Efficient and Stable Metal Macrocyclic Molecular Catalyst for Electrocatalytic Reduction of CO2 to CO

Guilong Wang, Shanhe Gong, Mengxian Li, Jun Liu, Xiaomeng Lv

Prog Chem ›› 2025, Vol. 37 ›› Issue (2) : 173-184.

PDF(4915 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(4915 KB)
Prog Chem ›› 2025, Vol. 37 ›› Issue (2) : 173-184. DOI: 10.7536/PC240409
Review

Efficient and Stable Metal Macrocyclic Molecular Catalyst for Electrocatalytic Reduction of CO2 to CO

Author information +
History +

Abstract

Electrocatalytic reduction of CO2 into value-added chemicals has been a research hotspot in recent years, among which electrocatalytic conversion of CO2 to CO is an industrial-related potential route. Among the electrocatalysts, metal macrocyclic molecular catalysts have attracted much attention due to their functional structure diversity, high conjugation structure, high chemical stability and great potential in electrochemical research. Herein, this paper reviews and introduces several main metal macrocyclic molecular catalysts, related reaction mechanisms and development progress. As to the problems of their low electrical conductivity and instability under long-term operation, the main strategies of heterogeneous systems on catalytic activity and stability were thoroughly discussed, including the introduction of the conductive carrier with high surface areas via non-covalence or covalence connection, building the polycondensation/ polymerization or COF skeleton structure, and modification of functional group with different effect. Finally, the challenges of catalytic activity and stability were analyzed and solving strategies were proposed, focusing on heterogeneous catalysts design, optimization of electrolyzer, and machine learning.

Contents

1 Introduction

2 Development history of metal macrocyclic molecular catalysts for electrocatalytic CO2 reduction

3 Research on metal macrocyclic molecular catalysts and related catalytic mechanism

4 Regulation of the activity and stability of CO2RR electrocatalyzed by metal macrocyclic molecular catalysts

4.1 Immobilization of a conductive carrier with a high surface area

4.2 Periodic skeleton structure formation

4.3 Combination with functional groups

5 Conclusion and prospect

Key words

macrocyclic molecular catalyst / electrocatalysis / carbon dioxide / stability / activity

Cite this article

Download Citations
Guilong Wang , Shanhe Gong , Mengxian Li , et al . Efficient and Stable Metal Macrocyclic Molecular Catalyst for Electrocatalytic Reduction of CO2 to CO[J]. Progress in Chemistry. 2025, 37(2): 173-184 https://doi.org/10.7536/PC240409

