Degradation of Antibiotics Using ZVI/H2O2 Fenton-Like Technology

Baizhou Lu, Zhanqiang Fang

Prog Chem ›› 2025, Vol. 37 ›› Issue (3) : 411-424.

Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
Prog Chem ›› 2025, Vol. 37 ›› Issue (3) : 411-424. DOI: 10.7536/PC240509
Review

Degradation of Antibiotics Using ZVI/H2O2 Fenton-Like Technology

Author information +
History +

Abstract

ZVI/H2O2 Fenton-like technology overcomes some problems existing in the traditional homogeneous Fenton reaction, and can effectively remove antibiotics in water, which has good application potential. However, the degradation efficiency and mineralization rate of antibiotics in water by ZVI/H2O2 technology alone need to be improved. Therefore, researchers have adopted different strengthening measures to improve the deconta mination efficiency of ZVI/H2O2 technology and its mineralization rate of pollutants. In this paper, the research of antibiotics removal in water by ZVI/H2O2 technology is statistically analyzed. The main strengthening measures of ZVI/H2O2 technology and their effects on the system are summarized. The degradation efficiency, mechanism, advantages and disadvantages of antibiotics in water by different strengthening measures combined with ZVI/H2O2 technology are described and analyzed. Finally, this paper looks forward to the future development of ZVI/H2O2 technology for the degradation of antibiotics in water, and puts forward relevant suggestions for further research work.

Contents

1 Introduction

2 Development status of ZVI/H2O2 technology for removing antibiotics in water at home and abroad

3 The main strengthening measures of ZVI/H2O2 technology and its effect on the system

3.1 Physical modification

3.2 Synthesis of n-ZVI

3.3 Biochar loading

3.4 External oxidant

3.5 Addition of non-oxidative promoter

3.6 Pickling

3.7 Metal doping

3.8 Other

3.9 combination

4 The degradation efficiency and mechanism of antibiotics in water by ZVI/H2O2 technology

5 Conclusion and outlook

Key words

zero-valent iron / H2O2 / Fenton-like / antibiotics / strengthening measures

Cite this article

Download Citations
Baizhou Lu , Zhanqiang Fang. Degradation of Antibiotics Using ZVI/H2O2 Fenton-Like Technology[J]. Progress in Chemistry. 2025, 37(3): 411-424 https://doi.org/10.7536/PC240509

