Synthesis and Ring-Opening Metathesis Polymerization of Bio-Based Cyclic Olefins

Guangyu Pan, Xin Hu, Jie Yin, Yihuan Liu, Kai Guo, Ning Zhu

Prog Chem ›› 2024, Vol. 36 ›› Issue (12) : 1956-1971.

PDF(40638 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(40638 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (12) : 1956-1971. DOI: 10.7536/PC240323
Review

Synthesis and Ring-Opening Metathesis Polymerization of Bio-Based Cyclic Olefins

Author information +
History +

Abstract

The transformations of biomass into bio-based polymeric materials have attracted growing interest from chemistry and material engineering. Ring-opening metathesis polymerizations (ROMP) of cyclic olefins have been identified as the powerful toolbox for synthesis of polyolefins containing double bonds in the polymer mainchains. Recently, a series of novel cyclic olefins are designed by using biomass as the feedstock, and high-performance polyolefins are prepared via ROMP of biomass derived monomers. This review summaries the advances in conversions of cellulose, hemicellulose, lignin, terpenes, vegetable oils, amino acids into norbornene derivatives, oxanorbornene derivatives, cyclooctene derivatives, macrocyclic olefins, etc. Synthesis and properties of bio-based polyolefins via ROMP of biomass derived monomers mentioned above are highlighted. Moreover, the challenges and opportunities are discussed with the aim to promote the development of bio-based polymeric materials.

Contents

1 Introduction

2 Cellulose-based cyclic olefins and ROMP

3 Hemicellulose-based cyclic olefins and ROMP

4 Lignin-based cyclic olefins and ROMP

5 Terpenes-based cyclic olefins and ROMP

6 Vegetable oils-based cyclic olefins and ROMP

7 Amino acids-based cyclic olefins and ROMP

8 Conclusion and outlook

Key words

biomass transformation / bio-based material / cyclic olefin / ring-opening metathesis polymerization / polyolefin

Cite this article

Download Citations
Guangyu Pan , Xin Hu , Jie Yin , et al . Synthesis and Ring-Opening Metathesis Polymerization of Bio-Based Cyclic Olefins[J]. Progress in Chemistry. 2024, 36(12): 1956-1971 https://doi.org/10.7536/PC240323

