Synthesis and Polymerizations of Bio-Based (meth)Acrylates

Yuchen Yang, Zhenjie Liu, Chunhua Lu, Kai Guo, Xin Hu, Ning Zhu

Prog Chem ›› 2025, Vol. 37 ›› Issue (3) : 383-396.

Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
Prog Chem ›› 2025, Vol. 37 ›› Issue (3) : 383-396. DOI: 10.7536/PC240521
Review

Synthesis and Polymerizations of Bio-Based (meth)Acrylates

Author information +
History +

Abstract

As an important family of synthetic polymers, poly(meth)acrylates have a wide range of applications in the fields of coatings, adhesives, biomedines, electronic and electrical materials. However, the (meth)acrylates monomers are mainly derived from petrochemical resources.Transformations of biomass into (meth)acrylate monomers and polymers have attracted growing research interest from the viewpoint of sustainability. The bio-based poly(meth)acrylates not only serve as the supplement for the fossil based product but also provide great chance for the development of value-added high performance materials with designed novel structures. This article highlights the recent progress in the synthesis and polymerization of bio-based (meth)acrylates. The lignin, terpene, plant oil, glucose, isosorbide, and furan derivatives as the biomass feedstock are respectively reviewed in consecutive order. The properties and applications of the corresponding bio-based poly(meth)acrylates are summarized. Moreover, the challenges and opportunities of bio-based poly(meth)acrylates are also discussed.

Contents

1 Introduction

2 Preparation of bio-based (meth)acrylates and polymers from lignin

3 Preparation of bio-based (meth)acrylates and polymers from terpene

4 Preparation of bio-based (meth)acrylates and polymers from plant oils

5 Preparation of bio-based (meth)acrylates and polymers from glucose

6 Preparation of bio-based (meth)acrylates and polymers from isosorbide

7 Preparation of bio-based (meth)acrylates and polymers from furan derivatives

8 Conclusion and outlook

Key words

biomass transformation / (meth)acrylates / radical polymerizations / bio-based materials

Cite this article

Download Citations
Yuchen Yang , Zhenjie Liu , Chunhua Lu , et al . Synthesis and Polymerizations of Bio-Based (meth)Acrylates[J]. Progress in Chemistry. 2025, 37(3): 383-396 https://doi.org/10.7536/PC240521