References

[1]
Myers S S, Zanobetti A, Kloog I, Huybers P, Leakey A D B, Bloom A J, Carlisle E, Dietterich L H, Fitzgerald G, Hasegawa T, Holbrook N M, Nelson R L, Ottman M J, Raboy V, Sakai H, Sartor K A, Schwartz J, Seneweera S, Tausz M, Usui Y. Nature, 2014, 510(7503): 139.
[2]
Cai W J, Borlace S, Lengaigne M, van Rensch P, Collins M, Vecchi G, Timmermann A, Santoso A, McPhaden M J, Wu L X, England M H, Wang G J, Guilyardi E, Jin F F. Nat. Clim. Change, 2014, 4(2): 111.
[3]
Bushuyev O S, De Luna P, Dinh C T, Tao L, Saur G, van de Lagemaat J, Kelley S O, Sargent E H. Joule, 2018, 2(5): 825.
[4]
Beck A, Zabilskiy M, Newton M A, Safonova O, Willinger M G, van Bokhoven J A. Nat. Catal., 2021, 4(6): 488.
[5]
Baccour M, Lamotte A, Sakai K, Dubreucq E, Mehdi A, Kano K, Galarneau A, Drone J, Brun N. Green Chem., 2020, 22(12): 3727.
[6]
Franco F, Rettenmaier C, Jeon H S, Roldan Cuenya B. Chem. Soc. Rev., 2020, 49(19): 6884.
[7]
Qiu L, Chen K H, Yang Z W, He L N. Green Chem., 2020, 22(24): 8614.
[8]
Álvarez A, Borges M, Corral-Pérez J J, Olcina J G, Hu L J, Cornu D, Huang R, Stoian D, Urakawa A. ChemPhysChem, 2017, 18(22): 3135.
[9]
Francke R, Schille B, Roemelt M. Chem. Rev., 2018, 118(9): 4631.
[10]
Navarro R M, Peña M A, Fierro J L G. Chem. Rev., 2007, 107(10): 3952.
[11]
Jin S, Hao Z M, Zhang K, Yan Z H, Chen J. Angew. Chem.., 2021, 60(38), 20627.
[12]
Li L, Li X, Sun Y, Xie Y. Chem. Soc. Rev., 2022, 51(4): 1234.
[13]
Jasinski R. Nature, 1964, 201(4925): 1212.
[14]
Meshitsuka S, Ichikawa M, Tamaru K. J. Chem. Soc., hem. Commun., 1974(5): 158.
[15]
Lieber C M, Lewis N S. J. Am. Chem. Soc., 1984, 106(17): 5033.
[16]
Han N, Wang Y, Ma L, Wen J G, Li J, Zheng H C, Nie K Q, Wang X X, Zhao F P, Li Y F, Fan J, Zhong J, Wu T P, Miller D J, Lu J, Lee S T, Li Y G. Chem, 2017, 3(4): 652.
[17]
Ren S X, Joulié D, Salvatore D, Torbensen K, Wang M, Robert M, Berlinguette C P. Science, 2019, 365(6451): 367.
[18]
Lin Z C, Jiang Z, Yuan Y B, Li H, Wang H X, Tang Y R, Liu C C, Liang Y Y. Chin. J. Catal., 2022, 43(1): 104.
[19]
Chen K J, Cao M Q, Ni G H, Chen S Y, Liao H X, Zhu L, Li H M, Fu J W, Hu J H, Cortés E, Liu M. Appl. Catal. B Environ., 2022, 306: 121093.
[20]
Liu M H, Yang S, Yang X B, Cui C-X, Liu G J, Li X W, He J, Chen G Z, Xu Q, Zeng G F. Nat. Commun., 2023, 14: 3800.
[21]
Su Z P, Chen T H. Small., 2021, 17(22): 2005354.
[22]
Elgrishi N, Chambers M B, Wang X, Fontecave M. Chem. Soc. Rev., 2017, 46(3): 761.
[23]
Li M H, Wang H F, Luo W, Sherrell P C, Chen J, Yang J P. Adv. Mater., 2020, 32(34): 2001848.
[24]
Pérez-Sequera A C, Díaz-Pérez M A, Serrano-Ruiz J C. Catalysts, 2020, 10(10): 1179.
[25]
Wang W B, Gong S H, Lu R Q, Wang H T, Liu J, Zhu X F, Liu B, Lv X M. Chem. Eng. Sci., 2023, 280: 119042.
[26]
