Copper Catalytic System for CO2 Electrocatalytic Preparation of Ethylene

Yaqing Hu, Kunyu Xu, Haoling Yang, Fengfan Zhang, Zihao Yang, Zhaoxia Dong

Prog Chem ›› 2025, Vol. 37 ›› Issue (3) : 332-350.

Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
Prog Chem ›› 2025, Vol. 37 ›› Issue (3) : 332-350. DOI: 10.7536/PC240505
Review

Copper Catalytic System for CO2 Electrocatalytic Preparation of Ethylene

Author information +
History +

Abstract

Taking into account environmental concerns and the ongoing shift towards clean energy, converting carbon dioxide (CO2) into ethylene (C2H4) through electrochemical CO2 reduction (ECO2RR) using renewable electricity is a sustainable and eco-friendly solution for achieving carbon neutrality while also providing economic benefits. Despite significant advancements in the field, issues such as low selectivity, activity and stability continue to persist. This paper presents a review of recent research progress in copper-based catalytic systems for ECO2RR in the production of ethylene. Firstly, the mechanism of ECO2RR is briefly summarized. It then highlights various catalyst design strategies for ethylene production, such as tandem catalysis, crystal surface modulation, surface modification, valence influence, size sizing, defect engineering, and morphology design. Finally, the paper discusses future challenges and prospects for the synthesis of ethylene through electrocatalytic CO2 reduction.

Contents

1 Introduction

2 CO2 electroreduction mechanisms on Cu catalysts

2.1 The adsorption and activation of CO2

2.2 The formation of *CO intermediates

2.3 C-C coupling

3 Key performance parameter

4 Catalyst design strategies

4.1 Tandem catalysis

4.2 Facet exposure

4.3 Surface modification

4.4 Valence state

4.5 Size control

4.6 Defects engineering

4.7 Morphology design

5 Conclusion and prospect

Key words

ECO2RR / ethylene / reaction mechanism / catalysts / design strategy

Cite this article

Download Citations
Yaqing Hu , Kunyu Xu , Haoling Yang , et al . Copper Catalytic System for CO2 Electrocatalytic Preparation of Ethylene[J]. Progress in Chemistry. 2025, 37(3): 332-350 https://doi.org/10.7536/PC240505

