E, Hammer D A. Science, 1999, 284(5417): 1143.
[136]
Zhang W, Qin Y, Shi W, Hu Y. J. Phys. Chem. B, 2020, 124(52): 11939.
[137]
Chen Y, Ren X, Huang M, Li Y. Chemosphere, 2023, 333: 138983.
[138]
Li Y, Qi S, Tian M, Widjajanti W, Wang R. Desalination, 2019, 467: 103.
[139]
Fuwad A, Ryu H, Lee J H, Kim D, Yoo Y E, Kim Y R, Kim S M, Jeon T J. Desalination, 2019, 452: 9.
[140]
Grzelakowski M, Cherenet M F, Shen Y, Kumar M. J. Membr. Sci., 2015, 479: 223.
[141]
Zhou Z, Wang Q, Qin Y, Hu Y. Environ. Sci. Technol., 2023, 57(14): 5999.
[142]
Li X, Loh C H, Wang R, Widjajanti W, Torres J. J. Membr. Sci., 2017, 525: 257.
[143]
Li C, Lu D, Deng J, Zhang X, Yang P. Adv. Mater., 2019, 31(46): e1903973.
[144]
Ha Y, Yang J, Tao F, Wu Q, Song Y, Wang H, Zhang X, Yang P. Adv. Funct. Mater., 2018, 28(4): 1704476.
[145]
Kushner A M, Guan Z. Angew. Chem. Int. Ed., 2011, 50(39): 9026.
[146]
Liu Y, Miao S, Ren H, Tian L, Zhao J, Yang P. Nat Protoc, 2024, 19(2): 539.
[147]
Fan Y, Lan H, Qi Z, Liu R, Hu C. Chemosphere, 2022, 297: 134241.
[148]
Bolisetty S, Coray N M, Palika A, Prenosil G A, Mezzenga R. Environ Sci Water Res. Technol, 2020, 6(12): 3249.
[149]
Ansari S, Ahmed N, Mahar R B, Khatri Z, Khatri M. Environ. Sci. Pollut. Res., 2022, 29(1): 653.
[150]
Wang Y, Wu N, Wang Y, Ma H, Zhang J, Xu L, Albolkany M K, Liu B. Nat. Commun., 2019, 10: 2500.
[151]
Meng C, Chen Q, Tan H, Sheng Y, Liu H. J. Membr. Sci., 2018, 555: 398.
[152]
Meng C, Sheng Y, Chen Q, Tan H, Liu H. J. Membr. Sci., 2017, 526: 25.
[153]
Meng C, Chen Q, Li X, Liu H. J. Membr. Sci., 2019, 582: 83.
[154]
Liu J, Yuan W, Li C, Cheng M, Su Y, Xu L, Chu T, Hou S. ACS Appl. Mater. Interfaces, 2021, 13(41): 49215.
[155]
Sun M, Liu S, Wei X, Wan S, Huang M, Song T, Lu Y, Weng X, Lin Z, Chen H, Song Y, Yang C. Angew. Chem. Int. Ed., 2021, 133(18): 10354.

Funding

National Natural Science Foundation of China(21476249)
Natural Science Foundation of Tianjin(18JCZDJC37100)
PDF(24005 KB)

Accesses

Citation

Detail

Sections
Recommended

/