References

[1]
Willach S Lutze H V Eckey K Löppenberg K Lüling M Terhalle J Wolbert J B Jochmann M A Karst U Schmidt T C. Water Res.2017, 122: 280.
[2]
Chow L K M Ghaly T M Gillings M R. J. Environ. Sci.2021, 99: 21.
[3]
Sun Y J Yang S S Zhang Q Wu P Wei J. Shandong Chem. Ind.201746(16): 9.
(孙玉杰, 杨淑慎, 张琪, 武培, 魏娟. 山东化工201746(16): 9.).
[4]
Zhang D Z Tang Z J Liu W. Acc. Chem. Res.201851(6): 1496.
[5]
Tong C L Zhuo X J Guo Y. J. Agric. Food Chem.201159(13): 7303.
[6]
Yang C W Song G Lim W. Comp Biochem Phys C2020, 237: 108840.
[7]
Patel M Kumar R Kishor K Mlsna T Pittman C U Jr Mohan D. Chem. Rev.2019119(6): 3510.
[8]
Sharma B M Bečanová J Scheringer M Sharma A Bharat G K Whitehead P G Klánová J Nizzetto L. Sci. Total Environ.2019, 646: 1459.
[9]
Mezyk S P Otto S C. J. Adv. Oxid. Technol.201316(1): 117.
[10]
Hvistendahl M. Science2012336(6083): 795.
[11]
Liu Q Zheng Y M Zhong L B Cheng X X. J. Environ. Sci.2015, 28: 29.
[12]
Das N Madhavan J Selvi A Das D. 3 Biotech20199(6): 231.
[13]
Liu C Nanaboina V Korshin G V Jiang W J. Water Res.201246(16): 5235.
[14]
Yang X Xu G R Yu H R Zhang Z. Bioresour. Technol.2016, 211: 566.
[15]
Yao W K Wang X F Yang H W Yu G Deng S B Huang J Wang B Wang Y J. Water Res.2016, 88: 826.
[16]
Zhang R C Yang Y K Huang C H Zhao L Sun P Z. Water Res.2016, 103: 283.
[17]
Richardson B J Lam P K S Martin M. Mar. Pollut. Bull.200550(9): 913.
[18]
Kümmerer K. Chemosphere200975(4): 417.
[19]
Pan Y W Zhang Y Zhou M H Cai J J Tian Y S. Water Res.2019, 153: 144.
[20]
Ahmadi M Ramezani Motlagh H Jaafarzadeh N Mostoufi A Saeedi R Barzegar G Jorfi S. J. Environ. Manag.2017, 186: 55.
[21]
Zheng J Su C Zhou J W Xu L K Qian Y Y Chen H. Chem. Eng. J.2017, 317: 309.
[22]
Nie X J. Master’s Dissertation of Dalian University of Technology, 2017 .
(聂晓静, 大连理工大学硕士论文, 2017.).
[23]
Han Y F. Master’s Dissertation of East China University of Science and Technology. 2019.
(韩跃飞, 华东理工大学硕士论文2019.
[24]
Knopp G Prasse C Ternes T A Cornel P. Water Res.2016, 100: 580.
[25]
Fu F L Dionysiou D D Liu H. J. Hazard. Mater.2014, 267: 194.
[26]
Fornazari A L Labriola V F da Silva B F Castro L F Perussi J R Vieira E M Azevedo E B. J. Environ. Chem. Eng.20219(4): 105761.
[27]
Chen J Y Yi Y Q Fang Z Q Yan X M. Zheng L C. J. South China Normal Univ. (Nat. Sci. Ed.), 201951(1): 49.
(陈俊毅, 易云强, 方战强, 晏晓敏, 郑刘春. 华南师范大学学报(自然科学版)201951(1): 49.).
[28]
Furia F Minella M Gosetti F Turci F Sabatino R Di Cesare A Corno G Vione D. Chemosphere2021, 283: 131170.
[29]
Wang J L Tang J T. Chemosphere.2021, 276: 130177.
[30]
Wan L Hong J Liu B F Su Q. China Meas. Test201541(10): 44.
(万玲, 洪军, 刘保锋, 苏趋. 中国测试201541(10): 44.).
[31]
Segura Y Martínez F Melero J A Molina R Chand R Bremner D H. Appl. Catal. B Environ.2012113/114: 100.
[32]
Bello M M Abdul Raman A A Asghar A. Process. Saf. Environ. Prot.2019, 126: 119.
[33]
Gao J X Zhang L B Xu Z Q Sheng X X Li D X Chen Y T Habib M Lyu S G. J. Environ. Chem. Eng.202311(5): 110432.
[34]
Tang J Yang J Chen Y L Zhang X Q Zhang A P. J. Environ. Chem. Eng.202311(6): 111173.
