Graphene Flexible Electrothermal Materials

Yangyang Cai, Lixia Wei, Yizhou Zhu, Lei Lu, Xiao Liu

Prog Chem ›› 2025, Vol. 37 ›› Issue (3) : 455-466.

Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
Prog Chem ›› 2025, Vol. 37 ›› Issue (3) : 455-466. DOI: 10.7536/PC240515
Review

Graphene Flexible Electrothermal Materials

Author information +
History +

Abstract

Graphene is a two-dimensional nanomaterial with ultra-high thermal conductivity, which is widely used in the field of electric heating. By analyzing the research progress of graphene and its flexible electrothermal (membrane) materials, the preparation methods of graphene of different sizes and the effect of functional modification on the thermal conductivity of graphene are introduced. The applications of graphene flexible electric heating (film) materials in the fields of deicing and anti-fogging, wearable clothing and low-temperature battery thermal management are summarized. In the future, it is still necessary to break through the technical problems of the preparation process of graphene and its flexible heating (film) materials and the integration of heating elements.

Contents

1 Introduction

2 Preparation and modification of graphene materials

2.1 Small flake graphene

2.2 Large flake graphene

2.3 Functionalization of graphene

3 Graphene electrothermal composite materials

3.1 Graphene resin based materials

3.2 Graphene electrothermal film materials

4 Application of graphene electrothermal film

4.1 Defrosting and anti-fog

4.2 Wearable heating suit

4.3 Battery thermal management

4.4 Smart actuator

5 Conclusion and outlook

Key words

graphene / composite membrane material / thermal conductivity / functional modification

Cite this article

Download Citations
Yangyang Cai , Lixia Wei , Yizhou Zhu , et al . Graphene Flexible Electrothermal Materials[J]. Progress in Chemistry. 2025, 37(3): 455-466 https://doi.org/10.7536/PC240515

