Reductive Transformation of Perchlorate: Fundamentals and Applications

Junhua Fang, Ruofan Li, Wenjun Zhang, Weixian Zhang

Prog Chem ›› 2024, Vol. 36 ›› Issue (12) : 1901-1914.

PDF(550685 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(550685 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (12) : 1901-1914. DOI: 10.7536/PC240324
Review

Reductive Transformation of Perchlorate: Fundamentals and Applications

Author information +
History +

Abstract

Perchlorate, a persistent inorganic pollutant in water, poses a global environmental challenge due to its high solubility, mobility, and stability, making it difficult to degrade in the environment. Contamination by perchlorate has become a worldwide environmental issue, as residues of perchlorate in surface water and groundwater enter food and drinking water through various pathways, posing potential health risks. Chemical and biological methods have been extensively studied for perchlorate removal, each with its unique advantages and challenges. This paper systematically summarizes the recent research progress in chemical and biological treatment technologies for removing perchlorate from water, elaborating on the mechanisms, influencing factors, and advantages and disadvantages of these technologies. Chemical degradation, catalytic reduction, and electrochemical reduction are effective methods for treating perchlorate pollution. Organic electron donors such as acetate, glycerol, ethanol, and methane, as well as inorganic electron donors such as hydrogen and elemental sulfur, are widely used in the biological degradation process of perchlorate. Chemical methods provide rapid reduction rates and convenient implementation, while biological methods offer environmentally friendly solutions and long-term sustainable potential. However, both methods have limitations. In recent years, researchers have begun to explore combined removal techniques that integrate chemical and biological methods to enhance the remediation efficiency of perchlorate pollution. This paper reviews the research progress of three combined removal techniques: adsorption-biological method, bio-electrochemical method, and chemical reduction-biological method. In addition, future research directions are discussed, including engineering implementation studies, materials and microbiology research, practical application studies, and in-depth exploration of perchlorate degradation mechanisms.

Contents

1 Introduction

2 Chemical degradation of perchlorate

2.1 Chemical reduction

2.2 Catalytic reduction

2.3 Electrochemical reduction

3 Biodegradation of perchlorate

3.1 Organic electron donor

3.2 Inorganic electron donor

4 Combined methods for perchlorate degradation

4.1 Adsorption-biological method

4.2 Bio-electrochemical method

4.3 Chemical reduction-biological method

5 Conclusion and Outlook

Key words

perchlorate / chemical degradation / biodegradation / combined removal technology / bio- electrochemical method

Cite this article

Download Citations
Junhua Fang , Ruofan Li , Wenjun Zhang , et al. Reductive Transformation of Perchlorate: Fundamentals and Applications[J]. Progress in Chemistry. 2024, 36(12): 1901-1914 https://doi.org/10.7536/PC240324

