Research Progress for Design and Fabrication of Fluorine-Free Surfaces with Oil-Repellent Property

Qing Wang, Peng Li, Dawei Wu, Lu Jiang, Xinrui Fang, Haitao Niu, Hua Zhou

Prog Chem ›› 2025, Vol. 37 ›› Issue (2) : 255-280.

PDF(171472 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(171472 KB)
Prog Chem ›› 2025, Vol. 37 ›› Issue (2) : 255-280. DOI: 10.7536/PC240415
Review

Research Progress for Design and Fabrication of Fluorine-Free Surfaces with Oil-Repellent Property

Author information +
History +

Abstract

The exceptional waterproof and oil-repellent properties of fluorides, attributed to their remarkably low surface energy, have rendered them extensively employed in the realm of functional finishing. However, the use of fluorine presents potential hazards to human health and engenders irreversible harm to the environment. Consequently, it is progressively being regulated by nations, and discovering alternatives without fluorine has emerged as an imperative concern that necessitates immediate attention in the fields of waterproofing and anti-fouling. To clarify the definition of the fluorine-free materials with oil-repellent property and explore their potential applications in the field of chemistry, the research background of fluorine-free surfaces with oil-repellent property was described, along with a comprehensive review and evaluation of recent achievements and preparation methods. Furthermore, the mechanism of fluorine-free surfaces with oil-repellent property was analyzed, and the application status of fluorine-free coating with oil-repellent property in textiles, construction, food, liquid treatment and other fields was summarized. Additionally, an analysis of the current challenges in ongoing research process of fluorine-free surfaces with oil-repellent property was provided. Finally, a prospective outlook on the future of green and environmentally-friendly fluorine-free surface technology was prospected.

Contents

1 Introduction

2 Properties and characteristics of fluorine-free surfaces with oil-repellent property

3 Preparation strategy of fluorine-free surfaces with oil-repellent property

3.1 Solid fluorine-free surfaces with oil-repellent property

3.2 Liquid fluorine-free surfaces with oil-repellent property

3.3 “Liquid-like” fluorine-free surfaces with oil- repellent property

4 Application of fluorine-free surfaces with oil- repellent property

5 Conclusion and outlook

Key words

fluorine-free / oil-repellent / low surface energy / roughness / liquid surface / “liquid-like” surface

Cite this article

Download Citations
Qing Wang , Peng Li , Dawei Wu , et al . Research Progress for Design and Fabrication of Fluorine-Free Surfaces with Oil-Repellent Property[J]. Progress in Chemistry. 2025, 37(2): 255-280 https://doi.org/10.7536/PC240415