References

[1]
Cywar R M, Rorrer N A, Hoyt C B, Beckham G T, Chen E Y X. Nat. Rev. Mater., 2022, 7(2): 83.
[2]
Geyer R, Jambeck J R, Law K L. Sci. Adv., 2017, 3(7): e1700782.
[3]
Zhu Y Q, Romain C, Williams C K. Nature, 2016, 540(7633): 354.
[4]
Li T, Chen C J, Brozena A H, Zhu J Y, Xu L X, Driemeier C, Dai J Q, Rojas O J, Isogai A, Wågberg L, Hu L B. Nature, 2021, 590(7844): 47.
[5]
Zhang Z R, Song J L, Han B X. Chem Rev., 2017, 117(10): 6834.
[6]
Upton B M, Kasko A M. Chem. Rev., 2016, 116(4): 2275.
[7]
Jing Y X, Guo Y, Xia Q N, Liu X H, Wang Y Q. Chem, 2019, 5(10): 2520.
[8]
Wang S Y, Cheng A H, Liu F H, Zhang J J, Xia T, Zeng X, Fan W, Zhang Y. Ind. Chem. Mater., 2023, 1(2): 188.
[9]
Gérardy R, Debecker D P, Estager J, Luis P, Monbaliu J C M. Chem. Rev., 2020, 120(15): 7219.
[10]
Delidovich I, Hausoul P J C, Deng L, Pfützenreuter R, Rose M, Palkovits R. Chem. Rev., 2016, 116(3): 1540.
[11]
Ma X Z, Luo Q, Qin D D, Chen J, Zhu J, Yan N. Progress in Chemistry, 2020, 32(5):617.
(马晓振, 罗清, 秦冬冬, 陈景, 朱锦, 颜宁. 化学进展, 2020, 32(5):617.).
[12]
Qiao Y, Teng N, Zhai C K, (Na/nuo) H N, Zhu J. Prog. Chem., 2018, 30(9): 1415
(乔颖, 腾娜, 翟承凯, 那海宁, 朱锦. 化学进展, 2018, 30(9):1415.).
[13]
Mukhtar Gunam Resul M F, Rehman A, Saleem F, Usman M, López Fernández A M, Eze V C, Harvey A P. RSC Adv., 2023, 13(47): 32940.
[14]
Mosquera M E G, Jiménez G, Tabernero V, Vinueza-Vaca J, García-Estrada C, Kosalková K, Sola-Landa A, Monje B, Acosta C, Alonso R, Valera M Á. Sustain. Chem., 2021, 2(3): 467.
[15]
Winnacker M, Rieger B. ChemSusChem, 2015, 8(15): 2455.
[16]
Hao J, Gao Y X, Chen H R, Hu J, Ju Y. Acta Polym. Sin., 2020, 51(3): 239
(郝杰, 高玉霞, 陈厚睿, 胡君, 巨勇. 高分子学报, 2020, 51(3): 239.).
[17]
Zhang C Q, Garrison T F, Madbouly S A, Kessler M R. Prog. Polym. Sci., 2017, 71: 91.
[18]
Miao S D, Wang P, Su Z G, Zhang S P. Acta Biomater., 2014, 10(4): 1692.
[19]
Leiske M N, Kempe K. Macromol. Rapid Commun., 2022, 43(2): 2100615.
[20]
Huang W J, Zhu N, Fang Z, Guo K. Progress in Chemistry, 2018, 30(12):1836.
(黄卫军, 朱宁, 方正, 郭凯. 化学进展, 2018, 30(12):1836.).
[21]
Dourado Fernandes C, Francisco Oechsler B, Sayer C, de Oliveira D, Hermes de Araújo P H. Eur. Polym. J., 2022, 169: 111132.
[22]
Wang J, Zhou J, Ding Y Z, Hu X G, Chen Y W. Polym. Chem., 2023, 14(20): 2414.
[23]
Yuan P J, Hong M. Acta Polymerica Sinica, 2019, 50(4):327.
(袁鹏俊, 洪缪. 高分子学报, 2019, 50(4):327.).
[24]
Balla E, Daniilidis V, Karlioti G, Kalamas T, Stefanidou M, Bikiaris N D, Vlachopoulos A, Koumentakou I, Bikiaris D N. Polymers, 2021, 13(11): 1822.
[25]
Li M S, Tao Y H. Polym. Chem., 2021, 12(10): 1415.
[26]
Qin Y S. J. Funct. Polym., 2019, 32(5): 558.
(秦玉升. 功能高分子学报, 2019, 32(5): 558.).
[27]
Kessaratikoon T, Rehman H U, D’Elia V, Crespy D. Chin. J. Chem., 2024, 42(6): 652.
[28]
Veith C, Diot-Néant F, Miller S A, Allais F. Polym. Chem., 2020, 11(47): 7452.
[29]
Wang J F, Yuan L, Wang Z K, Rahman M A, Huang Y C, Zhu T Y, Wang R B, Cheng J J, Wang C P, Chu F X, Tang C B. Macromolecules, 2016, 49(20): 7709.
[30]
Palà M, Woods S E, Hatton F L, Lligadas G. Macromol. Chem. Phys., 2022, 223(13): 2200005.
