Post-Combustion CO2 Capture Materials

Jiajia Jiang, Junhu Zhao, Qin Yu, Tian Zhang

Prog Chem ›› 2025, Vol. 37 ›› Issue (4) : 593-611.

PDF(8103 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(8103 KB)
Prog Chem ›› 2025, Vol. 37 ›› Issue (4) : 593-611. DOI: 10.7536/PC240608
Review

Post-Combustion CO2 Capture Materials

Author information +
History +

Abstract

The sustained development of industry has brought enormous economic benefits,but it has also caused great harm to the environment. The excessive CO2 emissions from fossil fuel combustion are released into the natural environment,posing a threat to the environment and human health. So people are working hard to develop materials that can effectively capture CO2. At present,CO2 capture mainly occurs after the combustion of fossil fuels. According to the design standards for CO2 adsorbents,a variety of CO2 capture materials have been designed and developed,including solid adsorbents,liquid adsorbents,and multiphase adsorbents. The adsorption mechanisms of various adsorbents are also different,including adsorption,absorption,or a combination of both mechanisms. This review focuses on the capture performance,absorption mechanism,advantages and disadvantages of various common types of current adsorbents,and introduces amine solution absorbents,zeolite-based adsorbents,ionic liquids-based adsorbents,carbon-based adsorbents,metal-organic framework materials,covalent organic framework materials,metal-oxide materials,and biopolymer nanocomposites,respectively,with an outlook of the future development of CO2 adsorbent materials.

Contents

1 Introduction

1.1 Current status and hazards of CO2 emissions

1.2 CO2 capture technology

1.3 Criteria for designing CO2 capture materials

2 CO2 capture materials

2.1 Amine solution absorbents

2.2 Zeolites based adsorbents

2.3 Ionic liquids absorbents

2.4 Carbon-based adsorbents

2.5 Metal organic framworks

2.6 Covalent organic frameworks

2.7 Metal oxide sorbents

2.8 Biopolymeric nanocomposites

3 Comparison and Prospect of Capture Materials

4 Conclusion

Key words

CO2 concentration / post-combustion CO2 / capture / adsorption / capture materials / multiphase adsorbents

Cite this article

Download Citations
Jiajia Jiang , Junhu Zhao , Qin Yu , et al. Post-Combustion CO2 Capture Materials[J]. Progress in Chemistry. 2025, 37(4): 593-611 https://doi.org/10.7536/PC240608