References

[1]
Chen B Q Ray S S Edirisinghe M. Macromol. Mater. Eng.2022307(6): 2200242.
[2]
Li J M Jiang Q M Wei L S Zhong L X Wang X Y. J. Mater. Chem. A20208(3): 1469.
[3]
Li L X Luo C J Chen X S Chu N Li L Chao M Yan L K. Adv. Funct. Mater.202333(23): 2213974.
[4]
Dapsens P Y Mondelli C Pérez-Ramírez J. ACS Catal.20122(7): 1487.
[5]
Hillmyer M A. Science2017358(6365): 868.
[6]
Zhu Y Q Romain C Williams C K. Nature2016540(7633): 354.
[7]
Fouilloux H Thomas C M. Macromol. Rapid Commun.202142(3): 2000530.
[8]
Rath S Pradhan D Du H S Mohapatra S Thatoi H. Adv. Compos. Hybrid Mater.2024, 7: 27.
[9]
Jedrzejczak P Collins M N Jesionowski T Klapiszewski L. Int. J. Biol. Macromol.2021, 187: 624.
[10]
Hao J Gao Y X Chen H R He J Ju Y. Acta Polym. Sin.202051(3):239. [LinkOut]
[11]
Xu X Y Shi L Zhang S Ao Z M Zhang J Q Wang S B Sun H Q. Chem. Eng. J.2023, 469: 143972.
[12]
Zhang C Q Garrison T F Madbouly S A Kessler M R. Prog. Polym. Sci.2017, 71: 91.
[13]
Coclite A M Shi Y J Gleason K K. Adv. Mater.201224(33): 4534.
[14]
Li W B Jiang S X Xie Y Yan X Q Zhao F G Pang X C Zhang K Jia Z F. ACS Energy Lett.20227(4): 1481.
[15]
Yang X L Li X J Wu Z P Cao L L. Int. J. Biol. Macromol.2023, 246: 125570.
[16]
Wang S Shuai L Saha B Vlachos D G Epps T H III. ACS Cent. Sci.20184(6): 701.
[17]
Zhao J Xiao C F Feng Y Xu N K. Polym. Rev.201353(4): 527.
[18]
Flieger M Kantorova M Prell A Rezanka T Votruba J. Folia Microbiol.200348(1): 27.
[19]
Rosa R P Rosace G Arrigo R Malucelli G. J. Polym. Res.202330(4): 139.
[20]
Obermeier F Hense D Stockmann P N Strube O I. Green Chem.202426(8): 4387.
[21]
Gilbert A Yamada K Suda K Ueno Y Yoshida N. Geochim. Cosmochim. Acta2016, 177: 205.
[22]
Fache M Boutevin B Caillol S. ACS Sustainable Chem. Eng.20164(1): 35.
[23]
Ma X Z Luo Q Qin D D Chen J Zhu J Yan N. Progress in Chemistry. 202032 (5):617.
(马晓振, 罗清, 秦冬冬, 陈景,朱锦,颜宁. 化学进展202032(5): 617..).
[24]
Agustiany E A Rasyidur Ridho M Rahmi D N M Madyaratri E W Falah F Lubis M A R Solihat N N Syamani F A Karungamye P Sohail A Nawawi D S Prianto A H Iswanto A H Ghozali M Restu W K Juliana I Antov P Kristak L Fatriasari W Fudholi A. Polym. Compos.202243(8): 4848.
[25]
Sathawong S Sridach W Techato K A. J. Environ. Chem. Eng.20186(5): 5879.
[26]
Lv Z L Xu J K Li C Y Dai L Li H H Zhong Y D Si C L. ACS Sustainable Chem. Eng.20219(41): 13972.
[27]
Liu Y Q Wang X C Wu Q M Pei W H Teo M J Chen Z S Huang C X. Int. J. Biol. Macromol.2022, 222: 994.
[28]
Molina-Gutiérrez S Manseri A Ladmiral V Bongiovanni R Caillol S Lacroix-Desmazes P. Macromol. Chem. Phys.2019220(14): 1900179.
[29]
Molina-Gutiérrez S Dalle Vacche S Vitale A Ladmiral V Caillol S Bongiovanni R Lacroix-Desmazes P. Molecules202025(15): 3444.
[30]
Zheng J Y Cai Y Q Zhang X W Wan J T Fan H. ACS Appl. Polym. Mater.20224(2): 929.
[31]
Cortés-Guzmán K P Parikh A R Sparacin M L Remy A K Adegoke L Chitrakar C Ecker M Voit W E Smaldone R A. ACS Sustainable Chem. Eng.202210(39): 13091.
[32]