[31]
Wahlen C, Frey H. Macromolecules, 2021, 54(16): 7323.
[32]
Wadgaonkar S P, Wagner M, Baptista L A, Cortes-Huerto R, Frey H, Müller A H E. Macromolecules, 2023, 56(2): 664.
[33]
Liu B, Li S H, Wang M Y, Cui D M. Angew. Chem. Int. Ed., 2017, 56(16): 4560.
[34]
You F, Shi W Y, Yan X Y, Wang X Y, Shi X C. Chem., 2022, 17(23).
[35]
Magaña I, López R, Enríquez-Medrano F J, Kumar S, Aguilar-Sanchez A, Handa R, Díaz de León R, Valencia L. J. Mater. Chem. A, 2022, 10(10): 5019.
[36]
Sun H, Ibrahim T, Ritacco A, Durkee K. ACS Macro Lett., 2023, 12(12): 1642.
[37]
Wu Y C, Fan H Z, Zhang W, Wang M Y, Cai Z Z, Zhu J B. Macromolecules, 2022, 55(20): 9232.
[38]
Ogba O M, Warner N C, O’Leary D J, Grubbs R H. Chem. Soc. Rev., 2018, 47(12): 4510.
[39]
Schrock R R. Acc. Chem. Res., 2014, 47(8): 2457.
[40]
Bielawski C W, Grubbs R H. Prog. Polym. Sci., 2007, 32(1): 1.
[41]
Hyatt M G, Walsh D J, Lord R L, Andino Martinez J G, Guironnet D. J. Am. Chem. Soc., 2019, 141(44): 17918.
[42]
Sun H, Liang Y F, Thompson M P, Gianneschi N C. Prog. Polym. Sci., 2021, 120: 101427.
[43]
Xu J X, Hadjichristidis N. Prog. Polym. Sci., 2023, 139: 101656.
[44]
Feng Y C, Jie S Y, Li B G. Prog. Chem., 2015, 27(8): 1074
(冯雨晨, 介素云, 李伯耿. 化学进展, 2015, 27(8):1074.).
[45]
Zhou C L, Hou C P, Chen W, Wang L J, Cheng J H. Acta Chemica Sinica, 2022, 80(02):229-236.
(周楚璐, 侯翠苹, 陈伟, 王立杰, 程建华. 化学学报, 2022, 80(02): 229.).
[46]
Blosch S E, Scannelli S J, Alaboalirat M, Matson J B. Macromolecules, 2022, 55(11): 4200.
[47]
Chen K R, Han W J, Hu X, Liu Y H, Hu Y J, Zhao S F, Zhu N, Fang Z, Guo K. Chem. Eng. J., 2022, 437: 135284.
[48]
Chen K R, Hu X, Qiu J K, Zhu N, Guo K. Prog. Chem., 2020, 32(1): 93
(陈柯睿, 胡欣, 邱江凯, 朱宁, 郭凯. 化学进展, 2020, 32(1):93.).
[49]
Varlas S, Lawrenson S B, Arkinstall L A, O’Reilly R K, Foster J C. Prog. Polym. Sci., 2020, 107: 101278.
[50]
Varlas S, Foster J C, O’Reilly R K. Chem. Commun., 2019, 55(62): 9066.
[51]
Cornel E J, Jiang J H, Chen S, Du J Z. CCS Chem., 2021, 3(4): 2104.
[52]
Liu C, Hong C Y, Pan C Y. Polym. Chem., 2020, 11(22): 3673.
[53]
Zhang H W, Han W J, Liu Y H, Hu X, Zhu N, Guo K. Acta Polymerica Sinica, 2023, 54(11):1663.
(张浩伟, 韩文鉴, 刘一寰, 胡欣, 朱宁, 郭凯. 高分子学报, 2023, 54(11):1663.).
[54]
Tao Y X, Chen L L, Liu Y H, Hu X, Zhu N, Guo K. Acta Polymerica Sinica, 2022, 53(12):1445.
(陶永鑫, 陈蕾蕾, 刘一寰, 胡欣, 朱宁, 郭凯. 高分子学报, 2022, 53(12):1445.).
[55]
Huang X, Ren J, Ran J Y, Qin C L, Yang Z Q, Cao J P. Fuel Process. Technol., 2022, 229: 107175.
[56]
Fraser C, Grubbs R H. Macromolecules, 1995, 28(21): 7248.
[57]
Iyer S, Rele S, Grasa G, Nolan S, Chaikof E L. Chem. Commun., 2003, (13): 1518.
[58]
Murphy J J, Nomura K, Paton R M. Macromolecules, 2006, 39(9): 3147.
[59]
Weaver L G, Singh Y, Burn P L, Blanchfield J T. RSC Adv., 2016, 6(37): 31256.
[60]
Liu Z F, Zhu Y, Ye W L, Wu T, Miao D Y, Deng W, Liu M N. Polym. Chem., 2019, 10(29): 4006.
[61]
Yang J X, Si C L, Liu K, Liu H Y, Li X Y, Liang M. Journal of Forestry Engineering, 2020, 5(5):21.
(杨佳鑫, 司传领, 刘坤, 刘华玉, 李晓云, 梁敏. 林业工程学报, 2020, 5(5):21.).
[62]
