Non-Fullerene Acceptor Materials: Selenophenes Engineering

Huan Liu, Huimin Shi, Haiyang Li, Chuanlang Zhan

Prog Chem ›› 2025, Vol. 37 ›› Issue (2) : 235-254.

PDF(6567 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(6567 KB)
Prog Chem ›› 2025, Vol. 37 ›› Issue (2) : 235-254. DOI: 10.7536/PC240416
Review

Non-Fullerene Acceptor Materials: Selenophenes Engineering

Author information +
History +

Abstract

To advance the development of high-performance organic solar cells, in recent years, the academic community has conducted in-depth research on the design of non-fullerene acceptor materials and the interplay between their structure and properties. Structural modifications of these materials involve optimization of the core structure, side chain engineering, expansion of the conjugated system, and doping with heteroatoms. Focusing on sulfur, due to its outstanding semiconducting properties, it is widely used in the manufacturing of electronic materials and semiconductor devices, especially in the field of organic solar cells. Selenium, as a homologous element of sulfur, not only shares similar chemical and physical properties but also possesses unique characteristics. For instance, compared to sulfur, selenium has a larger atomic radius, which provides additional space within molecules, facilitating charge transfer and improving electron distribution. Moreover, due to its greater mass, selenium atoms have lower vibrational frequencies, a characteristic that enhances light absorption capabilities within the visible spectrum. Therefore, the introduction of selenium atoms is considered a potential approach to enhancing the efficiency of organic solar cells. This review focuses on the impact of the position and ratio of selenium atoms in condensed-ring electron acceptors (such as ITIC and Y6 derivatives) and certain non-condensed ring acceptors on their photovoltaic performance. It also discusses the synergistic effect of selenium atom substitution with other optimization strategies and its comprehensive impact on the performance of various types of organic solar cells (including small molecule, polymer, and all-polymer solar cells).

Contents

1 Introduction

2 Research on the Regulation of Photovoltaic Performance by Selenophenes for Non-Fullerene Electron Acceptors with Condensed Rings

2.1 Research on the regulation of photovoltaic performance by selenophenes for ITIC series acceptor materials

2.2 Research on the regulation of photovoltaic performance by selenophenes for Y series acceptor materials

2.3 Research on the regulation of photovoltaic performance by selenophenes for Y series polymer materials

2.4 Research on the regulation of photovoltaic performance by selenophenes for other types of acceptor materials

3 Research on the Regulation of photovoltaic Performance by Selenophenes for Non-Condensed Ring Non-Fullerene Electron Acceptors

4 Conclusion and outlook

Key words

organic solar cells / selenophenes / narrow bandgap / broad absorption

Cite this article

Download Citations
Huan Liu , Huimin Shi , Haiyang Li , et al. Non-Fullerene Acceptor Materials: Selenophenes Engineering[J]. Progress in Chemistry. 2025, 37(2): 235-254 https://doi.org/10.7536/PC240416