References

[1]
Gunawardene O H P, Gunathilake C A, Vikrant K, Amaraweera S M. Atmosphere, 2022, 13(3): 397.
[2]
Tiwari D, Bhunia H, Bajpai P K. J. Environ. Manag., 2018, 218: 579.
[3]
Fu D L, Davis M E. Chem. Soc. Rev., 2022, 51(22): 9340.
[4]
Creamer A E, Gao B. Environ. Sci. Technol., 2016, 50(14): 7276.
[5]
Maniarasu R, Rathore S K, Murugan S. Energy Environ., 2023, 34(1): 3.
[6]
Yaumi A L, Abu Bakar M Z, Hameed B H. Energy, 2017, 124: 461.
[7]
Khandaker T, Hossain M, Dhar P, Rahman M, Hossain M, Ahmed M. Processes, 2020, 8(6): 654.
[8]
Wang J Y, Yuan X Z, Deng S, Zeng X L, Yu Z, Li S J, Li K X. Green Chem., 2020, 22(20): 6836.
[9]
Karimi M, Shirzad M, Silva J A C, Rodrigues A E. Environ. Chem. Lett., 2023, 21(4): 2041.
[10]
Osman A I, Hefny M,Abdel Maksoud M I A, Elgarahy A M, Rooney D W. Environ. Chem. Lett., 2021, 19(2): 797.
[11]
Wu X, Wang M, Liao P, Shen J, Li Y. Appl. Energy, 2020, 257: 113941.
[12]
Liang Z H, Rongwong W, Liu H L, Fu K Y, Gao H X, Cao F, Zhang R, Sema T, Henni A, Sumon K, Nath D, Gelowitz D, Srisang W, Saiwan C, Benamor A, Al-Marri M, Shi H C, Supap T, Chan C, Zhou Q, Abu-Zahra M, Wilson M, Olson W, Idem R, Tontiwachwuthikul P P.Int. J. Greenh. Gas Contr., 2015, 40: 26.
[13]
Song K S, Fritz P W, Coskun A. Chem. Soc. Rev., 2022, 51(23): 9831.
[14]
Meng F Z, Meng Y, Ju T Y, Han S Y, Lin L, Jiang J G. Renew. Sustain. Energy Rev., 2022, 168: 112902.
[15]
Luo X Y, Wang C M. Curr. Opin. Green Sustain. Chem., 2017, 3: 33.
[16]
Jia T, Gu Y F, Li F T. J. Environ. Chem. Eng., 2022, 10(5): 108300.
[17]
Wang X Q, Liu H R, Zhang J R, Chen S X. Polym. Chem., 2023, 14(12): 1293.
[18]
Chang R, Wu X Y, Cheung O, Liu W. J. Mater. Chem. A, 2022, 10(4): 1682.
[19]
Cigala R M, De Luca G, Ielo I, Crea F. Polymers, 2024, 16(8): 1063.
[20]
Gao J, Yin J, Zhu F F, Chen X, Tong M, Kang W Z, Zhou Y B, Lu J. Sep. Purif. Technol., 2016, 167: 17.
[21]
Nguyen T S, Dogan N A, Lim H, Yavuz C T. Acc. Chem. Res., 2023, 56(19): 2642.
[22]
Aghel B, Janati S, Wongwises S, Shadloo M S.Int. J. Greenh. Gas Contr., 2022, 119: 103715.
[23]
Hamidi R, Farsi M, Eslamloueyan R. J. Mol. Liq., 2018, 265: 711.
[24]
Fytianos G, Ucar S, Grimstvedt A, Hyldbakk A, Svendsen H F, Knuutila H K.Int. J. Greenh. Gas Contr., 2016, 46: 48.
[25]
Khoramzadeh E, Mofarahi M, Lee C-H. J. Chem. Eng. Data, 2019, 64(12): 5648.
[26]
Sun M Z, Gu Q F, Hanif A, Wang T Q, Shang J. Chem. Eng. J., 2019, 370: 1450.
[27]
Gur T M. Prog. Energy Combust. Sci., 2022, 89: 100965.
[28]
Karka S, Kodukula S, Nandury S V, Pal U. ACS Omega, 2019, 4(15): 16441.
[29]
Xiao Y H, Zhou M X, He G H. Ind. Eng. Chem. Res., 2019, 58(31): 14380.