Dell’Acqua A, Stadler B M, Kirchhecker S, Tin S, de Vries J G. Green Chem., 2020, 22(16): 5267.
[63]
Guilmanov V, Ballistreri A, Impallomeni G, Gross R A. Biotechnol. Bioeng., 2002, 77(5): 489.
[64]
Gao W, Hagver R, Shah V, Xie W C, Gross R A, Ilker M F, Bell C, Burke K A, Coughlin E B. Macromolecules, 2007, 40(2):145.
[65]
Peng Y F, Decatur J, Meier M A R, Gross R A. Macromolecules, 2013, 46(9):3293.
[66]
Zini E, Gazzano M, Scandola M, Wallner S R, Gross R A. Macromolecules, 2008, 41(20):7463.
[67]
Raju S, Jastrzebski J T B H, Lutz M, Klein Gebbink R J M. ChemSusChem, 2013, 6(9):1673.
[68]
Tshibalonza N N, Monbaliu J C M. Green Chem., 2020, 22(15):4801.
[69]
McGuire T M, Pérale C, Castaing R, Kociok-Köhn G, Buchard A. J. Am. Chem. Soc., 2019, 141(34):13301.
[70]
Cheng J, Li J, Zheng L G. J. Agric. Food Chem., 2021, 69(36):10480.
[71]
Leite L, Stonkus V, Edolfa K, Ilieva L, Plyasova L, Zaikovskii V. Appl.Catal. A Gen., 2006, 311:86.
[72]
Feist J D, Xia Y. J. Am. Chem. Soc., 2020, 142(3): 1186.
[73]
Mandal A, Mandal I, Kilbinger A F M. Macromolecules, 2022, 55(17):7827.
[74]
Mandal A, Kilbinger A F M. Polym. Chem., 2023, 14(23):2797.
[75]
Mandal A, Pal S, Kilbinger A F M. Macromol. Rapid Commun., 2023, 44(18):2300218.
[76]
Mandal A, Mandal I, Kilbinger A F M. Angew. Chem. Int. Ed., 2023, 62(4):e202211842
[77]
Wang W W, Jiang J, An Q L, Shi R, Shao S Y, Wang Z. ACS Sustainable Chem. Eng., 2023, 11(39):14622.
[78]
An T, Ryu H, Choi T L. Angew. Chem., Int. Ed., 2023, 62(47):e202309632.
[79]
Feist J D, Lee D C, Xia Y. Nat. Chem., 2022, 14(1):53.
[80]
Mandal A, Kilbinger A F M. ACS Macro Lett., 2023, 12(10):1372.
[81]
Leguizamon S C, Lyons K, Monk N T, Hochrein M T, Jones B H, Foster J C. ACS Appl. Mater. Interfaces, 2022, 14(45):51301.
[82]
Comba M B, Tsai Y H, Sarotti A M, Mangione M I, Suárez A G, Spanevello R A. Eur. J. Org. Chem., 2018, 2018(5): 590.
[83]
Camp J E, Greatrex B W. Front. Chem., 2022, 10:902239
[84]
Debsharma T, Yagci Y, Schlaad H. Angew. Chem. Int. Ed., 2019, 58(51):18492.
[85]
Debsharma T, Behrendt F N, Laschewsky A, Schlaad H. Angew. Chem. Int. Ed., 2019, 58(20):6718.
[86]
Fadlallah S, Peru A A M, Flourat A L, Allais F. Eur. Polym. J., 2020, 138:109980.
[87]
Nomura K, Schrock R R. Macromolecules, 1996, 29(2):540.
[88]
Galkin K I, Ananikov V P. Int. J. Mol. Sci., 2021, 22(21): 11856.
[89]
Bai Y J, De bruyn M, Clark J H, Dodson J R, Farmer T J, Honoré M, Ingram I D V, Naguib M, Whitwood A C, North M. Green Chem., 2016, 18(14):3945.
[90]
Bai Y J, Clark J H, Farmer T J, Ingram I D V, North M. Polym. Chem., 2017, 8(20):3074.
[91]
Lawrenson S B, Hart S, Ingram I D V, North M, Parker R R, Whitwood A C. ACS Sustainable Chem. Eng., 2018, 6(8):9744.
[92]
Naguib M, Schiller T L, Keddie D J. Macromol. Rapid Commun., 2018, 39(7):1700794.
[93]
Blanpain A, Clark J H, Farmer T J, Guo Y L, Ingram I D V, Kendrick J E, Lawrenson S B, North M, Rodgers G, Whitwood A C. ChemSusChem, 2019, 12(11):2393.
[94]
Naguib M, Yassin M A. ACS Appl. Polym. Mater., 2022, 4(3):2181.
[95]