References

[1]
Zhang B, Yang F, Li Y. Small Sci., 2023, 3(7): 2300004.
[2]
Li Y, Xu G, Cui C, Li Y. Adv. Energy Mater., 2017, 8(7): 1701791.
[3]
Marinova N, Valero S, Delgado J L. J. Colloid Interface Sci., 2017, 488: 373.
[4]
Yi J C, Zhang G Y, Yu H, Yan H. Nat. Rev. Mater., 2024, 9(1): 46.
[5]
Cui C H, Li Y F. Aggregate, 2021, 2(2): e52.
[6]
Zhang P Y, Zhang Z Y, Sun H, Li J, Chen Y, Wang J, Zhan C L. Chin. Chem. Lett., 2024, 35(2): 108802.
[7]
Zhang W C, Huang J H, Lv X Y, Zhang M, Liu W R, Xu T Z, Ning J, Hexig A, Liu F, Xu A J, Zhan C L. Chin. Chem. Lett., 2023, 34(4): 107436.
[8]
徐翔, 李坤, 魏擎亚, 袁俊, 邹应萍. 化学进展, 2021, 33(2): 165.
(Xu X, Li K, Wei Q Y, Yuan J, Zou Y P. Prog. Chem., 2021, 33(2): 165.)
[9]
Chen C, Wang L, Xia W Y, Qiu K, Guo C H, Gan Z R, Zhou J, Sun Y D, Liu D, Li W, Wang T. Nat. Commun., 2024, 15: 6865.
[10]
Jiang Y Y, Sun S M, Xu R J, Liu F, Miao X D, Ran G L, Liu K R, Yi Y P, Zhang W K, Zhu X Z. Nat. Energy, 2024, 9(8): 975.
[11]
Huang F F, Li Z X, Song G K, Jiang C Z, Yang Y, Wang J, Wan X J, Li C X, Yao Z Y, Chen Y S. Adv. Funct. Mater., 2023, 33(4): 2211140.
[12]
Lin Y Z, Wang J Y, Zhang Z G, Bai H T, Li Y F, Zhu D B, Zhan X W. Adv. Mater., 2015, 27(7): 1170-4.
[13]
Wang J, Zheng Z, Bi P, Chen Z, Wang Y, Liu X, Zhang S, Hao X, Zhang M, Li Y, Hou J. Natl. Sci. Rev., 2023, 10(6): nwad085.
[14]
Wan S S, Zhao Q Q, Jiang Z, Yuan G-Z, Yan L, Ryu H S, Mahmood A, Liu Y Q, Li H, Woo H Y, He F, Wang J-L. J. Mater. Chem. A, 2021, 9(28): 15665.
[15]
Li Y X, Qian D P, Zhong L, Lin J D, Jiang Z Q, Zhang Z G, Zhang Z J, Li Y F, Liao L S, Zhang F L. Nano Energy, 2016, 27: 430.
[16]
Liu K K, Huang H, Wang J L, Wan S S, Zhou X B, Bai H R, Ma W, Zhang Z G, Li Y F. ACS Appl. Mater. Interfaces, 2021, 13(42): 50163.
[17]
Lin F, Zuo L J, Gao K, Zhang M, Jo S B, Liu F, Jen A K. Chem. Mater., 2019, 31(17): 6770.
[18]
Labanti C, Sung M J, Luke J, Kwon S, Kumar R, Hong J S, Kim J, Bakulin A A, Kwon S K, Kim Y H, Kim J S. ACS Nano, 2021, 15(4): 7700.
[19]
Wang J L, Liu K K, Hong L, Ge G Y, Zhang C, Hou J H. ACS Energy Lett., 2018, 3(12): 2967.
[20]
Ge G Y, Xiong W T, Liu K-K, Ryu H S, Wan S-S, Liu B, Mahmood A, Bai H-R, Wang J-F, Wang Z H, Woo H Y, Sun Y M, Wang J-L. J. Mater. Chem. C, 2021, 9(6): 1923.
[21]
Wan S S, Chang C M, Wang J L, Yuan G Z, Wu Q, Zhang M J, Li Y F. Sol. RRL, 2019, 3(1): 1800250.
[22]
Zhang C, Liu T, Wang J L, Liu K K, Yang C, Zhang H J, Ma R, Yan H. Sol. RRL, 2020, 4(10): 2000212.
[23]
Wan S S, Xu X P, Jiang Z, Yuan J, Mahmood A, Yuan G-Z, Liu K-K, Ma W, Peng Q, Wang J-L. J. Mater. Chem. A, 2020, 8(9): 4856.