[35]
Liang J L Zhang S W Ye MY Huang J J Yang X Li S P Huang S S Sun S Y. Chem. Eng. J.2020, 380: 122499.
[36]
Mondal S K Saha A K Sinha A. J. Clean. Prod.2018, 171: 1203.
[37]
Chen W M Zhang A P Gu Z P Li Q B. Chem. Eng. J.2018, 354: 680.
[38]
Bergendahl J A Thies T P. Water Res.200438(2): 327.
[39]
Rezaei F Vione D. Molecules201823(12): 3127.
[40]
Wang F Gu Z P Hu Y S Li Q B. Sep. Purif. Technol.2022, 278: 119564.
[41]
Ghariani B Messaoud M Louati I Mtibaà R Nasri M Mechichi T. Environ. Sci. Pollut. Res.201926(18): 18392.
[42]
Pang S Y Jiang J Ma J. Environ. Sci. Technol.201145(1): 307.
[43]
Yang B Zhou P Cheng X Li H S Huo X W Zhang Y L. J. Colloid Interface Sci.2019, 555: 383.
[44]
Brillas E. Chemosphere2022, 286: 131849.
[45]
Liang L P Cheng L B Zhang Y T Wang Q Wu Q Xue Y Y Meng X. RSC Adv.202010(48): 28509.
[46]
Wang X D Bo S Y Ji W H Wang L T Li X Z Chen H S. China Resour. Compr. Util.202038(6): 4.
(王炫栋, 伯绍毅, 季文浩, 王林拓, 李小忠, 陈寒松. 中国资源综合利用202038(6): 4.).
[47]
Ambika S Devasena M Nambi I M. Chemosphere2020, 248: 125912.
[48]
Huang T Zhang G M Zhang N Chong S Liu Y C Zhu J. Chin. J. Environ. Eng. 201711(11): 5892.
(黄挺, 张光明, 张楠, 种珊, 刘毓璨, 朱佳. 环境工程学报201711(11): 5892.).
[49]
Du J S Guo W Q Li X F Li Q Wang B Huang Y L Ren N Q. J. Taiwan Inst. Chem. Eng.2017, 81: 232.
[50]
Li X Q Elliott D W Zhang W X. Crit. Rev. Solid State Mater. Sci.200631(4): 111.
[51]
Xu L J Wang J L. J. Hazard. Mater.2011186(1): 256.
[52]
Liu W J Jiang H Yu H Q. Chem. Rev.2015115(22): 12251.
[53]
Ahmad M Lee S S Dou X M Mohan D Sung J K Yang J E Ok Y S. Bioresour. Technol.2012, 118: 536.
[54]
Zhang W J Gao H Y He J J Yang P Wang D S Ma T Xia H Xu X Z. Sep. Purif. Technol.2017, 172: 158.
[55]
Zha S X Cheng Y Gao Y Chen Z L Megharaj M Naidu R. Chem. Eng. J.2014, 255: 141.
[56]
Yi Y Q Fang Z Q. J. South China Normal Univ.Nat . Sci. Ed.)201850(1): 28.
(易云强, 方战强. 华南师范大学学报(自然科学版)201850(1): 28.).
[57]
Pirsaheb M Moradi S Shahlaei M Wang X K Farhadian N. J. Clean. Prod.2019, 209: 1523.
[58]
Conde-Cid M Paíga P Moreira M M Albergaria J T Álvarez-Rodríguez E Arias-Estévez M Delerue-Matos C. Environ. Res.2021, 198: 110451.
[59]
Machado S Pacheco J G Nouws H P A Albergaria J T Delerue-Matos C. Int. J. Environ. Sci. Technol.201714(5): 1109.
[60]
Ouyang Q Kou F Y Tsang P E Lian J T Xian J Y Fang J Z Fang Z Q. J. Clean. Prod.2019, 232: 1492.
[61]
Song H Carraway E R. Environ. Sci. Technol.200539(16): 6237.
[62]
Rastogi A Al-Abed S R Dionysiou D D. Appl. Catal. B Environ.200985(3/4): 171.
[63]
Mao Q M Zhou Y Y Yang Y Zhang J C Liang L F Wang H L Luo S Luo L Jeyakumar P Ok Y S Rizwan M. J. Hazard. Mater.2019, 380: 120848.
[64]
Zhang Y C Zhao L Yang Y K Sun P Z. Int. J. Environ. Res. Public Health202017(3): 935.
[65]
Wu J X Wang B Cagnetta G Huang J Wang Y J Deng S B Yu G. Sep. Purif. Technol.2020, 239: 116534.
[66]
Li M Yang X F Wang D S Yuan J. Chem. Eng. J.2017, 317: 103.
[67]
Chai F F Li K Y Guo X W. Chin. J. Appl. Chem. 201633(02): 133.