References

[1]
Young T. Proc. R. Soc. London, 1805, 95: 65.
[2]
Meng H F, Wang S T, Xi J M, Tang Z Y, Jiang L. J. Phys. Chem. C, 2008, 112(30): 11454.
[3]
Kawasaki K. J. Colloid Sci., 1960, 15(5): 402.
[4]
Furmidge C G L. J. Colloid Sci., 1962, 17(4): 309.
[5]
Nishino T, Meguro M, Nakamae K, Matsushita M, Ueda Y. Langmuir, 1999, 15(13): 4321.
[6]
Wenzel, Robert N. Trans. Faraday Soc., 1936, 28 (8): 988.
[7]
Cassie A B D, Baxter S. Trans. Faraday Soc., 1944, 40: 546.
[8]
Barthlott W, Neinhuis C. Planta, 1997, 202(1): 1.
[9]
Lin F, Shuhong L, Yingshun L, Huanjun L, Lingjuan Z, Jin Z, Yanlin S, Biqian L, Lei J, Daoben Z. Adv. Mater., 2003, 14(24): 1857.
[10]
Cai S, Xue Q L, Xia B B, Yang J, Lv H B, Yan H W, Jiang B. Mater. Lett., 2015, 156: 14.
[11]
Dong S L, Zhang X L, Li Q, Liu C D, Ye T Y, Liu J C, Xu H, Zhang X G, Liu J, Jiang C Z, Xue L J, Yang S K, Xiao X H. Small, 2020, 16(19): 2070103.
[12]
Choi H J, Choo S, Shin J H, Kim K I, Lee H. J. Phys. Chem. C, 2013, 117(46): 24354.
[13]
Zhang L, Wu J J, Wang Y X, Long Y H, Zhao N, Xu J. J. Am. Chem. Soc., 2012, 134(24): 9879.
[14]
Liu T Y, Kim C-J. Science, 2014, 346(6213): 1096.
[15]
Wong W S Y, Kiseleva M S, Zhou S C, Junaid M, Pitkänen L, Ras R H A. Adv. Mater., 2023, 35(29): 2300306.
[16]
Zhang B B, Xu W C, Zhu Q J, Hou B R. J. Mater. Sci. Technol., 2021, 66: 74.
[17]
Cheng Y, Wang S C, Xu Z G, Jiang L Y, Zhao Y. Prog. Org. Coat., 2023, 183: 107726.
[18]
Jiang L Y, Cheng Y, Wang S C, Xu Z G, Zhao Y. Langmuir, 2022, 38(18): 5857.
[19]
Shabanian S, Khatir B, Nisar A, Golovin K. Nat. Sustain., 2020, 3(12): 1059.
[20]
Shabanian S, Zhao X X, Au S, Furtak N T, Golovin K. J. Mater. Chem. A, 2024, 12(26): 15716.
[21]
Yang Y C, Kalam S, Shabanian S, Golovin K, Zhou X F, Zhang Y L, Lee J. Water Res., 2024, 261: 122021.
[22]
Du P, Ding Q J, Zhao C S, Jiang Y F, Han W J, Li X. Cellulose, 2021, 28: 6133.
[23]
Yi K, Fu S Y, Zhang H, Zhang H C, Wang Y, Huang Y B. Prog. Org. Coat., 2022, 172: 107123.
[24]
Wen B, Yan Z Y, Feizheng J H, Huang Y K, Fang C A, Zhao S H, Li J, Guo D L, Zhao H F, Sha L Z, Sun Q Y, Xu Y C. Int. J. Biol. Macromol., 2024, 273(1): 132783.
[25]
Peppou-Chapman S, Hong J K, Waterhouse A, Neto C. Chem. Soc. Rev., 2020, 49(11): 3688.
[26]
Wong T S, Kang S H, Tang S K Y, Smythe E J, Hatton B D, Grinthal A, Aizenberg J. Nature, 2011, 477: 443.
[27]
Buddingh J V, Hozumi A, Liu G J. Prog. Polym. Sci., 2021, 123: 101468.
[28]
Sett S, Yan X, Barac G, Bolton L W, Miljkovic N. ACS Appl. Mater. Interfaces, 2017, 9(41): 36400.
[29]
Bittner R W, Bica K, Hoffmann H. Monatsh. Für Chem. Chem. Mon., 2017, 148(1): 167.
[30]
He W Q, Liu P, Jiang J K, Liu M J, Li H L, Zhang J Q, Luo Y, Cheung H Y, Yao X. J. Mater. Chem. A, 2018, 6(9): 4199.
[31]
Jing X S, Guo Z G. Nanoscale, 2019, 11(18): 8870.
[32]
Hu H, Liu G J, Wang J D. J. Mater. Chem. A, 2019, 7(4): 1519.
[33]
Wang B L, Heng L P, Jiang L. ACS Appl. Mater. Interfaces, 2018, 10(8): 7442.
[34]
Meng X F, Wang Z B, Wang L L, Heng L P, Jiang L. J. Mater. Chem. A, 2018, 6(34): 16355.
[35]
Che P, Heng L, Jiang L. Adv. Funct. Mater., 2017, 27(22): 1606199.
[36]
Guo T Q, Che P D, Heng L P, Fan L Z, Jiang L. Adv. Mater., 2016, 28(32): 6770.
[37]
Wooh S, Butt H J. Angew. Chem. Int. Ed., 2017, 56(18): 4965.
[38]
Urata C, Dunderdale G J, England M W, Hozumi A. J. Mater. Chem. A, 2015, 3(24): 12626.
[39]
Xu T, Gao Z S, Li F C, Miao G, Jia Y Y, Miao X, Zhu X T, Lu J W, Wang B, Song Y M, Ren G N, Li X M. Sci. China Technol. Sci., 2022, 65(8): 1819.
[40]
Hozumi A, Cheng D F, Yagihashi M. J. Colloid Interface Sci., 2011, 353(2): 582.