References

[1]
Lin J, Wang S Z. Fireworks Technology and Market, 2015, 03: 27.
(林俊, 王胜芝. 花炮科技与市场, 2015, 03: 27.)
[2]
Health Commission of the PRC National. Chin. J. Cancer Res., 2022, 34(3): 335.
[3]
Sungur Ş, Sangün M K. Food Chem., 2011, 126(1): 326.
[4]
Kumar K S, Kavitha S, Parameswari K, Sakunthala A, Sathishkumar P. Chemosphere, 2023, 311: 137017.
[5]
Cai Y Q, Shi Y L, Zhang P, Mou S F, Jiang G B. Prog. Chem., 2006, 18(11): 1554
(蔡亚岐, 史亚利, 张萍, 牟世芬, 江桂斌. 化学进展, 2006, 18(11): 1554).
[6]
Huang J T, Chen R D, Jiang J Y, Zhang L, Wang X D, Mao W F, Wang Y. Chinese Journal of Disease Control & Prevention, 2023, 27 (4): 489.
(黄佳婷, 陈睿迪, 姜峻玥, 张磊, 王小丹, 毛伟峰, 王玉. 中华疾病控制杂志, 2023, 27 (4): 489.)
[7]
Dong M X, Yu H, Qian C J, Shi Y L, Cai Y Q. Environmental Chemistry, 2024, 43 (5): 1.
(董淼鑫, 于泓, 钱承敬, 史亚利, 蔡亚岐. 环境化学, 2024, 43 (5): 1.)
[8]
Wu Q, Zhang T, Sun H W, Kannan K. Arch. Environ. Contam. Toxicol., 2010, 58(3): 543.
[9]
Ju X M, Field J A, Sierra-Alvarez R, Salazar M, Bentley H, Bentley R. Biotechnol. Bioeng., 2007, 96(6): 1073.
[10]
Xu J H, Gao N Y, Deng Y, Xia S Q. Chem. Eng. J., 2013, 222: 520.
[11]
Fang Q L, Chen B L, Lin Y J, Guan Y T. Environ. Sci. Technol., 2014, 48(1): 279.
[12]
Huq H P, Yang J S, Yang J W. Desalination, 2007, 2041-3: 335.
[13]
Srinivasan A, Viraraghavan T. Int. J. Environ. Res. Public Health, 2009, 6(4): 1418.
[14]
Xie Y H, Ren L L, Zhu X Q, Gou X, Chen S Y. Process. Saf. Environ. Prot., 2018, 116: 180.
[15]
Saedi Y, Batista J R, Britto R, Grady D. Biodegradation, 2023, 34(4): 301.
[16]
Logan B E, LaPoint D. Water Res., 2002, 36(14): 3647.
[17]
Xu J L, Song Y G, Min B, Steinberg L, Logan B E. Environ. Eng. Sci., 2003, 20(5): 405.
[18]
Park S H, Batchelor B, Lee C, Han D S, Abdel-Wahab A. Chem. Eng. J., 2012, 192: 301.
[19]
Li M R, Tang C L, Zhang W X, Ling L. Prog. Chem., 2022, 34(4): 846.
(李美蓉, 唐晨柳, 张伟贤, 凌岚. 化学进展, 2022, 34 (4): 846.)
[20]
Wan D J, Liu Y D, Wang Y Y, Wang H J, Xiao S H. Water Res., 2017, 108: 280.
[21]
Cao J S, Elliott D, Zhang W X. J. Nanopart. Res., 2005, 7(4): 499.
[22]
Xie Y H, Yi Y, Qin Y H, Wang L T, Liu G M, Wu Y L, Diao Z Q, Zhou T H, Xu M. Sep. Purif. Technol., 2016, 171: 164.
[23]
Xiong Z, Zhao D Y, Pan G. Water Res., 2007, 41(15): 3497.
[24]
Hori H, Sakamoto T, Tanabe T, Kasuya M, Chino A, Wu Q, Kannan K. Chemosphere, 2012, 89(6): 737.
[25]
Oh S Y, Chiu P C, Kim B J, Cha D K. J. Hazard. Mater., 2006, 1291-3: 304.
[26]
Vellanki B P, Batchelor B. J. Hazard. Mater., 2013, 262: 348.
[27]
Choe J K, Shapley J R, Strathmann T J, Werth C J. Environ. Sci. Technol., 2010, 44(12): 4716.
[28]
Choe J K, Boyanov M I, Liu J Y, Kemner K M, Werth C J, Strathmann T J. J. Phys. Chem. C, 2014, 118(22): 11666.
[29]
Liu J Y, Choe J K, Sasnow Z, Werth C J, Strathmann T J. Water Res., 2013, 47(1): 91.
[30]
Liu J Y, Choe J K, Wang Y, Shapley J R, Werth C J, Strathmann T J. ACS Catal., 2015, 5(2): 511.
[31]
Coates J D, Achenbach L A. Nat. Rev. Microbiol., 2004, 2(7): 569.
[32]
Wang B, Zhai Y B, Li S H, Li C T, Zhu Y, Xu M. Chemosphere, 2021, 284: 131315.
[33]
Gong J Y, Pu W H, Yang C Z, Zhang J D. Catal. Commun., 2013, 36: 89.
[34]