References

[1]
Lin B Q Xu B. Sci. Total Environ.2020, 719: 137503.
[2]
Li W. Int. J. Environ. Sci. Technol.202219(3): 1785.
[3]
Howie P Atakhanova Z. Energy Strategy Rev.2022, 40: 100818.
[4]
Huo H L Hu T Zhong Z Q Zhan C Huang C X Ju Q Zhang L Wu F Kan E J Li A. Chem. Sci.202415(37): 15134.
[5]
Hu Y X Ding Y Y Xie L Li H Y Jiang Y J Gong K Zhang A D Zhu W L Wang Y Y. Carbon2024, 230: 119574.
[6]
Lin J S Zhang N. Green Chem.202426(8): 4449.
[7]
Zhang Z Z Li S J Zhang Z Chen Z Wang H Meng X G Cui W Q Qi X W Wang J C. Carbon Energy20246(2): e513.
[8]
Gui Y Y Chen X W Mo X Y Yue J P Yuan R Liu Y Liao L L Ye J H Yu D G. J. Am. Chem. Soc.2024146(5): 2919.
[9]
Fusco Z Koenig D Smith S C Beck F J. Nanoscale Horiz.20249(6): 1030.
[10]
Zhang Z Li D Y Tu Y C Deng J Bi H T Yao Y C Wang Y Li T S Luo Y S Sun S J Zheng D D Carabineiro S A C Chen Z Zhu J J Sun X P. SusMat20244(2): e193.
[11]
Patel S McKelvey K Liu L J. Chem. Mater.202436(20): 10054.
[12]
Wang Y H Liu J L Wang Y F Al-Enizi A M Zheng G F. Small201713(43): 1701809.
[13]
Rodrigues R M Guan X Iñiguez J A Estabrook D A Chapman J O Huang S Y Sletten E M Liu C. Nat. Catal.20192(5): 407.
[14]
Tan Z H Zhang J L Yang Y S Sha Y F Duan R Zhong J J Han B X Hu J Y Zhao Y Z. CCS Chem.20235(1): 133.
[15]
Qi R Z Chen F Q Zhong Z P Jia Y Yang Y X Yun Z K Ye Q H. J. Alloys Compd.2024, 1008: 176713.
[16]
Tian M Wu S S Hu Y Mu Z R Li Z Hou Y C Xi P X Yan C H. Nanoscale202315(9): 4477.
[17]
Wang X Y Jan S Wang Z Y Jin X B. Int. J. Miner. Metall. Mater.202431(4): 803.
[18]
Dagnaw F W Harrath K Zheng T Wu X-D Liu Y-Z Li R-Q Xie L-H Li Z He X Z Tong Q-X Jian J-X. Adv. Sci.202411(42): 2408152.
[19]
Cui Y J Cheng Y H Yang C L Su Y S Yao D F Liufu B P Li J L Fang Y W Liu S Y Zhong Z Y Wang X M Song Y B Li Z. ACS Sustainable Chem. Eng.202311(30): 11229.
[20]
Wang H J Tong Y Chen P Z. Nano Energy2023, 118: 108967.
[21]
Higgins D Hahn C Xiang C X Jaramillo T F Weber A Z. ACS Energy Lett.20194(1): 317.
[22]
Zheng X L De Luna P García de Arquer F P Zhang B Becknell N Ross M B Li Y F Banis M N Li Y Z Liu M Voznyy O Dinh C T Zhuang T T Stadler P Cui Y Du X W Yang P D Sargent E H. Joule20171(4): 794.
[23]
Yang H B Hung S F Liu S Yuan K D Miao S Zhang L P Huang X Wang H Y Cai W Z Chen R Gao J J Yang X F Chen W Huang Y Q Chen H M Li C M Zhang T Liu B. Nat. Energy20183(2): 140.
[24]
Rosen B A Salehi-Khojin A Thorson M R Zhu W Whipple D T Kenis P J A Masel R I. Science2011334(6056): 643.
[25]
Jiang K Siahrostami S Zheng T T Hu Y F Hwang S Stavitski E Peng Y D Dynes J Gangisetty M Su D Attenkofer K Wang H T. Energy Environ. Sci.201811(4): 893.
[26]
Jhong H R M Ma S C Kenis P J. Curr. Opin. Chem. Eng.20132(2): 191.
[27]
Liu J L Zhang X J Yang R Yang Y A Wang X. Adv. Energy Sustain. Res.20234(8): 2200192.
[28]
Wen C F Zhou M Wu X F Liu Y W Mao F X Fu H Q Shi Y L Dai S Zhu M H Yang S Wang H F Liu P F Yang H G. J. Mater. Chem. A202311(23): 12121.
[29]
Cao Y F Chen Z Li P H Ozden A Ou P F Ni W Y Abed J Shirzadi E Zhang J Q Sinton D Ge J Sargent E H. Nat. Commun.2023, 14: 2387.