Wang W B, Gong S H, Wang H T, Tan Y T, Zhu X F, Wang X X, Liu J, Yu W T, Zhu G X, Lv X M. Chem. Eng. J., 2024, 490: 151849.
[27]
Gong S H, Yang S K, Wang W B, Lu R Q, Wang H T, Han X, Wang G L, Xie J M, Rao D W, Wu C D, Liu J, Shao S Y, Lv X M. Small, 2023, 19(26): 2207808.
[28]
Gong S H, Wang W B, Zhang C N, Zhu M H, Lu R Q, Ye J J, Yang H, Wu C D, Liu J, Rao D W, Shao S Y, Lv X M. Adv. Funct. Mater., 2022, 32(46): 2110649.
[29]
Gong S H, Wang W B, Han X, Wang H T, Wang G L, Wang X X, Xie J M, Rao D W, Wu C D, Liu J, Shao S Y, Zhu M H, Lv X M. Chem Catal., 2024, 4(1): 100848.
[30]
Gu S S, Marianov A N, Lu T D, Zhong J. Chem. Eng. J., 2023, 470: 144249.
[31]
Wu Y S, Liang Y Y, Wang H L. Acc. Chem. Res., 2021, 54(16): 3149.
[32]
Wan C P, Yi J D, Cao R, Huang Y B. Chin. J. Struct. Chem., 2022, 41(5): 2205001.
[33]
Costentin C, Drouet S, Robert M, Savéant J M. Science, 2012, 338(6103): 90.
[34]
Côté A P, Benin A I, Ockwig N W, O’Keeffe M, Matzger A J, Yaghi O M. Science, 2005, 310(5751): 1166.
[35]
Lu M, Zhang M, Liu C G, Liu J, Shang L J, Wang M, Chang J N, Li S L, Lan Y Q. Angew. Chem., 2021, 133(9): 4914.
[36]
Kibria M G, Edwards J P, Gabardo C M, Dinh C T, Seifitokaldani A, Sinton D, Sargent E H. Adv. Mater., 2019, 31(31): 1807166.
[37]
Zhang Z, Xiao J P, Chen X J, Yu S, Yu L, Si R, Wang Y, Wang S H, Meng X G, Wang Y, Tian Z Q, Deng D H. Angew. Chem. Int. Ed., 2018, 57(50): 16339.
[38]
Grammatico D, Bagnall A J, Riccardi L, Fontecave M, Su B-L, Billon L. Angew. Chem. Int. Ed., 2022, 61(38): e202206399.
[39]
Lv F, Han N, Qiu Y, Liu X J, Luo J, Li Y G. Coord. Chem. Rev., 2020, 422: 213435.
[40]
Hu X-M, Rønne M H, Pedersen S U, Skrydstrup T, Daasbjerg K. Angew. Chem. Int. Ed., 2017, 56(23): 6468.
[41]
Gong S H, Xiao X X, Wang W B, Sam D K, Lu R Q, Xu Y G, Liu J, Wu C D, Lv X M. J. Colloid Interface Sci., 2021, 600: 412.
[42]
Choi J, Wagner P, Gambhir S, Jalili R, MacFarlane D R, Wallace G G, Officer D L. ACS Energy Lett., 2019, 4(3): 666.
[43]
Sun L B, Reddu V, Fisher A C, Wang X. Energy Environ. Sci., 2020, 13(2): 374.
[44]
Sonoyama N, Kirii M, Sakata T. Electrochem. Commun., 1999, 1(6): 213.
[45]
Gu H L, Zhong L X, Shi G S, Li J Q, Yu K, Li J, Zhang S, Zhu C Y, Chen S H, Yang C L, Kong Y, Chen C, Li S Z, Zhang J, Zhang L M. J. Am. Chem. Soc., 2021, 143(23): 8679.
[46]
Zhang B, Gong S H, Wang G L, Wu C D, Zhao G L, Lv X M. Appl. Surf. Sci., 2023, 630: 157437.
[47]
Zhu M H, Chen J C, Guo R, Xu J, Fang X C, Han Y F. Appl. Catal. B Environ., 2019, 251: 112.
[48]
Zhu M H, Chen J C, Huang L B, Ye R Q, Xu J, Han Y F. Angew. Chem. Int. Ed., 2019, 58(20): 6595.
[49]
Xu H, Cai H Z, Cui L X, Yu L M, Gao R, Shi C X. M. Nano Res., 2023, 16: 3649.
[50]
Su J J, Zhang J-J, Chen J C, Song Y, Huang L B, Zhu M H, Yakobson B I, Tang B Z, Ye R Q. Energy Environ. Sci., 2021, 14(1): 483.
[51]