Navaruckiene A Skliutas E Kasetaite S Rekštytė S Raudoniene V Bridziuviene D Malinauskas M Ostrauskaite J. Polymers202012(2): 397.
[33]
Yan Y P Li Y Han Y Ma Z H Sun Y N Li J G Sun G W. New J. Chem.202347(8): 4086.
[34]
Zhang L Ma J Z Lyu B Zhang Y H Thakur V K Liu C Y. Green Chem.202123(19): 7576.
[35]
Della Monica F Kleij A W. Polym. Chem.202011(32): 5109.
[36]
Peralta-Yahya P P Zhang F Z del Cardayre S B Keasling J D. Nature2012488(7411): 320.
[37]
Winnacker M Rieger B. ChemSusChem20158(15): 2455.
[38]
Zhao J P Schlaad H. Synthesis of Terpene-Based Polymers, Ed. Schlaad H. 2013, 253: 151-190.
[39]
Thomsett M R Storr T E Monaghan O R Stockman R A Howdle S M. Green Mater.20164(3): 115.
[40]
Sainz M F Souto J A Regentova D Johansson M K G Timhagen S T Irvine D J Buijsen P Koning C E Stockman R A Howdle S M. Polym. Chem.20167(16): 2882.
[41]
Atkinson R L Monaghan O R Elsmore M T Topham P D Toolan D T W Derry M J Taresco V Stockman R A De Focatiis D S A Irvine D J Howdle S M. Polym. Chem.202112(21): 3177.
[42]
Droesbeke M A Du Prez F E. ACS Sustainable Chem. Eng.20197(13): 11633.
[43]
Montanari C Ogawa Y Olsén P Berglund L A. Adv. Sci.20218(12): 2100559.
[44]
Cuzzucoli Crucitti V Ilchev A Moore J C Fowler H R Dubern J F Sanni O Xue X Husband B K Dundas A A Smith S Wildman J L Taresco V Williams P Alexander M R Howdle S M Wildman R D Stockman R A Irvine D J. Biomacromolecules202324(2): 576.
[45]
Xia Y Larock R C. Green Chem.201012(11): 1893.
[46]
Tremblay-Parrado K K Garcia-Astrain C Averous L. Green Chem.202123(12): 4296.
[47]
Lligadas G Ronda J C Galià M Cádiz V. Mater. Today201316(9): 337.
[48]
Hamnas A Unnikrishnan G. Renew. Sustain. Energy Rev.2023, 182: 113413.
[49]
Chen C L Lu J B Ma T Zhang Y Gu L H Chen X. Constr. Build. Mater.2023, 383: 131312.
[50]
Ribeiro A R Silva S S Reis R L. Biomater. Adv.2022, 134: 112720.
[51]
Su Y P Lin H Zhang S T Yang Z H Yuan T. Polymers202012(5): 1165.
[52]
Liang B Li R P Zhang C Q Yang Z H Yuan T. Ind. Crops Prod.2019, 135: 170.
[53]
Mendes-Felipe C Isusi I Gómez-Jiménez-Aberasturi O Prieto-Fernandez S Ruiz-Rubio L Sangermano M Vilas-Vilela J L. Polymers202315(14): 3136.
[54]
Liu W Wu M Ma C Q Liu C Zhang X Y Wang Z Wang Z K. ACS Sustainable Chem. Eng.202210(40): 13301.
[55]
Lei H D Yao N Wang S S Fang X Z Wu J Yang G Hua Z. Chem. Eng. J.2023, 471: 144602.
[56]
He F K Jin K K Sun J Fang Q. ACS Sustainable Chem. Eng.20186(3): 3575.
[57]
Sun J Wang P Zhang P P Huang J. Progress in Chemistry201628 (6):1426.
(孙佳, 王普, 章鹏鹏, 黄金. 化学进展201628(9): 1426..).
[58]
Goyal S Lin F Y Forrester M Henrichsen W Murphy G Shen L Y Wang T P Cochran E W. ACS Sustainable Chem. Eng.20219(31): 10620.
[59]
Bonneau G Peru A A M Flourat A L Allais F. Green Chem.201820(11): 2455.
[60]
Miftakhov M S Valeev F A Gaisina I N. Russ. Chem. Rev.199463(10): 869.
[61]
Ray P Hughes T Smith C Simon G P Saito K. ACS Omega20183(2): 2040.
[62]
Ray P Hughes T Smith C Hibbert M Saito K Simon G P. Polym. Chem.201910(24): 3334.
[63]
Diot-Néant F Rastoder E Miller S A Allais F. ACS Sustainable Chem. Eng.20186(12): 17284.