[30]
Xu K Y Yang H L Hu Y Q Zhang F F Wang H B Pan Y Q Yang Z H Zhang J Lin M Q Dong Z X. Chem. Eng. J.2024, 498: 155831.
[31]
Ling P Q Liu Y H Wang Z Q Li L Hu J Zhu J F Yan W S Jiang H J Hou Z H Sun Y F Xie Y. Nano Lett.202222(7): 2988.
[32]
Zhang B X Zhang J L Hua M L Wan Q Su Z Z Tan X N Liu L F Zhang F Y Chen G Tan D X Cheng X Y Han B X Zheng L R Mo G. J. Am. Chem. Soc.2020142(31): 13606.
[33]
Hori Y Murata A Takahashi R. J. Chem. Soc., Faraday Trans. 1, 198985(8): 2309.
[34]
Han J Y Tu B An P F Zhang J Yan Z Zhang X F Long C Zhu Y F Yuan Y Qiu X Y Yang Z J Huang X W Yan S H Tang Z Y. Adv. Mater.202436(21): 2313926.
[35]
Wang H F Zhang F S Li Y Pang Y P Zhao X Q Song Z L Wang W L Sun J Mao Y P. J. Colloid Interface Sci.2025, 678: 506.
[36]
Bian L Zhang Z Y Tian H Tian N N Ma Z Wang Z L. Chin. J. Catal.2023, 54: 199.
[37]
Xue L Fan Q Y Zhao Y S Liu Y Zhang H Sun M Wang Y Zeng S H. J. Energy Chem.2023, 82: 414.
[38]
Ma Y N Shi R Zhang T R. Acta Chim. Sin.2021, 79: 369.
(马一宁, 施润, 张铁锐. 化学学报2021, 79: 369.).
[39]
Singh M R Clark E L Bell A T. Phys. Chem. Chem. Phys.201517(29): 18924.
[40]
Weekes D M Salvatore D A Reyes A Huang A X Berlinguette C P. Acc. Chem. Res.201851(4): 910.
[41]
Xie S J Ma W C Wu X J Zhang H K Zhang Q H Wang Y D Wang Y. Energy Environ. Sci.202114(1): 37.
[42]
Weng Z Zhang X Wu Y S Huo S J Jiang J B Liu W He G J Liang Y Y Wang H L. Angew. Chem.2017129(42): 13315.
[43]
Cui C H Gan L Heggen M Rudi S Strasser P. Nat. Mater.201312(8): 765.
[44]
Ross M B De Luna P Li Y F Dinh C T Kim D Yang P D Sargent E H. Nat. Catal.20192(8): 648.
[45]
Zhang G Zhao Z-J Cheng D F Li H M Yu J Wang Q Z Gao H Guo J Y Wang H Y Ozin G A Wang T Gong J L. Nat. Commun.2021, 12: 5745.
[46]
Xu Y N Li W J Fu H Q Zhang X Y Zhao J Y Wu X F Yuan H Y Zhu M H Dai S Liu P F Yang H G. Angew. Chem. Int. Ed.202362(19): e202217296.
[47]
Wang L M Chen W L Zhang D D Du Y P Amal R Qiao S Z Wu J B Yin Z Y. Chem. Soc. Rev.201948(21): 5310.
[48]
Favaro M Xiao H Cheng T Goddard W A III Yano J Crumlin E J. Proc. Natl. Acad. Sci. U. S. A., 2017114(26): 6706.
[49]
Chang X X Wang T Gong J L. Energy Environ. Sci.20169(7): 2177.
[50]
Sun Z Y Ma T Tao H C Fan Q Han B X. Chem20173(4): 560.
[51]
Kortlever R Shen J Schouten K J P Calle-Vallejo F Koper M T M. J. Phys. Chem. Lett.20156(20): 4073.
[52]
Yang Y S Tan Z H Zhang J L. Chem.202217(24): e202200893.
[53]
Garza A J Bell A T Head-Gordon M. ACS Catal.20188(2): 1490.
[54]
Zheng M Wang P T Zhi X Yang K Jiao Y Duan J J Zheng Y Qiao S Z. J. Am. Chem. Soc.2022144(32): 14936.
[55]
Hou J J Chang X X Li J Xu B J Lu Q. J. Am. Chem. Soc.2022144(48): 22202.
[56]
Calle-Vallejo F Koper M T M. Angew. Chem. Int. Ed.201352(28): 7282.
[57]
Zhang Y-J Sethuraman V Michalsky R Peterson A A. ACS Catal.20144(10): 3742.
[58]
Wang Y H Liu J L Zheng G F. Adv. Mater.202133(46): 2005798.
[59]
Gunathunge C M Ovalle V J Li Y W Janik M J Waegele M M. ACS Catal.20188(8): 7507.
[60]