References

[1]
Zou N Nie Q Zhang X R Zhang G K Wang J L Zhang P Y. Chem. Eng. J.2019, 357: 1.
[2]
Alotaibi F Tung T T Nine M J Coghlan C J Losic D. ACS Appl. Nano Mater.20181(5): 2249.
[3]
Zhao L Yu S H Li X P Wu M Y Li L X. Sol. Energy Mater. Sol. Cells2019, 201: 110067.
[4]
Ma A J Wei J M Wu Y H Wu Y M Zhao W J. Chem. Eng. J.2021, 421: 129597.
[5]
Wang H Wang Y Chen X M. Colloids Surf. A Physicochem. Eng. Aspects2019, 565: 154.
[6]
Wu Q S Tong W H Chen Q J Gu B Hou H J He S C. J. Alloys Compd.2019, 789: 282.
[7]
Sang W Zhao L M Tang R Wu Y P Zhu C H Liu J. Macromol. Mater. Eng.2017, 12: 1700239.
[8]
Wang Y L Li B J Li S S Huang L J Wang Y Y Ren N F. Opt. Laser Technol.2021, 138: 106867.
[9]
Yao X D Hawkins S C Falzon B G. Carbon2018, 136: 130.
[10]
Novoselov K S Geim A K Morozov S V Jiang D Zhang Y Dubonos S V Grigorieva I V Firsov A A. Science2004306(5696): 666.
[11]
Down M P Rowley-Neale S J Smith G C Banks C E. ACS Appl. Energy Mater.20181(2): 707.
[12]
Ye D X Moussa S Ferguson J D Baski A A El-Shall M S. Nano Lett.201212(3): 1265.
[13]
Kang J M Kim H Kim K S Lee S K Bae S K Ahn J H Kim Y J Choi J B Hong B H. Nano Lett.201111(12): 5154.
[14]
Zhang W J Bi E B Li M Gao L M. Colloids Surf. A Physicochem. Eng. Aspects2016, 490: 232.
[15]
Galiotis C Frank O Koukaras E N Sfyris D. Annu. Rev. Chem. Biomol. Eng.2015, 6: 121.
[16]
Bagri A Mattevi C Acik M Chabal Y J Chhowalla M Shenoy V B. Nat. Chem.20102(7): 581.
[17]
Balandin A A Ghosh S Bao W Z Calizo I Teweldebrhan D Miao F Lau C N. Nano Lett.20088(3): 902.
[18]
Zhu Y W Murali S Cai W W Li X S Suk J W Potts J R Ruoff R S. Adv. Mater.201022(35): adma.201090113.
[19]
Vertuccio L De Santis F Pantani R Lafdi K Guadagno L. Compos. Part B Eng.2019, 162: 600.
[20]
Chen J-H Jang C Xiao S D Ishigami M Fuhrer M S. Nat. Nanotechnol.20083(4): 206.
[21]
Lee C G Wei X D Kysar J W Hone J. Science2008321(5887): 385.
[22]
Park M Lee D M Park M Park S Lee D S Kim T W Lee S H Lee S K Jeong H S Hong B H Bae S K. Carbon2021, 179: 53.
[23]
Torrisi F Carey T. Nano Today2018, 23: 73.
[24]
Kang J M Kim H Kim K S Lee S K Bae S K Ahn J H Kim Y J Choi J B Hong B H. Nano Lett.201111(12): 5154.
[25]
Wang J Y Yang S Y Huang Y L Tien H W Chin W K Ma C M. J. Mater. Chem.201121(35): 13569.
[26]
Ghosh S Calizo I Teweldebrhan D Pokatilov E P Nika D L Balandin A A Bao W Miao F Lau C N. Appl. Phys. Lett.200892(15): 151911.
[27]
Geim A K Novoselov K S. Nat. Mater.20076(3): 183.
[28]
Bianco A Cheng H M Enoki T. Carbon2013, 65: 1.
[29]
Geim A K Novoselov K S. Nat. Mater.20076(3): 183.
[30]
He X M Zhang T Chen F Jiang J. Prog. Chem.201830(4): 439.
(何新民, 张婷, 陈飞, 蒋俊. 化学进展201830(4): 439.).
[31]
Hossain M M Shima H Lee I Hahn J R. J. Appl. Polym. Sci.2017134(27): 45034.
[32]
Yu Z R Shi Z X Xu H J Ma X D Tian M Yin J. Carbon2017, 114: 649.
[33]
Zhong W R Zhang M P Ai B Q Zheng D Q. Appl. Phys. Lett.201198(11): 113107.
[34]
Malekpour H Ramnani P Srinivasan S Balasubramanian G Nika D L Mulchandani A Lake R K Balandin A A. Nanoscale20168(30): 14608.
[35]