Li N, Si D H, Wu Q J, Wu Q, Huang Y B, Cao R. CCS Chem., 2023, 5(5): 1130.
[52]
Zhang M D, Si D H, Yi J D, Zhao S S, Huang Y B, Cao R. Small, 2020, 16(52): 2005254.
[53]
Han B, Jin Y C, Chen B T, Zhou W, Yu B Q, Wei C Y, Wang H L, Wang K, Chen Y L, Chen B L, Jiang J Z. Angew. Chem. Int. Ed., 2022, 61(1): e202114244.
[54]
Li H D, Pan Y, Wang Z C, Yu Y D, Xiong J, Du H Y, Lai J P, Wang L, Feng S H. Nano Res. 2022, 15: 3056.
[55]
Chen K J, Cao M Q, Lin Y Y, Fu J W, Liao H X, Zhou Y J, Li H M, Qiu X Q, Hu J H, Zheng X S, Shakouri M, Xiao Q F, Hu Y F, Li J, Liu J L, Cortés E, Liu M. Adv. Funct. Mater., 2022, 32(10): 2111322.
[56]
Zhang X, Wang Y, Gu M, Wang M Y, Zhang Z S, Pan W Y, Jiang Z, Zheng H Z, Lucero M, Wang H L, Sterbinsky G E, Ma Q, Wang Y-G, Feng Z X, Li J, Dai H J, Liang Y Y. Nat. Energy, 2020, 5(9): 684.
[57]
Diercks C S, Lin S, Kornienko N, Kapustin E A, Nichols E M, Zhu C H, Zhao Y B, Chang C J, Yaghi O M. J. Am. Chem. Soc., 2018, 140(3): 1116.
[58]
Morlanés N, Takanabe K, Rodionov V. ACS Catal., 2016, 6(5): 3092.
[59]
Lu Q, Rosen J, Zhou Y, Hutchings G S, Kimmel Y C, Chen J G, Jiao F. Nat. Commun., 2014, 5: 3242.
[60]
Zhang X, Wu Z, Zhang X, Li L, Li Y, Xu H, Li X, Yu X, Zhang Z, Liang Y, Wang H. Nat. Commun., 2017, 8:14675.
[61]
Azcarate I, Costentin C, Robert M, Savéant J M. J. Am. Chem. Soc., 2016, 138(51): 16639.
[62]
Franco F, Cometto C, Nencini L, Barolo C, Sordello F, Minero C, Fiedler J, Robert M, Gobetto R, Nervi C. Chem-Eur J., 2017, 23(20): 4782.
[63]
Ngo K T, McKinnon M, Mahanti B, Narayanan R, Grills D C, Ertem M Z, Rochford J. J. Am. Chem. Soc., 2017, 139(7): 2604.
[64]
Lai W, Qiao Y, Wang Y, Huang H. Adv. Mater. 2023, 35, 2306288.
[65]
Duan M, Gao F, Gao M. Sci. China Mater. 2024, 67, 1721.
[66]
Peng L W, Zhang Y, He R N, Xu N N, Qiao J L. Acta Phys-Chim Sin. 2023, 39(12): 2302037.
[67]
Mok D H, Li H, Zhang G R, Lee C, Jiang K, Back S. Nat. Commun., 2023, 14: 7303.
[68]
Zhang Z, Huang X, Chen Z, Zhu J J, Endrődi B, Janáky C, Deng D H. Angew. Chem. Int. Ed., 2023, 62(28): e202302789.
[69]
Stephens I E L, Chan K, Bagger A, Boettcher S W, Bonin J, Boutin E, Buckley A K, Buonsanti R, Cave E R, Chang X X. J. Phys. Energy, 2022, 4(4): 042003.
[70]
Zhao Y, Hao L, Ozden A, Liu S J, Miao R K, Ou P F, Alkayyali T, Zhang S Z, Ning J, Liang Y X, Xu Y, Fan M Y, Chen Y J, Huang J E, Xie K, Zhang J Q, O’Brien C P, Li F W, Sargent E H, Sinton D. Nat. Synth, 2023, 2(5): 403.
[71]
Jiang Z, Zhang Z S, Li H, Tang Y R, Yuan Y B, Zao J, Zheng H Z, Liang Y Y. Adv. Energy Mater., 2023, 13(6): 2203603.
[72]
Rabiee H, Yan P, Wang H, Zhu Z, Ge L. EcoEnergy, 2024, 2(1): 3.

Funding

Development Project of Zhenjiang(GY2021004)
Innovation and Practice Fund for Industrial Centers of Jiangsu University(ZXJG2022007)
PDF(4915 KB)

Accesses

Citation

Detail

Sections
Recommended

/