[24]
Wan S S, Xu X P, Wang J L, Yuan G Z, Jiang Z, Ge G Y, Bai H R, Li Z, Peng Q. J. Mater. Chem. A, 2019, 7(19): 11802.
[25]
Liu K K, Xu X P, Wang J L, Zhang C, Ge G Y, Zhuang F D, Zhang H J, Yang C, Peng Q, Pei J. J. Mater. Chem. A, 2019, 7(42): 24389.
[26]
Liang Z Q, Li M M, Zhang X M, Wang Q, Jiang Y, Tian H K, Geng Y H. J. Mater. Chem. A, 2018, 6(17): 8059.
[27]
Liu D X, Kan B, Ke X, Zheng N, Xie Z Q, Lu D, Liu Y S. Adv. Energy Mater., 2018, 8(26): 1801618.
[28]
Zhang X W, Wang Q, Liang Z Q, Li M M, Geng Y H. Org. Electron., 2019, 69: 200.
[29]
Tang C Q, Ma X L, Wang J Y, Zhang X, Liao R C, Ma Y L, Wang P, Wang P S, Wang T, Zhang F J, Zheng Q D. Angew. Chem. Int. Ed., 2021, 60(35): 19314.
[30]
Li C, Song J L, Cai Y H, Han G C, Zheng W Y, Yi Y P, Ryu H S, Woo H Y, Sun Y M. J. Energy Chem., 2020, 40: 144.
[31]
Liu S N, Zhao B F, Cong Z Y, Wang W P, Cheng Q, Liu J Q, Wu H M, Gao C. Dyes Pigm., 2021, 186: 108988.
[32]
Cao J R, Qu S Y, Yu J S, Zhang Z H, Geng R Y, Yang L Q, Wang H T, Du F Q, Tang W H. Mater. Chem. Front., 2020, 4(3): 924.
[33]
Li C, Xia T, Song J L, Fu H T, Ryu H S, Weng K K, Ye L L, Woo H Y, Sun Y M. J. Mater. Chem. A, 2019, 7(4): 1435.
[34]
Zhang Z Z, Li Y W, Cai G L, Zhang Y H, Lu X H, Lin Y Z. J. Am. Chem. Soc., 2020, 142(44): 18741.
[35]
Li Z C, Li X J, Xue J W, Zhang J Y, Zhu C, Li J, Ma W, Meng L, Li Y F. ACS Energy Lett., 2023, 8(6): 2488.
[36]
Feng H, Meng X L, Fu L Y, Liu C B, Yin X X, Zhu E W, Li Z F, Che G B. J. Mater. Chem. C, 2023, 11(8): 3020.
[37]
Cheng H W, Mohapatra A, Chang Y M, Liao C Y, Hsiao Y T, Chen C H, Lin Y C, Huang S Y, Chang B, Yang Y, Chu C W, Wei K H. ACS Appl. Mater. Interfaces, 2021, 13(23): 27227.
[38]
Chai G D, Zhang J Q, Pan M G, Wang Z, Yu J W, Liang J E, Yu H, Chen Y Z, Shang A, Liu X Y, Bai F J, Ma R J, Chang Y, Luo S W, Zeng A P, Zhou H, Chen K, Gao F, Ade H, Yan H. ACS Energy Lett., 2020, 5(11): 3415.
[39]
Lin F, Jiang K, Kaminsky W, Zhu Z L, Jen A K. J. Am. Chem. Soc., 2020, 142(36): 15246.
[40]
He X J, Qi F, Zou X H, Li Y X, Liu H, Lu X H, Wong K S, Jen A K, Choy W C H. Nat. Commun., 2024, 15: 2103.
[41]
Gao W, Ma R J, Zhu L, Li L, Lin F R, Dela Peña T A, Wu J Y, Li M J, Zhong W K, Wu X F, Fink Z, Tian C B, Liu F, Wei Z H, Jen A K, Li G. Adv. Energy Mater., 2024, 14(19): 2304477.
[42]
Qi F, Jones L O, Jiang K, Jang S H, Kaminsky W, Oh J, Zhang H N, Cai Z W, Yang C, Kohlstedt K L, Schatz G C, Lin F R, Marks T J, Jen A K. Mater. Horiz., 2022, 9(1): 403.
[43]
Fan Q P, Ma R J, Bi Z Z, Liao X F, Wu B H, Zhang S, Su W Y, Fang J, Zhao C, Yan C Q, Chen K, Li Y X, Gao C, Li G, Ma W. Adv. Funct. Mater., 2023, 33(8): 2211385.