Li F W Thevenon A Rosas-Hernández A Wang Z Y Li Y L Gabardo C M Ozden A Dinh C T Li J Wang Y H Edwards J P Xu Y McCallum C Tao L Z Liang Z Q Luo M C Wang X Li H H O’Brien C P Tan C S Nam D H Quintero-Bermudez R Zhuang T-T Li Y C Han Z J Britt R D Sinton D Agapie T Peters J C Sargent E H. Nature2020577(7791): 509.
[61]
Kim Y Park S Shin S J Choi W Min B K Kim H Kim W Hwang Y J. Energy Environ. Sci.202013(11): 4301.
[62]
Goodpaster J D Bell A T Head-Gordon M. J. Phys. Chem. Lett.20167(8): 1471.
[63]
Pérez-Gallent E Figueiredo M C Calle-Vallejo F Koper M T M. Angew. Chem. Int. Ed.201756(13): 3621.
[64]
Ma W C He X Y Wang W Xie S J Zhang Q H Wang Y. Chem. Soc. Rev.202150(23): 12897.
[65]
Cheng T Xiao H Goddard W A III. Proc. Natl. Acad. Sci. U. S. A., 2017114(8): 1795.
[66]
Lum Y Cheng T Goddard W A III Ager J W. J. Am. Chem. Soc.2018140(30): 9337.
[67]
Xiao H Cheng T Goddard W A III. J. Am. Chem. Soc.2017139(1): 130.
[68]
Ma W C Xie S J Liu T T Fan Q Y Ye J Y Sun F F Jiang Z Zhang Q H Cheng J Wang Y. Nat. Catal.20203(6): 478.
[69]
Ni Z Y Liang H M Yi Z Y Guo R Liu C M Liu Y G Sun H Y Liu X W. Coord. Chem. Rev.2021, 441: 213983.
[70]
Kuhl K P Cave E R Abram D N Jaramillo T F. Energy Environ. Sci.20125(5): 7050.
[71]
Martín A J Larrazábal G O Pérez-Ramírez J. Green Chem.201517(12): 5114.
[72]
Yap F M Loh J Y Yuan S Y Zeng X H Ong W J. Adv. Funct. Mater.202435(3): 2407605.
[73]
Liu W Zhai P B Li A W Wei B Si K P Wei Y Wang X G Zhu G D Chen Q Gu X K Zhang R F Zhou W Gong Y J. Nat. Commun.2022, 13: 1877.
[74]
Zhang Y Li P Zhao C M Zhou G Zhou F Y Zhang Q T Su C L Wu Y E. Sci. Bull.202267(16): 1679.
[75]
Ajmal S Kumar A Tabish M Selvaraj M Alam M M Mushtaq M A Zhao J Owusu K A Saad A Tariq Nazir M Yasin G. Mater. Today2023, 67: 203.
[76]
Liu Y J Bai S Li Q Wu Z H Shen T Y Chu J F Song Y F. Chem. Eng. J.2023, 477: 146610.
[77]
Kunitski M Eicke N Huber P Köhler J Zeller S Voigtsberger J Schlott N Henrichs K Sann H Trinter F Schmidt L P H Kalinin A Schöffler M S Jahnke T Lein M Dörner R. Nat. Commun.2019, 10: 1.
[78]
Peterson A A Nørskov J K. J. Phys. Chem. Lett.20123(2): 251.
[79]
Arán-Ais R M Gao D F Roldan Cuenya B. Acc. Chem. Res.201851(11): 2906.
[80]
Gao D F Arán-Ais R M Jeon H S Roldan Cuenya B. Nat. Catal.20192(3): 198.
[81]
Zheng Y Vasileff A Zhou X L Jiao Y Jaroniec M Qiao S Z. J. Am. Chem. Soc.2019141(19): 7646.
[82]
Liu X Y Xiao J P Peng H J Hong X Chan K R Nørskov J K. Nat. Commun.2017, 8: 15438.
[83]
Qu J P Cao X J Gao L Li J Y Li L Xie Y H Zhao Y F Zhang J Q Wu M H Liu H. Nano-Micro Lett.2023, 15: 178.
[84]
Luo W J Nie X W Janik M J Asthagiri A. ACS Catal.20166(1): 219.
[85]
Xiao H Cheng T Goddard W A III Sundararaman R. J. Am. Chem. Soc.2016138(2): 483.
[86]
Cheng T Xiao H Goddard W A III. J. Phys. Chem. Lett.20156(23): 4767.
[87]
Nie X W Esopi M R Janik M J Asthagiri A. Angew. Chem. Int. Ed.201352(9): 2459.
[88]
Peterson A A Abild-Pedersen F Studt F Rossmeisl J Nørskov J K. Energy Environ. Sci.20103(9): 1311.
[89]
Zhong H Fujii K Nakano Y Jin F M. J. Phys. Chem. C2015119(1): 55.
[90]