[30]
Al-Naddaf Q, Thakkar H, Rezaei F. ACS Appl. Mater. Interfaces, 2018, 10(35): 29656.
[31]
Nishihara H, Kyotani T. Chem. Commun., 2018, 54(45): 5648.
[32]
Zhu Y, Miyake K, Shu Y, Moroto K, Hirota Y, Uchida Y, Tanaka S, Zheng T, Katayama M, Inada Y, Morallón E, Cazorla-Amorós D, Kong C Y, Nishiyama N. Mater. Today Chem., 2021, 20: 100410.
[33]
Neishabori Salehi R, Sharifnia S, Rahimpour F. J. Nat. Gas Sci. Eng., 2018, 54: 37.
[34]
Panda D, Kumar E A, Singh S K.J. CO2 Util., 2020, 40: 101223.
[35]
Luzzi E, Aprea P, Salzano de Luna M, Caputo D, Filippone G. ACS Appl. Mater. Interfaces, 2021, 13(17): 20728.
[36]
Shen J, Sun Q, Cao J, Wang P, Jia W L, Wang S Y, Zhao P, Wang Z P. New J. Chem., 2022, 46(14): 6720.
[37]
Xu M, Chen S J, Seo D K, Deng S G. Chem. Eng. J., 2019, 371: 693.
[38]
Wu L G, Liu J Q, Shang H, Li S S, Yang J F, Li L B, Li J P. Microporous Mesoporous Mater., 2021, 316: 110956.
[39]
Fashi F, Ghaemi A, Behroozi A H. Chem. Eng. Commun., 2021, 208(8): 1104.
[40]
Najafi A M, Soltanali S, Ghassabzadeh H. Chem. Eng. J., 2023, 468: 143719.
[41]
Quan C, Jia X Y, Zhang K E, Zhang Y L, Naqvi S R, Amin N A S, Gao N B. Int. J. Energy Res., 2022, 46(2): 1220.
[42]
Cheung O, Bacsik Z, Fil N, Krokidas P, Wardecki D, Hedin N. ACS Omega, 2020, 5(39): 25371.
[43]
Kodasma R, Fermoso J, Sanna A. Chem. Eng. J., 2019, 358: 1351.
[44]
Wang Y S, Du T, Fang X, Jia H, Qiu Z Y, Song Y L. Mater. Chem. Phys., 2019, 232: 284.
[45]
Cheng H G, Song H P, Toan S, Wang B F, Gasem K A M, Fan M H, Cheng F Q. Chem. Eng. J., 2021, 406: 126882.
[46]
Zhang Y J, Josien L, Vaulot C, Simon-Masseron A, Lalevée J. Adv. Mater. Technol., 2023, 8(19): 2300699.
[47]
Qiang Z Q, Li R, Yang Z Q, Guo M, Cheng F Q, Zhang M. Energy Fuels, 2019, 33(7): 6641.
[48]
de Jesus S S, Maciel Filho R. Renew. Sustain. Energy Rev., 2022, 157: 112039.
[49]
Zhang R N, Ke Q L, Zhang Z K, Zhou B, Cui G K, Lu H F. Int. J. Mol. Sci., 2022, 23(19): 11401.
[50]
Zhu X, Song M L, Xu Y J.ACS Sustainable Chem. Eng., 2017, 5(9): 8192.
[51]
Hussain Solangi N, Hussin F, Anjum A, Sabzoi N, Ali Mazari S, Mubarak N M, Kheireddine Aroua M, Siddiqui M T H, Saeed Qureshi S. J. Mol. Liq., 2023, 374: 121266.
[52]
Santiago R, Lemus J, Moya C, Moreno D, Alonso-Morales N, Palomar J.ACS Sustainable Chem. Eng., 2018, 6(11): 14178.
[53]
Zhou X J, Weber J, Yuan J Y. Curr. Opin. Green Sustain. Chem., 2019, 16: 39.
[54]
da Luz M, Dias G, Zimmer H, Bernard F L,do Nascimento J F, Einloft S. Polym. Bull., 2022, 79(8): 6123.
[55]
Sun L W, Gao M, Tang S K. Chem. Eng. J., 2021, 412: 128764.
[56]