[64]
Wu Y X Shetty M Zhang K C Dauenhauer P J. ACS Eng. Au20222(2): 92.
[65]
Huang H Han C Tan T W. Industrial Catalysis200816(10):154.
(黄辉, 韩超, 谭天伟.工业催化200816(10):154..).
[66]
Li Y J Yu D Y. Chemical Industry and Engineering Progress201029(4):683.
(李玉皎, 于道永. 化工进展201029(04):683.).
[67]
Vidra A Nemeth A. Period. Polytech. Chem. Eng.201862(2): 156.
[68]
Borodina I Kildegaard K R Jensen N B Blicher T H Maury J Sherstyk S Schneider K Lamosa P Herrgård M J Rosenstand I Oberg F Forster J Nielsen J. Metab. Eng.2015, 27: 57.
[69]
Saska J Dutta S Kindler A Zuend S J Mascal M. ACS Sustainable Chem. Eng.20219(34): 11565.
[70]
Dussenne C Delaunay T Wiatz V Wyart H Suisse I Sauthier M. Green Chem.201719(22): 5332.
[71]
Hammami N Jarroux N Robitzer M Majdoub M Habas J P. Polymers20168(8): 294.
[72]
Jasek V Fucík J Krhut J Mravcova L Figalla S Prikryl R. Polymers202315(17): 3640.
[73]
Feng X H East A Hammond W Ophir Z Zhang Y Jaffe M. J. Therm. Anal. Calorim.2012109(3): 1267.
[74]
Daniel Y G Howell B A. Polym. Degrad. Stab.2017, 140: 25.
[75]
Yang Y Xiong Z Zhang L S Tang Z B Zhang R Y Zhu J. Mater. Des.2016, 91: 262.
[76]
Gallagher J J Hillmyer M A Reineke T M. ACS Sustainable Chem. Eng.20153(4): 662.
[77]
Lastovickova D N Toulan F R Mitchell J R VanOosten D Clay A M Stanzione J F III Palmese G R La Scala J J. J. Appl. Polym. Sci.2021138(25): app50574.
[78]
Badía A Agirre A Barandiaran M J Leiza J R. Biomacromolecules202021(11): 4522.
[79]
Nonque F Sahut A Jacquel N Saint-Loup R Woisel P Potier J. Polym. Chem.202011(43): 6903.
[80]
Matt L Parve J Parve O Pehk T Pham T H Liblikas I Vares L Jannasch P. ACS Sustainable Chem. Eng.20186(12): 17382.
[81]
Zhang J H Li J K Tang Y J Lin L Long M N. Carbohydr. Polym.2015, 130: 420.
[82]
Hu L Lin L Wu Z Zhou S Y Liu S J. Renew. Sustain. Energy Rev.2017, 74: 230.
[83]
Liu X C Xing J J Wang H P Zhou Y Y Zhang L Wang W Z. Progress in Chemistry 202032 (9):1294.
(刘雪晨, 邢娟娟, 王海鹏, 周沅逸, 张玲, 王文中. 化学进展202032(9): 1294..).
[84]
Jiang Y Yun J Pan X C. ACS Sustainable Chem. Eng.202210(50): 16555.
[85]
Huang W J Zhu N Fang Z Guo K. Progress in Chemistry201830 (12):1836.
(黄卫军, 朱宁, 方正, 郭凯. 化学进展201830(12): 1836..).
[86]
Techie-Menson R Rono C K Etale A Mehlana G Darkwa J Makhubela B C E. Mater. Today Commun.2021, 28: 102721.
[87]
Kainulainen T P Erkkila P Hukka T I Sirviö J A Heiskanen J P. ACS Appl. Polym. Mater.20202(8): 3215.
[88]
Wu J B Qian Y Q Sutton C A La Scala J J Webster D C Sibi M P. ACS Sustainable Chem. Eng.20219(46): 15537.
[89]
Wang J Wang Y L Liu B C Fu T. New J. Chem.202246(35): 16781.

Funding

National Natural Science Foundation of China(22478188)
National Natural Science Foundation of China(22278205)
National Natural Science Foundation of China(22278223)
R&D Program of SINOPEC(36600000-25-ZC0607-0047)
R&D Program of SINOPEC(30000000-23-ZC0607-0871)
R&D Program of SINOPEC(420106)
R&D Program of State Key Laboratory of Chemical Safety

Accesses

Citation

Detail

Sections
Recommended

/