Gupta N Gattrell M MacDougall B. J. Appl. Electrochem.200636(2): 161.
[91]
Clark E L Hahn C Jaramillo T F Bell A T. J. Am. Chem. Soc.2017139(44): 15848.
[92]
Shan C S Martin E T Peters D G Zaleski J M. Chem. Mater.201729(14): 6030.
[93]
Gao J Zhang H Guo X Y Luo J S Zakeeruddin S M Ren D Grätzel M. J. Am. Chem. Soc.2019141(47): 18704.
[94]
Meng D L Zhang M D Si D H Mao M J Hou Y Huang Y B Cao R. Angew. Chem. Int. Ed.202160(48): 25485.
[95]
Lin Y R Lee D U Tan S Q Koshy D M Lin T Y Wang L Corral D Avilés Acosta J E Zamora Zeledon J A Beck V A Baker S E Duoss E B Hahn C Jaramillo T F. Adv. Funct. Mater.202232(28): 2113252.
[96]
Zhong M Tran K Min Y M Wang C H Wang Z Y Dinh C T De Luna P Yu Z Q Rasouli A S Brodersen P Sun S Voznyy O Tan C S Askerka M Che F L Liu M Seifitokaldani A Pang Y J Lo S C Ip A Ulissi Z Sargent E H. Nature2020581(7807): 178.
[97]
Sultan S Lee H Park S Kim M M Yoon A Choi H Kong T H Koe Y J Oh H S Lee Z Kim H Kim W Kwon Y. Energy Environ. Sci.202215(6): 2397.
[98]
Feng Y Li Z Liu H Dong C K Wang J Q Kulinich S A Du X W. Langmuir201834(45): 13544.
[99]
Zhang T Y Li Z Y Zhang J F Wu J J. J. Catal.2020, 387: 163.
[100]
Huang J F Mensi M Oveisi E Mantella V Buonsanti R. J. Am. Chem. Soc.2019141(6): 2490.
[101]
Li J Wang Z Y McCallum C Xu Y Li F W Wang Y H Gabardo C M Dinh C T Zhuang T-T Wang L Howe J Y Ren Y Sargent E H Sinton D. Nat. Catal.20192(12): 1124.
[102]
Lum Y Ager J W. Energy Environ. Sci.201811(10): 2935.
[103]
Ma S C Sadakiyo M Heima M Luo R Haasch R T Gold J I Yamauchi M Kenis P J A. J. Am. Chem. Soc.2017139(1): 47.
[104]
Hori Y Wakebe H Tsukamoto T Koga O. Surf. Sci.1995, 335: 258.
[105]
Hori Y Takahashi I Koga O Hoshi N. J. Mol. Catal. A Chem.2003199(1/2): 39.
[106]
Jiang K Sandberg R B Akey A J Liu X Y Bell D C Nørskov J K Chan K R Wang H T. Nat. Catal.20181(2): 111.
[107]
De Gregorio G L Burdyny T Loiudice A Iyengar P Smith W A Buonsanti R. ACS Catal.202010(9): 4854.
[108]
Kibria M G Dinh C T Seifitokaldani A De Luna P Burdyny T Quintero-Bermudez R Ross M B Bushuyev O S García de Arquer F P Yang P D Sinton D Sargent E H. Adv. Mater.201830(49): 1804867.
[109]
Wang Y H Wang Z Y Dinh C T Li J Ozden A Golam Kibria M Seifitokaldani A Tan C S Gabardo C M Luo M C Zhou H Li F W Lum Y McCallum C Xu Y Liu M X Proppe A Johnston A Todorovic P Zhuang T-T Sinton D Kelley S O Sargent E H. Nat. Catal.20203(2): 98.
[110]
García de Arquer F P Dinh C T Ozden A Wicks J McCallum C Kirmani A R Nam D H Gabardo C Seifitokaldani A Wang X Li Y C Li F W Edwards J Richter L J Thorpe S J Sinton D Sargent E H. Science2020367(6478): 661.
[111]
Xie M S Xia B Y Li Y W Yan Y Yang Y H Sun Q Chan S H Fisher A Wang X. Energy Environ. Sci.20169(5): 1687.
[112]
Han Z J Kortlever R Chen H Y Peters J C Agapie T. ACS Cent. Sci.20173(8): 853.
[113]
Thevenon A Rosas-Hernández A Peters J C Agapie T. Angew. Chem. Int. Ed.201958(47): 16952.
[114]
Chen X Y Chen J F Alghoraibi N M Henckel D A Zhang R X Nwabara U O Madsen K E Kenis P J A Zimmerman S C Gewirth A A. Nat. Catal.20214(1): 20.