Zaker A ben Hammouda S, Sun J, Wang X L, Li X, Chen Z. J. Environ. Chem. Eng., 2023, 11(3): 109741.
[57]
Vorokhta M, Nováková J, Dopita M, Khalakhan I, Kopecký V, Švábová M. Mater. Today Sustain., 2023, 24: 100509.
[58]
Ma C D, Bai J L, Demir M, Yu Q Y, Hu X, Jiang W H, Wang L L. Sep. Purif. Technol., 2022, 303: 122299.
[59]
Bai F T, Liu X, Sani S, Liu Y M, Guo W, Sun C G. Sep. Purif. Technol., 2022, 299: 121539.
[60]
Nagarajan L, Saravanan P, Kumaraguru K, AnnamRenita A, Rajeshkannan R, Rajasimman M. Biomass Conv. Bioref., 2024, 14(8): 9595.
[61]
Wang Y X, Guo T, Hu X D, Hao J, Guo Q J. Powder Technol., 2020, 368: 227.
[62]
Lourenço M A O, Fontana M, Jagdale P, Pirri C F, Bocchini S. Chem. Eng. J., 2021, 414: 128763.
[63]
Serafin J, Ouzzine M, Cruz O F, Sreńscek-Nazzal J, Campello Gómez I, Azar F Z, Rey Mafull C A, Hotza D, Rambo C R. Waste Manag., 2021, 136: 273.
[64]
Phadungbut P, Koo-amornpattana W, Bumroongsri P, Ratchahat S, Kunthakudee N, Jonglertjunya W, Chalermsinsuwan B, Hunsom M. Sep. Purif. Technol., 2022, 291: 120948.
[65]
Pimentel C H, Diaz-Fernandez L, Gomez-Diaz D, Freire M S, Gonzalez-Alvares J. J. Environ. Chem. Eng. 2023, 11(6): 678.
[66]
Guo Z, Lu X, Xin Z. Colloids Surf. A Physicochem. Eng. Aspects, 2022, 646: 128845.
[67]
Huang J M, Bai J L, Demir M, Hu X, Jiang Z H, Wang L L. Energy Fuels, 2022, 36(11): 5825.
[68]
Bai J L, Huang J M, Jiang Q, Jiang W H, Demir M, Kilic M, Altay B N, Wang L L, Hu X. Colloids Surf. A Physicochem. Eng. Aspects, 2023, 674: 131916.
[69]
Wang W, Wang Z, Jiang L, Shen X, Wang Y, Zhu R, Shen Z, Xu X, Liu Y, Li X, Wang J. Mater. Today Sustain., 2023, 21: 100280.
[70]
Cao W P, Xu H L, Zhang X Y, Xiang W, Qi G D, Wan L, Gao B. Chem. Eng. J., 2023, 471: 144523.
[71]
Demir M, Tessema T D, Farghaly A A, Nyankson E, Saraswat S K, Aksoy B, Islamoglu T, Collinson M M, El-Kaderi H M, Gupta R B. Int. J. Energy Res., 2018, 42(8): 2686.
[72]
Kamran U, Park S J.J. CO2 Util., 2020, 40: 101212.
[73]
Szczęśniak B, Choma J. Microporous Mesoporous Mater., 2020, 292: 109761.
[74]
Chowdhury S, Balasubramanian R. Ind. Eng. Chem. Res., 2016, 55(29): 7906.
[75]
An L Y, Liu S F, Wang L L, Wu J Y, Wu Z Z, Ma C D, Yu Q K, Hu X. Ind. Eng. Chem. Res., 2019, 58(8): 3349.
[76]
Tehrani N H M H, Alivand M S, Maklavany D M, Rashidi A, Samipoorgiri M, Seif A, Yousefian Z. Chem. Eng. J., 2019, 358: 1126.
[77]
Jalilov A S, Ruan G D, Hwang C C, Schipper D E, Tour J J, Li Y L, Fei H L, Samuel E L G, Tour J M. ACS Appl. Mater. Interfaces, 2015, 7(2): 1376.
[78]
Kueh B, Kapsi M, Veziri C M, Athanasekou C, Pilatos G, Reddy K S K, Raj A, Karanikolos G N. Energy Fuels, 2018, 32(11): 11718.