[44]
Jia Z R, Ma Q, Chen Z, Meng L, Jain N, Angunawela I, Qin S C, Kong X L, Li X J, Yang Y, Zhu H M, Ade H, Gao F, Li Y F. Nat. Commun., 2023, 14: 1236.
[45]
Zhang J Q, Luo S W, Zhao H, Xu X Y, Zou X H, Shang A, Liang J E, Bai F J, Chen Y Z, Wong K S, Ma Z F, Ma W, Hu H W, Chen Y W, Yan H. Angew. Chem. Int. Ed., 2022, 61(46): e202206930.
[46]
Yu H, Qi Z Y, Zhang J Q, Wang Z, Sun R, Chang Y, Sun H L, Zhou W T, Min J, Ade H, Yan H. J. Mater. Chem. A, 2020, 8(45): 23756.
[47]
Yang C, An Q S, Bai H R, Zhi H F, Ryu H S, Mahmood A, Zhao X, Zhang S W, Woo H Y, Wang J L. Angew. Chem. Int. Ed., 2021, 60(35): 19241.
[48]
Yang C, An Q S, Jiang M Y, Ma X M, Mahmood A, Zhang H, Zhao X, Zhi H F, Jee M H, Woo H Y, Liao X L, Deng D, Wei Z X, Wang J L. Angew. Chem., 2023, 135(49): e202313016.
[49]
Zhao X, An Q S, Zhang H, Yang C, Mahmood A, Jiang M Y, Jee M H, Fu B, Tian S Y, Woo H Y, Wang Y P, Wang J L. Angew. Chem. Int. Ed., 2023, 62(10): e202216340.
[50]
Li Z C, Kong X L, Chen Z, Angunawela I, Zhu H M, Li X J, Meng L, Ade H, Li Y F. ACS Appl. Mater. Interfaces, 2022, 14(46): 52058.
[51]
Shi J Y, Chen Z Y, Liu H, Qiu Y, Yang S C, Song W, Ge Z Y. Adv. Energy Mater., 2023, 13(29): 2301292.
[52]
Gao W, Qi F, Peng Z X, Lin F R, Jiang K, Zhong C, Kaminsky W, Guan Z Q, Lee C S, Marks T J, Ade H, Jen A K. Adv. Mater., 2022, 34(32): 2202089.
[53]
Gao Y, Yang X R, Wang W, Sun R, Cui J T, Fu Y A, Li K, Zhang M M, Liu C, Zhu H M, Lu X H, Min J. Adv. Mater., 2023, 35(23): 2300531.
[54]
Li X, Peng R, Qiu Y, Zhang Y, Shi J, Gao S, Ge Z. Adv. Funct. Mater., 2024: 2413259.
[55]
Zhang Z G, Yang Y K, Yao J, Xue L W, Chen S S, Li X J, Morrison W, Yang C, Li Y F. Angew. Chem. Int. Ed., 2017, 56(43): 13503.
[56]
Wang T, Chen M X, Sun R, Min J. Chem, 2023, 9(7): 1702.
[57]
Li X J, Sun G P, Gong Y F, Li Y F. Chin. J. Polym. Sci., 2023, 41(5): 640.
[58]
Liao Z H, Yu W Y, Li H J, Yang K, Kang J H, Li D L, Tang H, Huang P H, Hu D Q, Yang J G, Han D M, Lu S R, Hu X T, Kan Z P, Xiao Z Y. Sol. RRL, 2022, 6(12): 2200769.
[59]
Fan Q P, Fu H T, Luo Z H, Oh J, Fan B B, Lin F, Yang C, Jen A K Y. Nano Energy, 2022, 92: 106718.
[60]
Wu Q, Wang W, Wu Y, Sun R, Guo J, Shi M M, Min J. Natl. Sci. Rev., 2022, 9(2): nwab151.
[61]
Fu H T, Fan Q P, Gao W, Oh J, Li Y X, Lin F, Qi F, Yang C, Marks T J, Jen A K. Sci. China Chem., 2022, 65(2): 309.
[62]
Sun R, Wang T, Fan Q P, Wu M J, Yang X R, Wu X H, Yu Y, Xia X X, Cui F Z, Wan J, Lu X H, Hao X T, Jen A K Y, Spiecker E, Min J. Joule, 2023, 7(1): 221.