[115]
Liang H-Q Zhao S Q Hu X-M Ceccato M Skrydstrup T Daasbjerg K. ACS Catal.202111(2): 958.
[116]
Wei X Yin Z L Lyu K J Li Z Gong J Wang G W Xiao L Lu J T Zhuang L. ACS Catal.202010(7): 4103.
[117]
Ahn S Klyukin K Wakeham R J Rudd J A Lewis A R Alexander S Carla F Alexandrov V Andreoli E. ACS Catal.20188(5): 4132.
[118]
Wakerley D Lamaison S Ozanam F Menguy N Mercier D Marcus P Fontecave M Mougel V. Nat. Mater.201918(11): 1222.
[119]
Sha Y F Zhang J L Cheng X Y Xu M Z Su Z Z Wang Y Y Hu J Y Han B X Zheng L R. Angew. Chem. Int. Ed.202261(13): e202200039.
[120]
Zhou Y J Qi H H Wu J Huang H Liu Y Kang Z H. Adv. Funct. Mater.202232(22): 2113335.
[121]
Chen R X Su H-Y Liu D Y Huang R Meng X G Cui X J Tian Z-Q Zhang D H Deng D H. Angew. Chem. Int. Ed.202059(1): 154.
[122]
Yuan L Zhang L H Feng J P Jiang C Y Feng J Q Li C S Zeng S J Zhang X P. Chem. Eng. J.2022, 450: 138378.
[123]
Wang Y Wang W W Xie J Wang C H Yang Y W Lu Y C. Nano Energy2021, 83: 105830.
[124]
Xiao C L Zhang J. ACS Nano202115(5): 7975.
[125]
Lee S Kim D Lee J. Angew. Chem. Int. Ed.201554(49): 14701.
[126]
Lee S Lee J. ChemSusChem20169(4): 333.
[127]
Kim D Lee S Ocon J D Jeong B Lee J K Lee J. Phys. Chem. Chem. Phys.201517(2): 824.
[128]
Mistry H Varela A S Bonifacio C S Zegkinoglou I Sinev I Choi Y W Kisslinger K Stach E A Yang J C Strasser P Cuenya B R. Nat. Commun.2016, 7: 12123.
[129]
Xiao H Goddard W A III Cheng T Liu Y Y. Proc. Natl. Acad. Sci. U. S. A., 2017114(26): 6685.
[130]
Wang J L Tan H Y Zhu Y P Chu H Chen H M. Angew. Chem. Int. Ed.202160(32): 17254.
[131]
Li X T Liu Q Wang J H Meng D C Shu Y J Lv X Z Zhao B Yang H Cheng T Gao Q S Li L S Wu H B. Chem20228(8): 2148.
[132]
Yuan X T Chen S Cheng D F Li L L Zhu W J Zhong D Z Zhao Z J Li J K Wang T Gong J L. Angew. Chem. Int. Ed.202160(28): 15344.
[133]
De Luna P Quintero-Bermudez R Dinh C T Ross M B Bushuyev O S Todorović P Regier T Kelley S O Yang P D Sargent E H. Nat. Catal.20181(2): 103.
[134]
Martić N Reller C MacAuley C Löffler M Schmid B Reinisch D Volkova E Maltenberger A Rucki A Mayrhofer K J J Schmid G. Adv. Energy Mater.20199(29): 1901228.
[135]
Yang P P Zhang X L Gao F Y Zheng Y R Niu Z Z Yu X X Liu R Wu Z Z Qin S Chi L P Duan Y Ma T Zheng X S Zhu J F Wang H J Gao M R Yu S H. J. Am. Chem. Soc.2020142(13): 6400.
[136]
Chou T C Chang C C Yu H L Yu W Y Dong C L Velasco-Vélez J J Chuang C H Chen L C Lee J F Chen J M Wu H L. J. Am. Chem. Soc.2020142(6): 2857.
[137]
Nitopi S Bertheussen E Scott S B Liu X Y Engstfeld A K Horch S Seger B Stephens I E L Chan K R Hahn C Nørskov J K Jaramillo T F Chorkendorff I. Chem. Rev.2019119(12): 7610.
[138]
Li L Larsen A H Romero N A Morozov V A Glinsvad C Abild-Pedersen F Greeley J Jacobsen K W Nørskov J K. J. Phys. Chem. Lett.20134(1): 222.
[139]
Hammer B Morikawa Y Nørskov J K. Phys. Rev. Lett.199676(12): 2141.
[140]
Reske R Mistry H Behafarid F Roldan Cuenya B Strasser P. J. Am. Chem. Soc.2014136(19): 6978.
[141]
Loiudice A Lobaccaro P Kamali E A Thao T Huang B H Ager J W Buonsanti R. Angew. Chem. Int. Ed.201655(19): 5789.