Ye L, Wang S T, You H, Yao J, Kang X. Chem. Eng. J., 2013, 226: 434.
[35]
Jia Y H, Ye L, Kang X, You H, Wang S T, Yao J. J. Photochem. Photobiol. A Chem., 2016, 328: 225.
[36]
Xu B B, Zhai Y B, Chen W, Wang B, Wang T F, Zhang C, Li C T, Zeng G M. Chem. Eng. J., 2018, 348: 765.
[37]
Zhong Y, Yang Q, Li X M, Yao F B, Xie L X, Zhao J W, Chen F, Xie T, Zeng G M. Chem. Eng. J., 2016, 289: 114.
[38]
Zhao X, Liu H J, Li A Z, Shen Y L, Qu J H. Electrochim. Acta, 2012, 62: 181.
[39]
Wang D M, Huang C P, Chen J G, Lin H Y, Shah S I. Sep. Purif. Technol., 2007, 58(1): 129.
[40]
Láng G G, Sas N S, Ujvári M, Horányi G. Electrochim. Acta, 2008, 53(25): 7436.
[41]
Horányi G, Bakos I. J. Electroanal. Chem., 1992, 3311-2: 727.
[42]
Horányi G, Bakos I, Szabó S, Rizmayer E M. J. Electroanal. Chem., 1992, 3371-2: 365.
[43]
Wang D M, Lin H Y, Shah S I, Ni C Y, Huang C P. Sep. Purif. Technol., 2009, 67(2): 127.
[44]
Láng G, Ujvári M, Horányi G. Corros. Sci., 2003, 45 (1): 1.
[45]
Zhao S Y, Chen S H, Ma H Y, Li D G, Kong F J. J. Appl. Electrochem., 2002, 32(2): 231.
[46]
Ujvári M, Láng G, Horányi G. J. Appl. Electrochem., 2002, 32(5): 581.
[47]
Ujvári M, Láng G, Horányi G. J. Appl. Electrochem., 2002, 32(12): 1403.
[48]
Yao F B, Zhong Y, Yang Q, Wang D B, Chen F, Zhao J W, Xie T, Jiang C, An H X, Zeng G M, Li X M. J. Hazard. Mater., 2017, 323: 602.
[49]
Lorah M M, Vogler E, Gebhardt F E, Graves D, Grabowski J F. Chemosphere, 2022, 294: 133674.
[50]
Baidas S, Al-Deyain K, Meng X G, Gao B Y. J. Chem., 2023, 2023: 5124392.
[51]
Wen L L, Zhang Y, Chen J X, Zhang Z X, Yi Y Y, Tang Y N, Rittmann B E, Zhao H P. Chem. Eng. J., 2017, 313: 1215.
[52]
Dong X Q, Yu K, Jia X S, Zhang Y Q, Peng X X. Water Res., 2022, 227: 119343.
[53]
Song W, Gao B Y, Wang H L, Xu X, Xue M X, Zha M C, Gong B. Bioresour. Technol., 2017, 240: 68.
[54]
Yu H, Lee K H, Park J W. Int. J. Mol. Sci., 2022, 23(18): 10608.
[55]
Xu X, Gao B Y, Jin B, Zhen H, Wang X Y, Dai M. J. Hazard. Mater., 2015, 285: 228.
[56]
Liang S, Shi Q, Gao X Y, Yang H C, Wang S G. J. Chem. Technol. Biotechnol., 2015, 90(4): 722.
[57]
Wan D J, Liu Y D, Niu Z H, Xiao S H, Li D R. Biodegradation, 2016, 27(1): 47.
[58]
Zhu Y P, Wu M, Gao N Y, Chu W H, Wang S F. Chemosphere, 2016, 165: 134.
[59]
Ahn C H, Oh H, Ki D, Van Ginkel S W, Rittmann B E, Park J. Appl. Microbiol. Biotechnol., 2009, 81(6): 1169.
[60]
Lian J, Tian X L, Li Z F, Guo J B, Guo Y K, Yue L, Ping J P, Duan L L. Int. J. Hydrog. Energy, 2017, 42(1): 544.
[61]
Patel A, Zuo G, Lehman S G, Badruzzaman M, Clifford D A, Roberts D J. Water Res., 2008, 42(16): 4291.
[62]
Zhu Y P, Gao N Y, Chu W H, Wang S F, Xu J H. Chemosphere, 2016, 148: 188.
[63]
Choi H, Silverstein J. J. Hazard. Mater., 2008, 1592-3: 440.
[64]
Guan X Y, Xie Y X, Wang J F, Wang J, Liu F. Environ. Sci. Pollut. Res., 2015, 22(8): 6057.
[65]
Mieseler M, Atiyeh M N, Hernandez H H, Ahmad F. J. Ind. Microbiol. Biotechnol., 2013, 40(11): 1321.
[66]
Luo Y H, Chen R, Wen L L, Meng F, Zhang Y, Lai C Y, Rittmann B E, Zhao H P, Zheng P. Environ. Sci. Technol., 2015, 49(4): 2341.
[67]
Bosu S, Rajamohan N, Rajasimman M, Raut N, Vasseghian Y. Int. J. Hydrog. Energy, 2023, 48(17): 6546.