[79]
Younas M, Rezakazemi M, Daud M, Wazir M B, Ahmad S, Ullah N, Inamuddin, Ramakrishna S. Prog. Energy Combust. Sci., 2020, 80: 100849.
[80]
Mahajan S, Lahtinen M. J. Environ. Chem. Eng., 2022, 10(6): 108930.
[81]
Kökçam-Demir Ü, Goldman A, Esrafili L, Gharib M, Morsali A, Weingart O, Janiak C. Chem. Soc. Rev., 2020, 49(9): 2751.
[82]
Tao R Y, Liu H, Xiang P, Lin Y C, Zhou J J, Zhou C, Zhao Y Y, Tian Z Q, Zhang Q J. J. Porous Mater., 2023, 30(6): 2129.
[83]
Gaikwad R, Gaikwad S, Han S. J. Ind. Eng. Chem., 2022, 111: 346.
[84]
Yang F, Ge T S, Zhu X C, Wu J Y, Wang R Z. Sep. Purif. Technol., 2022, 287: 120535.
[85]
Jun H J, Yoo D K, Jhung S H.J. CO2 Util., 2022, 58: 101932.
[86]
Li Z, Liu P, Ou C J, Dong X C.ACS Sustainable Chem. Eng., 2020, 8(41): 15378.
[87]
Zhang R, Huang J H, Meng D X, Ge F Y, Wang L F, Xu Y K, Liu X G, Meng M M, Lu Z Z, Zheng H G, Huang W. Dalton Trans., 2020, 49(17): 5618.
[88]
Gao C, Mu X B, Yuan W Y, Zhang P, Wang Y, Zhai Q G. J. Solid State Chem., 2023, 322: 123994.
[89]
Güçlü Y, Erer H K, Demiral H, Zorlu Y, Altintas C, Keskin S, Semerci F. J. Solid State Chem., 2023, 319: 123778.
[90]
Gaikwad S, Kim S J, Han S. J. Ind. Eng. Chem., 2020, 87: 250.
[91]
Gaikwad R, Gaikwad S, Han S. J. Environ. Chem. Eng., 2023, 11(6): 111592.
[92]
Jabbar S Q, Janani H, Janani H. J. Polym. Environ., 2022, 30(10): 4210.
[93]
Lei L, Cheng Y, Chen C W, Kosari M, Jiang Z Y, He C. J. Colloid Interface Sci., 2022, 612: 132.
[94]
Güçlü Y, Erer H K, Demiral H, Altintas C, Keskin S, Tumanov N, Su B-L, Semerci F. ACS Appl. Mater. Interfaces, 2021, 13(28): 33188.
[95]
Amesimeku J, Zhao Y C, Li K, Gu J L. Microporous Mesoporous Mater., 2023, 360: 112710.
[96]
Esfahani H J, Shahhosseini S, Ghaemi A. Sci. Rep., 2023, 13: 17700.
[97]
Wang S M, Liu H R, Ni S, Yang Q Y. Chin. J. Chem., 2023, 41(7): 763.
[98]
Cui H, Ye Y X, Liu T, Alothman Z A, Alduhaish O, Lin R-B, Chen B L. Inorg. Chem., 2020, 59(23): 17143.
[99]
Yu S M, Zhao X F, Zhang J, Liu S J, Yuan Z P, Liu X C, Liu B X, Yi X B. Cellulose, 2022, 29(12): 6783.
[100]
Zhou X Y, Shi S, Ding B H, Jia H, Chen P, Du T, Wang Y S. Environ. Sci. Pollut. Res., 2023, 30(46): 102803.
[101]
Yu M H, Zhang P, Feng R, Yao Z Q, Yu Y C, Hu T L, Bu X H. ACS Appl. Mater. Interfaces, 2017, 9(31): 26177.
[102]
Côté A P, Benin A I, Ockwig N W, O’Keeffe M, Matzger A J, Yaghi O M. Science, 2005, 310(5751): 1166.
[103]
Furukawa H, Yaghi O M. J. Am. Chem. Soc., 2009, 131(25): 8875.
[104]
Ozdemir J, Mosleh I, Abolhassani M, Greenlee L F, Beitle R R Jr, Beyzavi M H. Front. Energy Res., 2019, 7: 77.