[41]
Fadeev A Y, McCarthy T J. Langmuir, 1999, 15(11): 3759.
[42]
Krumpfer J W, McCarthy T J. Langmuir, 2011, 27(18): 11514.
[43]
Zhao X X, Khandoker M A R, Golovin K. ACS Appl. Mater. Interfaces, 2020, 12(13): 15748.
[44]
Liu P, He W Q, Lu G, Zhang H D, Wang Z Y, Yao X. J. Mater. Chem. A, 2017, 5(31): 16344.
[45]
Zheng W W, Huang J Y, Zang X R, Xu X F, Cai W L, Lin Z Q, Lai Y K. Adv. Mater., 2022, 34(42): 2204581.
[46]
Zheng C, Liu G J, Hu H. ACS Appl. Mater. Interfaces, 2017, 9(30): 25623.
[47]
Liu P, Zhang H, He W, Li H, Jiang J, Liu M, Sun H, He M, Cui J, Jiang L, Yao X. ACS Nano, 2017, 11(2): 2248.
[48]
Wang J, Wang L, Sun N, Tierney R, Li H, Corsetti M, Williams L, Wong P K, Wong T S. Nat. Sustain., 2019, 2(12): 1097.
[49]
Huang Y F, Ding X H, Lu C, Bai L S, Guan H M, Tong Y J. Prog. Org. Coat., 2019, 132: 475.
[50]
Cheng D F, Urata C, Masheder B, Hozumi A. J. Am. Chem. Soc., 2012, 134(24): 10191.
[51]
Zheng C, Liu G J, Hu H. ACS Appl. Mater. Interfaces, 2017, 9(30): 25623.
[52]
Zhang K K, Huang S S, Wang J D, Liu G J. Chem. Eng. J., 2020, 396: 125211.
[53]
Shen K Z, Hu H, Wang J D, Liu G J. Polymer, 2017, 132: 198.
[54]
Cheng D F, Urata C, Yagihashi M, Hozumi A. Angew. Chem. Int. Ed., 2012, 51(12): 2956.
[55]
Yu M N, Liu M M, Hou Y Y, Fu S H, Zhang L P, Li M, Wang D. J. Mater. Sci., 2020, 55(27): 12811.
[56]
Wang L M, McCarthy T J. Angew. Chem. Int. Ed., 2016, 55(1): 244.
[57]
Zhao X X, Khandoker M A R, Golovin K. ACS Appl. Mater. Interfaces, 2020, 12(13): 15748.
[58]
Zhang K K, Huang S S, Wang J D, Liu G J. Angew. Chem. Int. Ed., 2019, 58(35): 12004.
[59]
Shiraki Y. J. Appl. Polym. Sci., 2023, 141(9): e55010.
[60]
Khan F, Khan A, Tuhin M O, Rabnawaz M, Li Z, Naveed M. RSC Adv., 2019, 9(46): 26703.
[61]
Ye X D, Hou J W, Yan X R, Wu X J. J. Nanomater., 2019, 2019: 3484239.
[62]
Rabnawaz M, Liu G J, Hu H. Angew. Chem. Int. Ed., 2015, 54(43): 12722.
[63]
Hu H, Wang J, Wang Y, Gee E, Liu G J. ACS Appl. Mater. Interfaces, 2017, 9(10): 9029.
[64]
Huang S S, Liu G J, Hu H, Wang J D, Zhang K K, Buddingh J. Chem. Eng. J., 2018, 351: 210.
[65]
Hu H, Liu G J, Wang J. Adv. Mater. Interfaces, 2016, 3(14): admi.201670067.
[66]
Khan F, Rabnawaz M, Li Z, Khan A, Naveed M, Tuhin M O, Rahimb F. ACS Appl. Polym. Mater., 2019, 1(10): 2659.
[67]
Wu X, Zhang Y C, Liu M H, Xu X B, Wang Z P, Wyman I, Yang H, Liu F H, Wang J B, Wu J Z. AlChE. J., 2019, 65(5): e16569.
[68]
Masheder B, Urata C, Hozumi A. ACS Appl. Mater. Interfaces, 2013, 5(16): 7899.
[69]
Urata C, Masheder B, Cheng D F, Hozumi A. Chem. Commun., 2013, 49(32): 3318.
[70]
Urata C, Cheng D F, Masheder B, Hozumi A. RSC Adv., 2012, 2(26): 9805.
[71]
Urata C, Masheder B, Cheng D F, Hozumi A. Langmuir, 2012, 28(51): 17681.
[72]
Urata C, Masheder B, Cheng D F, Miranda D F, Dunderdale G J, Miyamae T, Hozumi A. Langmuir, 2014, 30(14): 4049.
[73]
Fan Y, Wang S, Huang Y S, Tan Y, Gui L S, Huang S L, Tian X L. Adv. Mater., 2024, 36(30): 2402893.
[74]
Hegner K I, Hinduja C, Butt H J, Vollmer D. Nano Lett., 2023, 23(8): 3116.
[75]
Singh V, Men X H, Tiwari M K. Nano Lett., 2021, 21(8): 3480.
[76]
Togasawa R, Tenjimbayashi M, Matsubayashi T, Moriya T, Manabe K, Shiratori S. ACS Appl. Mater. Interfaces, 2018, 10(4): 4198.
[77]
Li Z, Rabnawaz M. ACS Appl. Polym. Mater., 2019, 1(1): 103.
[78]
Manabe K, Kyung K H, Shiratori S. ACS Appl. Mater. Interfaces, 2015, 7(8): 4763.

Funding

National Natural Science Foundation of China(22372087)
PDF(171472 KB)

Accesses

Citation

Detail

Sections
Recommended

/