(柴凡凡, 李克艳, 郭新闻. 应用化学201633(02): 133.).
[68]
Ouyang Q Kou F Y Zhang N Q Lian J T Tu G Q Fang Z Q. Chem. Eng. J.2019, 366: 514.
[69]
Fang Z Q Lu B Z Xian J Y. Chinese patent. CN 111747504A2020.
(方战强, 卢柏舟, 冼靖怡. 中国专利. CN111747504A. 2020.).
[70]
Ouyang Q Lian J T Lu B Z Fang Z Q. Chem. Eng. J.2020, 387: 123417.
[71]
Hwang J I Kim J E. Environ. Sci. Pollut. Res.202128(22): 28479.
[72]
Lu B Z Fang Z Q Tsang P E Wu J H. Chemosphere2023, 316: 137801.
[73]
Lu B Z Fang Z Q Tsang P E. Sci. Total Environ.2024, 914: 169820.
[74]
Cao H T Khue D N Nguyen N T T Anh P N Vu H H Nguyen H T. J. Water Process. Eng.2021, 42: 102112.
[75]
Zou Y C Jia X N Ran L Zhou L C Zhao Q L Ye Z F. Chem. React. Eng. Technol.202137(2): 167.
(邹亚辰, 贾小宁, 冉浪, 周林成, 赵泉林, 叶正芳. 化学反应工程与工艺202137(2): 167.).
[76]
Ling R Chen J P Shao J H Reinhard M. Water Res.2018, 134: 44.
[77]
Oral O Kantar C Yildiz I. J. Clean. Prod.2024, 438: 140869.
[78]
Zhuang Y Ahn S Luthy R G. Environ. Sci. Technol.201044(21): 8236.
[79]
Xu C H Zhang B L Wang Y H Shao Q Q Zhou W Z Fan D Bandstra J Z Shi Z Q Tratnyek P G. Environ. Sci. Technol.2016, 11879.
[80]
Kato S Yumoto I Kamagata Y. Appl. Environ. Microbiol.201581(1): 67.
[81]
Zhang Y B Jing Y W Zhang J X Sun L F Quan X. J. Chem. Technol. Biotechnol.201186(2): 199.
[82]
Chen K Han L T Li J F Y Yao C X Dong H P Wang L J Li Y M. J. Chem. Technol. Biotechnol.202095(5): 1412.
[83]
Zahra A Robabeh B Song Z L Mahdi N M. Sci. Rep.20199(1):11499.
[84]
Wang Q Xue G Qian Y J Liu Z H. Ind. Water Treat201939(9): 87.
(王麒, 薛罡, 钱雅洁, 刘振鸿. 工业水处理201939(9): 87.).
[85]
Guan X H Sun Y K Qin H J Li J X Lo I M C He D Dong H R. Water Res.2015, 75: 224.
[86]
Jiang Y Y Sun D Wang D M Tong L Zhang Z P Cao N Gong Z J. Environ. Technol.202143(24): 3719.
[87]
Chen X Deng F Liu X Cui K P Weerasooriya R. Sci. Total Environ.2021, 774: 145776.
[88]
Xia Q X Zhang D J Yao Z P Jiang Z H. Appl. Catal.BEnviron..2021, 299: 120662.
[89]
Bao C S Zhao J Sun Y Y Zhao X L Zhang X H Zhu Y K She X L Yang D J Xing B S. Environ. Sci. Nano20218(8): 2347.
[90]
Yang B Zhang Y L. Acta Chim. Sin.201977(10): 1017.
(杨波, 张永丽. 化学学报201977(10): 1017.).
[91]
Xie W M Huang Z J Zhou F P Li Y H Bi X L Bian Q S Sun S Y. J. Clean. Prod.2021, 313: 127754.
[92]
Li Y H Xie W M Lv W D Huang Z J Bian Q S. Environ. Chem.202241(2): 707.
(李瑜辉, 谢武明, 吕文东, 黄子峻, 卞求实. 环境化学202241(2): 707.).
[93]
Masud A Chavez Soria N G Aga D S Aich N. Environ. Sci. Water Res. Technol.20206(8): 2223.
[94]
Tian Y S Zhou M H Pan Y W Du X D Wang Q. Chem. Eng. J.2021, 403: 126361.
[95]
Huang D W He J Gu Y W He F. Acta Chim. Sin.201775(09): 866.
(黄丹维, 何佳, 谷亚威, 何锋. 化学学报201775(09): 866.).
[96]
Feng C Zhang H Liu Y Ren Y Zhou P He C S Xiong Z K Liu W H Dai X Q Lai B. Appl. Catal. B Environ.2024, 345: 123667.
[97]
Wan Z Hu J Wang J L. J. Environ. Manag.2016, 182: 284.
[98]
Huang D W He J Gu Y W He F. Acta Chim. Sinica201775(9): 866.

Funding

National Natural Science Foundation of China(42277003)

Accesses

Citation

Detail

Sections
Recommended

/