Xu X F Pereira L F C Wang Y Wu J Zhang K W Zhao X M Bae S K Tinh Bui C Xie R G Thong J T L Hong B H Loh K P Donadio D Li B W Özyilmaz B. Nat. Commun.2014, 5: 3689.
[36]
Justin H Alper K Cem S Gianaurelio C. ACS Nano20115(5): 3779.
[37]
Evans W J Hu L Keblinski P. Appl. Phys. Lett.201096(20): 203112.
[38]
Bahiraei M Heshmatian S. Energy Convers. Manag.2019, 196: 1222.
[39]
Singh V Joung D Zhai L Das S Khondaker S I Seal S. Prog. Mater. Sci.201156(8): 1178.
[40]
Guo S J Dong S J. Chem. Soc. Rev.201140(5): 2644.
[41]
Kumar P Shahzad F Yu S G Hong S M Kim Y H Koo C M. Carbon2015, 94: 494.
[42]
Khan U O’Neill A Lotya M De S Coleman J N. Small20106(7): 864.
[43]
Janowska I Chizari K Ersen O Zafeiratos S Soubane D Da Costa V Speisser V Boeglin C Houllé M Bégin D Plee D Ledoux M J Pham-Huu C. Nano Res.20103(2): 126.
[44]
Ren W C Cheng H M. Nat. Nanotechnol.20149(10): 726.
[45]
Wang Y Z Chen T Liu H H Wang X C Zhang X X. J. Nanosci. Nanotechnol.201919(4): 2078.
[46]
Yu P X Wang X Zhang K M Zhou D J Wu M Y Wu Q Y Liu J Y Yang J J Zhang J N. Mater. Lett.2021, 285: 129081.
[47]
Wang Y Z Zhang X Y Liu H H Zhang X X. Nanomaterials20199(12): 1653.
[48]
Han B Song J W Hu T Ye H J Xu L X. Chem. Phys. Lett.2020, 743: 137156.
[49]
Elumalai S Bathir Jaber S Chandrasekaran S Ogawa M. Phys. Chem. Chem. Phys.202022(18): 9910.
[50]
Orawiec M Belton D Telford R Surtees A. Polym. Compos.202041(11): 4933.
[51]
Liu Y Li R K Liang B Li C F Hu J H Zeng K Yang G. J. Mater. Sci.202055(1): 140.
[52]
Gao W Alemany L B Ci L J Ajayan P M. Nat. Chem.20091(5): 403.
[53]
Nika D L Ghosh S Pokatilov E P Balandin A A. Appl. Phys. Lett.200994(20): 203103.
[54]
Yu Q K Lian J Siriponglert S Li H Chen Y P Pei S S. Appl. Phys. Lett.200893(11): 113103.
[55]
Kim K S Zhao Y Jang H Lee S Y Kim J M Kim K S Ahn J H Kim P Choi J Y Hong B H. Nature2008, 320: 2758.
[56]
Sui D Huang Y Huang L Liang J J Ma Y F Chen Y S. Small20117(22): 3186.
[57]
Cui L Z Cui K J Ci H N Zheng K Q Xie H H Gao X Zhang Y F Liu Z F. Nanomaterials20199(4): 558.
[58]
Kulczyk-Malecka J dos Santos I V J Betbeder M Rowley-Neale S J Gao Z H Kelly P J. Thin Solid Films2021, 733: 138801.
[59]
Wang J B Ren Z Hou Y Yan X L Liu P Z Zhang H Zhang H X Guo J J. New Carbon Mater.202035(3): 193.
[60]
Kumar P Yu S Shahzad F Hong S M Kim Y H Koo C M. Carbon2016, 101: 120.
[61]
Jarosinski L Rybak A Gaska K Kmita G Porebska R Kapusta C. Mater. Sci. Pol.201735(2): 382.
[62]
An J Li J P Chen W X Yang C X Hu F D Wang C M. Chem. Res. Chin. Univ.201329(4): 798.
[63]
Bao C L Guo Y Q Yuan B H Hu Y Song L. J. Mater. Chem.201222(43): 23057.
[64]
You F Wang D R Li X X Liu M J Hu G H Dang Z M. RSC Adv.20144(17): 8799.
[65]
Teng C C Ma C M Lu C H Yang S Y Lee S H Hsiao M C Yen M Y Chiou K C Lee T M. Carbon201149(15): 5107.
[66]
Ma H L Zhang H B Hu Q H Li W J Jiang Z G Yu Z Z Dasari A. ACS Appl. Mater. Interfaces20124(4): 1948.
[67]
Li Y C Tang J G Huang L J Wang Y Liu J X Ge X C Tjong S C Li R K Y Belfiore L A. Compos. Part A Appl. Sci. Manuf.2015, 68: 1.
[68]
Chen Y Zhang D J Li J Wen J X Chen X B. J. Mater. Eng.202149(5): 82.