[105]
Li H, Dilipkumar A, Abubakar S, Zhao D. Chem. Soc. Rev., 2023, 52(18): 6294.
[106]
Wang W J, Zhou M, Yuan D Q. J. Mater. Chem. A, 2017, 5(4): 1334.
[107]
Chen Y M, Hu X N, Guo J, Guo Z Y, Zhan H B, Du S W. Eur. Polym. J., 2022, 171: 111215.
[108]
Zhu H, Lin W J, Li Q, Hu Y, Guo S Y, Wang C M, Yan F. ACS Appl. Mater. Interfaces, 2020, 12(7): 8614.
[109]
Zeng Y F, Zou R Q, Zhao Y L. Adv. Mater., 2016, 28(15): 2855.
[110]
Liu F L, Chen S X, Gao Y T. J. Colloid Interface Sci., 2017, 506: 236.
[111]
Dautzenberg E, Li G N, de Smet L C P M. ACS Appl. Mater. Interfaces, 2023, 15(4): 5118.
[112]
Song J L, Wang Z T, Liu Y Z, Tuo C, Wang Y J, Fang Q R, Qiu S L. Chem. Res. Chin. Univ., 2022, 38(3): 834.
[113]
Seob Song K, Fritz P W, Abbott D F, Nga Poon L, Caridade C M, Gándara F, Mougel V, Coskun A. Angew. Chem. Int. Ed., 2023, 62(38): e202309775.
[114]
Zhang H L, Liu S, Wang L, Fang H X, Yue X K, Wang Z J, Wei S X, Liu S Y, Lu X Q. Sep. Purif. Technol., 2024, 333: 125937.
[115]
Xiong X H, Zhang L, Wang W, Zhu N X, Qin L Z, Huang H F, Meng L L, Xiong Y Y, Barboiu M, Fenske D, Hu P, Wei Z W. ACS Appl. Mater. Interfaces, 2022, 14(28): 32105.
[116]
Wei S X, Xin H L, Wang M H, Xu S Y, Zhai W R, Liu S, Wang L, Liu S Y, Wang Z J, Lu X Q. Adv. Theory Simul., 2022, 5(12): 2200588.
[117]
Li X D, Su Q, Luo K X, Li H, Li G H, Wu Q L. Mater. Lett., 2021, 282: 128704.
[118]
Yin M L, Wang L P, Tang S K. ACS Catal., 2023, 13(19): 13021.
[119]
Gao C, Li J, Yin S, Sun J L, Wang C. Nat. Commun., 2020, 11: 4919.
[120]
Das P, Mandal S K. Chem. Mater., 2019, 31(5): 1584.
[121]
Sun R X, Wang X Y, Wang X P, Tan B E. Angew. Chem. Int. Ed., 2022, 61(15): e202117668.
[122]
Wang J J, Wang L Z, Wang Y, Yang F, Li J W, Guan X Y, Zong J J, Zhou F, Huang J H, Liu Y N. Chem. Eng. J., 2022, 438: 135555.
[123]
Lin K Y, EL-Mahdy A F M. Mater. Chem. Phys., 2022, 281: 125850.
[124]
Li Z L, Sheng L, Wang H C, Wang X L, Li M Y, Xu Y L, Cui H, Zhang H T, Liang H M, Xu H, He X M. J. Am. Chem. Soc., 2021, 143(1): 92.
[125]
Li H, Chen F Q, Guan X Y, Li J L, Li C Y, Tang B, Valtchev V, Yan Y S, Qiu S L, Fang Q R. J. Am. Chem. Soc., 2021, 143(7): 2654.
[126]
Reitz M, Junk M, Ströhle J, Epple B.Int. J. Greenh. Gas Contr., 2016, 54: 272.
[127]
Zhang C X, Li Y J, Chu Z W, Fang Y, Han K H, He Z R. Sep. Purif. Technol., 2024, 329: 125109.
[128]
Ströhle J, Hilz J, Epple B. J. Environ. Chem. Eng., 2020, 8(1): 103578.
[129]
Ma X T, Li Y J, Zhang C X, Wang Z Y. Process. Saf. Environ. Prot., 2020, 141: 380.
[130]
Dong J, Tang Y J, Nzihou A, Weiss-Hortala E. J. CO2 Util., 2020, 39: 101167.
[131]