[142]
Handoko A D Ong C W Huang Y Lee Z G Lin L Y Panetti G B Yeo B S. J. Phys. Chem. C2016120(36): 20058.
[143]
Xu H P Rebollar D He H Y Chong L N Liu Y Z Liu C Sun C-J Li T Muntean J V Winans R E Liu D-J Xu T. Nat. Energy20205(8): 623.
[144]
Jung H Lee S Y Lee C W Cho M K Won D H Kim C Oh H S Min B K Hwang Y J. J. Am. Chem. Soc.2019141(11): 4624.
[145]
Chen Z Q Wang T Liu B Cheng D F Hu C L Zhang G Zhu W J Wang H Y Zhao Z J Gong J L. J. Am. Chem. Soc.2020142(15): 6878.
[146]
Jiang Y W Wang X Y Duan D L He C H Ma J Zhang W Q Liu H J Long R Li Z B Kong T T Loh X J Song L Ye E Y Xiong Y J. Adv. Sci.20229(16): 2105292.
[147]
Yang C Shen H C Guan A X Liu J L Li T F Ji Y L Al-Enizi A M Zhang L J Qian L P Zheng G F. J. Colloid Interface Sci.2020, 570: 375.
[148]
Gu Z X Yang N Han P Kuang M Mei B B Jiang Z Zhong J Li L Zheng G F. Small Meth.20193(2): 1800449.
[149]
Zhuang T T Liang Z Q Seifitokaldani A Li Y De Luna P Burdyny T Che F L Meng F Min Y M Quintero-Bermudez R Dinh C T Pang Y J Zhong M Zhang B Li J Chen P N Zheng X L Liang H Y Ge W N Ye B J Sinton D Yu S H Sargent E H. Nat. Catal.20181(6): 421.
[150]
Peng C Luo G Xu Z K Yan S Zhang J B Chen M H Qian L P Wei W Han Q Zheng G F. Adv. Mater.202133(40): 2103150.
[151]
Zhou Y S Che F L Liu M Zou C Q Liang Z Q De Luna P Yuan H F Li J Wang Z Q Xie H P Li H M Chen P N Bladt E Quintero-Bermudez R Sham T K Bals S Hofkens J Sinton D Chen G Sargent E H. Nat. Chem.201810(9): 974.
[152]
Jeon H S Kunze S Scholten F Roldan Cuenya B. ACS Catal.20188(1): 531.
[153]
Ye T N Park S W Lu Y F Li J Sasase M Kitano M Tada T Hosono H. Nature2020583(7816): 391.
[154]
Liu X Wang X L Zhou B Law W C Cartwright A N Swihart M T. Adv. Funct. Mater.201323(10): 1256.
[155]
Pan F P Yang Y. Energy Environ. Sci.202013(8): 2275.
[156]
Xia Y N Xiong Y J Lim B Skrabalak S. Angew. Chem. Int. Ed.200948(1): 60.
[157]
Shi Y F Lyu Z H Zhao M Chen R H Nguyen Q N Xia Y N. Chem. Rev.2021121(2): 649.
[158]
Chi D H Yang H P Du Y F Lv T Sui G J Wang H Lu J X. RSC Adv.20144(70): 37329.
[159]
Yin J W Wang J Ma Y B Yu J L Zhou J W Fan Z X. ACS Mater. Lett.20213(1): 121.
[160]
Ma M Djanashvili K Smith W A. Angew. Chem. Int. Ed.201655(23): 6680.
[161]
Zhang H Y Zhang Y J Li Y Y Ahn S Palmore G T R Fu J J Peterson A A Sun S H. Nanoscale201911(25): 12075.
[162]
Wang Y Liu H Y Yu J L Hu B H Zhao H Tsiakaras P Song S Q. Electrochim. Acta2019, 328: 135083.
[163]
Suen N T Kong Z-R Hsu C S Chen H C Tung C W Lu Y-R Dong C L Shen C C Chung J C Chen H M. ACS Catal.20199(6): 5217.
[164]
Chang Z Y Huo S J Zhang W Fang J H Wang H L. J. Phys. Chem. C2017121(21): 11368.
[165]
Lv J J Jouny M Luc W Zhu W L Zhu J J Jiao F. Adv. Mater.201830(49): 1803111.
[166]
Yang K D Ko W R Lee J H Kim S J Lee H Lee M H Nam K T. Angew. Chem. Int. Ed.201756(3): 796.

Funding

National Natural Science Foundation of China(52074320)
National Natural Science Foundation of China(52074320)

Accesses

Citation

Detail

Sections
Recommended

/