(陈宇, 张代军, 李军, 温嘉轩, 陈祥宝. 材料工程202149(5): 82.).
[69]
Georgakilas V Otyepka M Bourlinos A B Chandra V Kim N Kemp K C Hobza P Zboril R Kim K S. Chem. Rev.2012112(11): 6156.
[70]
Boukhvalov D W Katsnelson M I. J. Phys. Condens. Matter20088(12): 4373.
[71]
Zhu Y J Wang H Y Zhu J H Chang L Ye L. Appl. Surf. Sci.2015, 349: 27.
[72]
Loh K P Bao Q L Ang P K Yang J X. J. Mater. Chem.201020(12): 2277.
[73]
Zhang P Zhang X Ding X Wang Y Y Shu M T Zeng X L Gong Y Zheng K Tian X Y. Nanotechnology202031(47): 475709.
[74]
Polschikov S V Nedorezova P M Klyamkina A N Kovalchuk A A Aladyshev A M Shchegolikhin A N Shevchenko V G Muradyan V E. J. Appl. Polym. Sci.2013127(2): 904.
[75]
Kazerouni S S Kalaee M Sharif F Mazinani S. J. Sulfur Chem.201637(3): 328.
[76]
Zhou X Hu B Xiao W Q Jiang H Zhang L J Wang Z J Lin H L Bian J Zhao W X. Chin. J. Mater. Res.201731(11): 874.
(周醒, 胡斌, 肖文强, 姜豪, 张莉君, 王正君, 蔺海兰, 卞军, 赵新为. 材料研究学报201731(11): 874.).
[77]
Tewatia A Hendrix J Dong Z Z Taghon M Tse S Chiu G Mayo W E Kear B Nosker T Lynch J. Mater. Sci. Eng. B, 2017, 216: 41.
[78]
Zhang L Y Tu S H Wang H T Du Q G. Compos. Sci. Technol.2018, 154: 1.
[79]
Wu H Zhao W F Hu H W Chen G H. J. Mater. Chem.201121(24): 8626.
[80]
Ding P Zhang J Song N Tang S F Liu Y M Shi L Y. Compos. Sci. Technol.2015, 109: 25.
[81]
Ren Y J Zhang Y F Guo H C Lv R C Bai S L. Compos. Part A Appl. Sci. Manuf.2019, 126: 105578.
[82]
Xue F Jin X Z Wang W Y Qi X D Yang J H Wang Y. Nanoscale202012(6): 4005.
[83]
T’Joen C Park Y Wang Q Sommers A Han X Jacobi A. Int. J. Refrig.200932(5): 763.
[84]
Peng L Xu Z Liu Z Guo Y Li P Gao C. Adv. Mater.201729(27): 1700589.
[85]
Kang J M Kim H Kim K S Lee S K Bae S K Ahn J H Kim Y J Choi J B Hong B H. Nano Lett.201111(12): 5154.
[86]
An J E Jeong Y G. Eur. Polym. J.201349(6): 1322.
[87]
Li C Xu Y T Zhao B Jiang L Chen S G Xu J B Fu X Z Sun R Wong C P. J. Mater. Sci.201651(2): 1043.
[88]
Zhou R Li P C Fan Z Du D H Ouyang J Y. J. Mater. Chem. C20175(6): 1544.
[89]
Yang W X Zhao Z D Wu K Huang R Liu T Y Jiang H Chen F Fu Q. J. Mater. Chem. C20175(15): 3748.
[90]
Song Y Q. Doctoral Dissertation of University of Science and Technology of China. 2019.
(宋雨晴. 中国科学技术大学博士论文2019.
[91]
Wang Y H Zhou Z M Zhang J H Tang J Y Wu P Y Wang K Zhao Y Z. Coatings202010(4): 400.
[92]
Xu Z W Tang D W Shen W X Jiang R Lu M X. AIP Adv.202414(1): 015041.
[93]
Song H Q Nie B B Zhu Y H Qi G C Zhang Y D Peng W Li X M Shao J Y Wei R H. Langmuir202440(13): 6940.
[94]
Rozada R Paredes J I Villar-Rodil S Martínez-Alonso A Tascón J M D. Nano Res.20136(3): 216.
[95]
Wang P P Yuan X Chen S Liu S Q Liu H Z Liu L. J. Funct. Mater.201849(2): 2214.
(王萍萍, 袁雪, 陈松, 刘书奇, 刘海洲, 刘岚. 功能材料201849(2): 2214.).
[96]
Kumar S Kumar S Srivastava S Yadav B K Lee S H Sharma J G Doval D C Malhotra B D. Biosens. Bioelectron.2015, 73: 114.
[97]
Xu R Q Wang D Zhang H C Xie N Lu S Qu K. Sensors201717(5): 1069.
[98]
Olumurewa K O Eleruja M A. Fuller. Nanotub. Carbon Nanostruct.202230(9): 913.
[99]
Tian H Xie D Yang Y Ren T L Wang Y F Zhou C J Peng P G Wang L G Liu L T. Nanoscale20124(7): 2272.