Guo H X, Yan S L, Zhao Y J, Ma X B, Wang S P. Chem. Eng. J., 2019, 359: 542.
[132]
Sun J, Wang W Y, Yang Y D, Cheng S, Guo Y F, Zhao C W, Liu W Q, Lu P. Fuel, 2020, 266: 117056.
[133]
Hashemi S M, Karami D, Mahinpey N. Fuel, 2020, 269: 117432.
[134]
Gao N B, Chen K L, Quan C. Fuel, 2020, 260: 116411.
[135]
Krödel M, Oing A, Negele J, Landuyt A, Kierzkowska A, Bork A H, Donat F, Müller C R. Nanoscale, 2022, 14(45): 16816.
[136]
Hu Y C, Guo Y F, Sun J, Li H L, Liu W Q. J. Mater. Chem. A, 2019, 7(35): 20103.
[137]
Guo Y F, Tan C, Wang P, Sun J, Li W L, Zhao C W, Lu P. Chem. Eng. J., 2020, 379: 122277.
[138]
Lee S C, Cha S H, Kwon Y M, Park M G, Hwang B W, Park Y K, Seo H M, Kim J C. Korean J. Chem. Eng., 2016, 33(12): 3448.
[139]
Pang H, Xu H R, Sun A W, Xiao G. Appl. Surf. Sci., 2022, 598: 153852.
[140]
Raza S, Orooji Y, Ghasali E, Hayat A, Karimi-Maleh H, Lin H J. J. CO2 Util., 2023, 67: 102295.
[141]
Quan C, Zhou Y Y, Wang J W, Wu C F, Gao N B. J. CO2 Util., 2023, 68: 102373.
[142]
Li X X, Jiao C L, Zhang X Q, Tian Z B, Xu X, Liang F Y, Wang G H, Jiang H Q. J. Clean. Prod., 2022, 350: 131468.
[143]
Tshikovhi A, Mishra S B, Mishra A K. Int. J. Biol. Macromol., 2020, 152: 616.
[144]
Zhang X F, Feng Y, Wang Z G, Jia M M, Yao J F. J. Membr. Sci., 2018, 568: 10.
[145]
Mohd N H, Kargazadeh H, Miyamoto M, Uemiya S, Sharer N, Baharum A, Lee Peng T, Ahmad I, Yarmo M A, Othaman R. J. Mater. Res. Technol., 2022, 17: 1438.
[146]
Dutta S, Bhaumik A, Wu K C. Energy Environ. Sci., 2014, 7(11): 3574.
[147]
Shen J L, Yuan Y, Salmon S.ACS Sustainable Chem. Eng., 2022, 10(23): 7772.
[148]
Li Y, Zhang X, Chen X, Tang K J, Meng Q, Shen C, Zhang G L. ACS Appl. Mater. Interfaces, 2019, 11(13): 12605.
[149]
Du J X, Yang W, Xu L L, Bei L, Lei S Y, Li W, Liu H T, Wang B, Sun L S. Chem. Eng. J., 2024, 488: 150954.
[150]
Gunawardene O H P, Gunathilake C A, Vikrant K, Amaraweera S M. Atmosphere, 2022, 13(3): 397.
[151]
Zhao H Y, Luo X N, Zhang H J, Sun N N, Wei W, Sun Y H. Greenh. Gases Sci. Technol., 2018, 8(1): 11.
[152]
Zhang C Y, Xue X D, Liu J T, Lin J, Zhang X W, Kasemchainan J, Gao H Y, Wang G, Shu X T. Chem. Eng. J., 2023, 464: 142670.
[153]
Yang D, Gates B C. J. Phys. Chem. C, 2024, 128(21): 8551.
[154]
Xiang S C, He Y B, Zhang Z J, Wu H, Zhou W, Krishna R, Chen B L. Nat. Commun., 2012, 3: 954.
[155]
Zhao M, Yang Y, Gu X S. Inorg. Chem. Commun., 2023, 152: 110722.

Funding

Youth Funding Project of the "Young Thousand Talents Program" of the Organization Department of the CPC Central Committee(40127002)
PDF(8103 KB)

Accesses

Citation

Detail

Sections
Recommended

/