[68]
Tan H W, Abdul Aziz A R, Aroua M K. Renew. Sustain. Energy Rev., 2013, 27: 118.
[69]
Fox S, Bruner T, Oren Y, Gilron J, Ronen Z. Biotechnol. Bioeng., 2016, 113(9): 1881.
[70]
Velizarov S, Rodrigues C M, Reis M A, Crespo J G. Biotechnol. Bioeng., 2000, 71(4): 245.
[71]
Ricardo A R, Carvalho G, Velizarov S, Crespo J G, Reis M A M. Water Res., 2012, 46(14): 4556.
[72]
Matos C T, Velizarov S, Crespo J G, Reis M A M. Water Res., 2006, 40(2): 231.
[73]
Fonseca A D, Crespo J G, Almeida J S, Reis M A. Environ. Sci. Technol., 2000, 34(8): 1557.
[74]
He L, Zhong Y, Yao F B, Chen F, Xie T, Wu B, Hou K J, Wang D B, Li X M, Yang Q. Environ. Sci. Pollut. Res., 2019, 26(17): 16906.
[75]
Wang D B, Wang Y L, Liu Y W, Ngo H H, Lian Y, Zhao J W, Chen F, Yang Q, Zeng G M, Li X M. Bioresour. Technol., 2017, 234: 456.
[76]
Lv P L, Zhong L, Dong Q Y, Yang S L, Shen W W, Zhu Q S, Lai C Y, Luo A C, Tang Y N, Zhao H P. Environ. Sci. Pollut. Res., 2018, 25(7): 6609.
[77]
Sun J, Dai X H, Peng L, Liu Y W, Wang Q L, Ni B J. Chem. Eng. J., 2017, 327: 555.
[78]
Chen R, Luo Y H, Chen J X, Zhang Y, Wen L L, Shi L D, Tang Y N, Rittmann B E, Zheng P, Zhao H P. Environ. Sci. Pollut. Res., 2016, 23(10): 9540.
[79]
Chen X M, Liu Y W, Peng L, Ni B J. Chem. Eng. J., 2017, 316: 82.
[80]
Ontiveros-Valencia A, Tang Y N, Krajmalnik-Brown R, Rittmann B E. Biotechnol. Bioeng., 2013, 110(12): 3139.
[81]
Tang Y N, Zhao H P, Marcus A K, Krajmalnik-Brown R, Rittmann B E. Environ. Sci. Technol., 2012, 46(3): 1598.
[82]
Sahu A K, Conneely T, Nüsslein K, Ergas S J. Biotechnol. Bioeng., 2009, 104(3): 483.
[83]
Zhao H P, Ontiveros-Valencia A, Tang Y N, Kim B O, Ilhan Z E, Krajmalnik-Brown R, Rittmann B. Environ. Sci. Technol., 2013, 47(3): 1565.
[84]
Zhao H P, Van Ginkel S, Tang Y N, Kang D W, Rittmann B, Krajmalnik-Brown R. Environ. Sci. Technol., 2011, 45(23): 10155.
[85]
Van Ginkel S W, Tang Y N, Rittmann B E. Water Sci. Technol., 2011, 63(7): 1453.
[86]
Ucar D, Cokgor E U, Sahinkaya E. Water Sci. Technol.: Water Supply, 2016, 16 (1): 208.
[87]
Ju X M, Sierra-Alvarez R, Field J A, Byrnes D J, Bentley H, Bentley R. Chemosphere, 2008, 71(1): 114.
[88]
Gao M C, Wang S, Jin C J, She Z L, Zhao C C, Zhao Y G, Zhang J, Ren Y. Environ. Sci. Pollut. Res., 2015, 22(13): 9694.
[89]
Ucar D, Ubay Cokgor E, Sahinkaya E. J. Chem. Technol. Biotechnol., 2016, 91(5): 1471.
[90]
Guo J B, Zhang C, Lian J, Lu C C, Chen Z, Song Y Y, Guo Y K, Xing Y J. Bioresour. Technol., 2017, 243: 932.
[91]
Van Trump J I, Coates J D. ISME J., 2009, 3(4): 466.
[92]
Van Trump J I, Wrighton K C, Thrash J C, Weber K A, Andersen G L, Coates J D. mBio, 2011, 2(4): e00044-11.
[93]
Thrash J C, Van Trump J I, Weber K A, Miller E, Achenbach L A, Coates J D. Environ. Sci. Technol., 2007, 41(5): 1740.
[94]
Zhu Y P, Wu M, Gao N Y, Chu W H, Zhao L Z, Wang Q F. Chem. Eng. J., 2019, 357: 75.
[95]
Choi Y C, Li X, Raskin L, Morgenroth E. Water Res., 2008, 42(13): 3425.
[96]
Brown J C, Snoeyink V L, Kirisits M J. J. Am. Water Works Assoc., 2002, 94(2): 70.
[97]
García L, Leyva-Díaz J C, Díaz E, Ordóñez S. Sci. Total Environ., 2021, 780: 146554.