[100]
Wang T Zheng Y H Raji A O Li Y L Sikkema W K A Tour J M. ACS Appl. Mater. Interfaces20168(22): 14169.
[101]
Wang J J Fang Z Q Zhu H L Gao B Y Garner S Cimo P Barcikowski Z Mignerey A Hu L B. Thin Solid Films2014, 556: 13.
[102]
Shao C Li X P Lin S G Zhuo B Yang S Yuan Q P. J. Mater. Sci.202055(1): 421.
[103]
Abdulkareem Muhsan A Lafdi K. Mater. Today Proc.2022, 52: 206.
[104]
Li Z C Zhen Z Chai M S Zhao X L Zhong Y J Zhu H W. Small202016(4): 1905945.
[105]
Qian M S. Master's Dissertation of Nanjing University of Aeronautics and Astronautics2018.
(钱梦霜. 南京航空航天大学硕士论文2018.).
[106]
Vertuccio L De Santis F Pantani R Lafdi K Guadagno L. Compos. Part B Eng.2019, 162: 600.
[107]
Ge Q Chu J W Cao W Q Yi F L Ran Z Jin Z Mao B Y Li Z L Novoselov K S. Adv. Funct. Mater.202232(42): 2205934.
[108]
Yang X Y Zhao J N Liao T Q Li W Y Zhang Y Y Xu C Y Zhang X H Li Q W. J. Mater. Chem. C202412(39): 16163.
[109]
Wang D Li D W Zhao M Xu Y Wei Q F. Appl. Surf. Sci.2018, 454: 218.
[110]
Kwon M Kim H Mohanty A K Yang J Piao L H Joo S W Han J T Han J H Paik H J. Adv. Mater. Technol.20216(9): 2100177.
[111]
Zhang Y J Chen X P Chen H Q Jia M Y Cai H Z Mao Z Bai Y X. Chem. Eng. J.2023, 470: 143912.
[112]
Zhang Y J Chen X P Dong Y Q Zhang G W Cai H Z Wu Y C Bai Y X. J. Mater. Chem. C202412(27): 10083.
[113]
Xie L J Min P Ye L X He P Yin G Jin M Zhang H B Yu Z Z. Carbon2024, 230: 119655.
[114]
Ma Y L Xing D M Tian M W Qu L J Zhang X J Hu X L. ACS Appl. Nano Mater.20247(19): 22884.
[115]
Hu F G Kui M H Zeng J S Li P F Wang T G Li J P Wang B Wu C Chen K F. ACS Nano202418(37): 25852.
[116]
Lu X H Xu L M Song Y Yu X N Li Q L Liu F Li X Q Xi J B Wang S Wang L Wang Z. Adv. Sci.202411(22): 2309330.
[117]
Fan J. J. Power Sources2003117(1/2): 170.
[118]
Waldmann T Wilka M Kasper M Fleischhammer M Wohlfahrt-Mehrens M. J. Power Sources2014, 262: 129.
[119]
Liu Y K. Master’s Dissertation of Harbin Institute of Technology2019.
(刘阳坤. 哈尔滨工业大学硕士论文2019.).
[120]
Wang J X Mao Y F Miljkovic N. Adv. Sci.202411(38): 2402190.
[121]
Cheng H H Zhao F Xue J L Shi G Q Jiang L Qu L T. ACS Nano201610(10): 9529.
[122]
Le Duigou A Chabaud G Scarpa F Castro M. Adv. Funct. Mater.201929(40): 1903280.
[123]
Brochu P Pei Q B. Macromol. Rapid Commun.201031(1): 10.
[124]
Chen L Z Weng M C Zhou Z W Zhou Y Zhang L L Li J X Huang Z G Zhang W Liu C H Fan S S. ACS Nano20159(12): 12189.
[125]
Zhao F Zhao Y Chen N Qu L T. Mater. Today201619(3): 146.
[126]
Chen P Y Zhang M K Liu M C Wong I Y Hurt R H. ACS Nano201812(1): 234.
[127]
Chang L F Huang M J Qi K Jing Z Yang L L Lu P Hu Y Wu Y C. Macromol. Mater. Eng.2019304(4): 1800688.
[128]
Hu Y Wu G Lan T Zhao J J Liu Y Chen W. Nanoscale20179(28): 9825.
[129]
Yang L L Qi K Chang L F Xu A F Hu Y Zhai H Lu P. J. Mater. Chem. B20186(31): 5031.
[130]
Geng Y Q Chen G Y Cao R Dai H M Hu Z X Yu S L Wang L Zhu L P Xiang H X Zhu M F. Nano-Micro Lett.2024, 16: 152.

Funding

National Natural Science Foundation of China(52372020)

Accesses

Citation

Detail

Sections
Recommended

/