[63]
Wu X H, Yang X R, Shao Y M, Gao Y, Wan J, Ponomarenko S, Luponosov Y, Sun R, Min J. Sol. RRL, 2023, 7(11): 2300064.
[64]
Wu Q, Wang W, Wu Y, Sun R, Guo J, Shi M M, Min J. Natl. Sci. Rev., 2022, 9(2): nwab151.
[65]
Du J Q, Hu K, Zhang J Y, Meng L, Yue J L, Angunawela I, Yan H P, Qin S C, Kong X L, Zhang Z J, Guan B, Ade H, Li Y F. Nat. Commun., 2021, 12: 5264.
[66]
Fan Q P, Fu H T, Wu Q, Wu Z A, Lin F, Zhu Z L, Min J, Woo H Y, Jen A K. Angew. Chem. Int. Ed., 2021, 60(29): 15935.
[67]
Fan Q P, Fu H T, Liu M, Oh J, Ma X L, Lin F R, Yang C, Zhang F J, Jen A K. ACS Appl. Mater. Interfaces, 2022, 14(23): 26970.
[68]
Wu J N, Ling Z H, Franco L R, Jeong S Y, Genene Z, Mena J, Chen S, Chen C L, Araujo C M, Marchiori C F N, Kimpel J, Chang X M, Isikgor F H, Chen Q N, Faber H, Han Y, Laquai F, Zhang M J, Woo H Y, Yu D H, Anthopoulos T D, Wang E G. Angew. Chem. Int. Ed., 2023, 62(45): e202302888.
[69]
Bai Y Y, Chen T Q, Ji X Y, Wang J Y, Zhao W K, Yuan S H, Zhang Y X, Long G K, Zhang Z, Wan X J, Kan B, Chen Y S. Adv. Energy Mater., 2024, 14(30): 2400938.
[70]
Privado M, Malhotra P, de la Cruz P, Singhal R, Cerdá J, Aragó J, Ortí E, Sharma G D, Langa F. Sol. RRL, 2020, 4(4): 1900471.
[71]
Privado M, de la Cruz P, Malhotra P, Sharma G D, Langa F. Sol. Energy, 2021, 221: 393.
[72]
Privado M, Dahiya H, de la Cruz P, Keshtov M L, Langa F, Sharma G D. J. Mater. Chem. C, 2021, 9(45): 16272.
[73]
Privado M, Agrawal A, de la Cruz P, Keshtov M L, Sharma G D, Langa F. Sol. RRL, 2022, 6(2): 2100768.
[74]
Xue C L M, Liu W R, Bai T Y, Han M M, Sha R, Zhan C L. Prog. Chem., 2022, 34(2): 447.
(薛朝鲁门, 刘宛茹, 白图雅, 韩明梅, 莎仁, 詹传郎. 化学进展, 2022, 34(2): 447.)
[75]
Sun H, Zhang P, Zhang Y, Zhan C. Chem. Res. Chin. Univ., 2023, 44(7): 20230076.
[76]
Li D, Zhang H, Cui X, Chen Y N, Wei N, Ran G, Lu H, Chen S, Zhang W, Li C, Liu Y. Adv. Mater., 2024, 36(4): 2310362.
[77]
Ding X Y, Chen X J, Xu Y Y, Ni Z G, He T, Qiu H Y, Li C Z, Zhang Q. Chem. Eng. J., 2022, 429: 132298.
[78]
Zheng X M, Liu W L, Wang H, Man X Y, Ran G L, Yu X D, Lu H, Bi Z Z, Liu Y H, Zhang A D, Ma W, Xu X J, Tang Z, Zhang W K, Bo Z S. Cell Rep. Phys. Sci., 2022, 3(12): 101169.
[79]
Xiao Y, Yao H F, Yang Y, Song C E, Wang J W, Yang N, Li Z, Yu Y, Ryu D H, An C B, Shin W S, Hou J H. Sol. RRL, 2023, 7(10): 2300095.

Funding

Department of Science and Technology of Inner Mongolia, China(2020GG0192)
Natural Science Foundation of Inner Mongolia, China(2022ZD04)
Inner Mongolia Normal University, China(112/1004031962)
PDF(6567 KB)

Accesses

Citation

Detail

Sections
Recommended

/