[98]
Paulino R, Tamburic B, Stuetz R M, Zamyadi A, Crosbie N, Henderson R K. J. Water Process. Eng., 2023, 52: 103518.
[99]
Herzberg M, Dosoretz C G, Tarre S, Green M. Environ. Sci. Technol., 2003, 37(18): 4274.
[100]
Peng Y X, Zheng L, Cai C Y, Zhu M L, Zhou Y, Wu C D. J. Chem. Soc. Pak., 2012, 34 (4): 819.
[101]
Brown J C, Anderson R D, Min J H, Boulos L, Prasifka D, Juby G J G. J. Am. Water Works Assoc., 2005, 97(9): 70.
[102]
Lehman S G, Badruzzaman M, Adham S, Roberts D J, Clifford D A. Water Res., 2008, 424-5: 969.
[103]
Lin X H, Roberts D J, Hiremath T, Clifford D A, Gillogly T, Lehman S G. Environ. Eng. Sci., 2007, 24(6): 725.
[104]
Mishra P, Mishra J, Arora N K. Microbiol. Res., 2023, 275: 127442.
[105]
Chung Y, Shim S W. Electron. Lett., 2007, 43(3): 157.
[106]
Rozendal R A, Hamelers H V M, Rabaey K, Keller J, Buisman C J N. Trends Biotechnol., 2008, 26(8): 450.
[107]
Xin H R, Chen X D, Ye Y B, Liao Y J, Luo H P, Tang C Y, Liu G L. Water Res., 2024, 252: 121212.
[108]
Shea C, Clauwaert P, Verstraete W, Nerenberg R. Water Sci. Technol., 2008, 58(10): 1941.
[109]
Jiang C, Yang Q, Wang D B, Zhong Y, Chen F, Li X, Zeng G M, Li X M, Shang M R. Chem. Eng. J., 2017, 308: 783.
[110]
Butler C S, Clauwaert P, Green S J, Verstraete W, Nerenberg R. Environ. Sci. Technol., 2010, 44(12): 4685.
[111]
Clauwaert P, Desloover J, Shea C, Nerenberg R, Boon N, Verstraete W. Biotechnol. Lett., 2009, 31(10): 1537.
[112]
Wang Z C, Gao M C, Zhang Y, She Z L, Ren Y, Wang Z, Zhao C C. J. Environ. Manag., 2014, 142: 10.
[113]
Li J J, Gao M M, Zhang G, Wang X H, Wang S G, Song C, Xu Y Y. Bioresour. Technol., 2015, 177: 74.
[114]
Chen J, Gu M Q, Zhou Y F, Wan D J, He Q C, Shi Y H, Liu Y D. Chem. Eng. J., 2022, 430: 132952.
[115]
Yang Q, Zhang F X, Zhan J J, Gao C, Liu M H. Front. Chem., 2019, 7: 19.
[116]
Ucar D, Sahinkaya E, Yilmaz T, Cakmak Y. Int. Biodeterior. Biodegrad., 2019, 144: 104741.
[117]
Wang H M, Luo H P, Fallgren P H, Jin S, Ren Z J. Biotechnol. Adv., 2015, 333-4: 317.
[118]
Moore A M, De Leon C H, Young T M. Environ. Sci. Technol., 2003, 37(14): 3189.
[119]
Son A, Lee J, Chiu P C, Kim B J, Cha D K. Water Res., 2006, 40(10): 2027.
[120]
Yu X Y, Amrhein C, Deshusses M A, Matsumoto M R. Environ. Sci. Technol., 2006, 40(4): 1328.
[121]
Arthur R D, Torlapati J, Shin K H, Cha D K, Yoon Y, Son A. Front. Environ. Sci. Eng., 2014, 8(3): 386.
[122]
Yu X Y, Amrhein C, Deshusses M A, Matsumoto M R. Environ. Sci. Technol., 2007, 41(3): 990.
[123]
Schaefer C E, Fuller M E, Condee C W, Lowey J M, Hatzinger P B. J. Contam. Hydrol., 2007, 893-4: 231.
[124]
Ahn S C, Hubbard B, Cha D K, Kim B J. J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng., 2014, 49 (5): 575.
[125]
Shrout J D, Williams A G B, Scherer M M, Parkin G F. Biodegradation, 2005, 16(1): 23.

Funding

National Key Research and Development Program of China(2022YFC3702102)
National Natural Science Foundation of China(51978488)
Key-Area Research and Development Program of Guangdong Province(2020B0202080001)
PDF(550685 KB)

Accesses

Citation

Detail

Sections
Recommended

/