Fang L X, Zhou J F, Tao Y Q, Wang Y Q, Chen X R, Chen X Y, Hou J R, Sun J, Fang Q. ACS Sustainable Chem. Eng., 2019, 7(4):4078.
[96]
Hu Y, Ran Q Y, Wei S P, Wang C C, Wu Z J, Xu E H, Luo Z Y, Jia P Y, Sha Y. Green Chem., 2023, 25(15):5858.
[97]
Koo B. ACS Appl. Polym. Mater., 2024, 6(3):1653.
[98]
Usman M, Rehman A, Saleem F, Abbas A, Eze V C, Harvey A. RSC Adv., 2023, 13(33):22717.
[99]
Della Monica F, Kleij A W. Polym. Chem., 2020, 11(32): 5109.
[100]
Grau E, Mecking S. Green Chem., 2013, 15(5):1112.
[101]
Medeiros A M M S, Le Coz C, Grau E. ACS Sustainable Chem. Eng., 2020, 8(11):4451.
[102]
Lee J C, Parker K A, Sampson N S. J. Am. Chem. Soc., 2006, 128(14):4578.
[103]
Strick B F, Delferro M, Geiger F M, Thomson R J. ACS Sustainable Chem. Eng., 2015, 3(7):1278.
[104]
Yarolimek M R, Bookbinder H R, Coia B M, Kennemur J G. ACS Macro Lett., 2021, 10(6):760.
[105]
Engelen S, Droesbeke M, Aksakal R, Du Prez F E. ACS Macro Lett., 2022, 11(12):1378.
[106]
Li Y, Gao Y X, Wang B, Hao J, Hu J, Ju Y. Chem., 2018, 13(18):2723.
[107]
Wilbon P A, Chu F X, Tang C B. Macromol. Rapid Commun., 2013, 34(1):1.
[108]
Ganewatta M S, Ding W Y, Rahman M A, Yuan L, Wang Z K, Hamidi N, Robertson M L, Tang C B. Macromolecules, 2016, 49(19):7155.
[109]
Gandini A, Lacerda T M, Carvalho A J F, Trovatti E. Chem. Rev., 2016, 116(3):1637.
[110]
Henna P H, Kessler M R, Larock R C. Macromol. Mater. Eng., 2008, 293(12):979.
[111]
Henna P, Larock R C. J. Appl. Polym. Sci., 2009, 112(3):1788.
[112]
Xia Y, Larock R C. Polymer, 2010, 51(12):2508.
[113]
Ding R, Xia Y, Mauldin T C, Kessler M R. Polymer, 2014, 55(22):5718.
[114]
Li W R, Zhan Q Y, Yang P. ACS Sustainable Chem. Eng., 2023, 11(3):1200.
[115]
Ogawa R, Hillmyer M A. Polym. Chem., 2021, 12(15):2253.
[116]
Coles M P, Gibson V C, Mazzariol L, North M, Teasdale W G, Williams C M, Zamuner D. J. Chem. Soc., Chem. Commun., 1994, (21):2505.
[117]
Biagnini S C G, Coles M P, Gibson V C, Giles M R, Marshall E L, North M. Polymer, 1998, 39(5):1007.
[118]
Biagini S C G, Gareth Davies R, North M, Gibson V C, Giles M R, Marshall E L, Robson D A. Chem. Commun., 1999, (3):235.
[119]
Maynard H D, Okada S Y, Grubbs R H. Macromolecules, 2000, 33(17):6239.
[120]
Sutthasupa S, Terada K, Sanda F, Masuda T. J. Polym. Sci. Part A Polym. Chem., 2006, 44(18):5337.
[121]
Sutthasupa S, Sanda F, Masuda T. Macromol. Chem. Phys., 2008, 209(9):930.
[122]
Sutthasupa S, Terada K, Sanda F, Masuda T. Polymer, 2007, 48(11):3026.
[123]
Kobayashi S, Pitet L M, Hillmyer M A. J. Am. Chem. Soc., 2011, 133(15): 5794.
[124]
Li M S, Cui F C, Li Y Q, Tao Y H, Wang X H. Macromolecules, 2016, 49(24):9415.
[125]
Li M S, Chen J L, Tao Y H. Chin. J. Appl. Chem, 2020, 37(3):280.
(李茂盛, 陈金龙, 陶友华. 应用化学, 2020, 37(3):280.).
[126]
Behrendt F N, Schlaad H. Polym. Chem., 2017, 8(2): 366.

Funding

National Key R&D Program of China(2019YFA0905000)
National Natural Science Foundation of China(22278223)
National Natural Science Foundation of China(22278205)
R&D Program of China Petrochemical Corporation (SINOPEC)(30000000-23-ZC0607-0871)
PDF(40638 KB)

Accesses

Citation

Detail

Sections
Recommended

/