Carbon Materials for Zinc-Iodine Battery Cathodes

Yinyan Guan, Xiaorui Hao, Rui Xu, Hongfei Li, Yuhan Wu, Jiyan Liang

Prog Chem ›› 2025, Vol. 37 ›› Issue (5) : 775-787.

PDF(4024 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(4024 KB)
Prog Chem ›› 2025, Vol. 37 ›› Issue (5) : 775-787. DOI: 10.7536/PC240610
Review

Carbon Materials for Zinc-Iodine Battery Cathodes

Author information +
History +

Abstract

Zinc-iodine batteries have attracted widespread attention as a novel green,low-cost,and highly safe electrochemical energy storage technology. Its basic principle is to use the electrochemical reaction between zinc and iodine to store and release energy. However,the low electronic conductivity,shuttle effect,and high solubility of iodine limit the practical application of zinc-iodine batteries. This work provides a systematic review of the research progress on carbon materials used in the cathode of zinc-iodine batteries,with a focus on several commonly used carbon materials,such as carbon nanotubes,graphene,activated carbon,biomass-derived carbon,and other porous carbon materials. Owing to their excellent conductivity,high specific surface area,and good chemical stability,these carbon materials can not only effectively adsorb and immobilize iodine molecules,preventing iodine loss and the shuttle effect,but also promote iodine redox reactions by regulating the pore structure and surface chemical properties,thereby improving the specific capacity and cycling stability of the battery. Additionally,we put forward the challenges and issues faced by carbon materials in the practical application of zinc-iodine batteries,including how to further enhance iodine adsorption capability and improve the structural stability of the electrode. Accordingly,several potential future research directions are proposed with a view to further improving the electrochemical performance and reducing the manufacturing cost,thus laying the foundation for advancing the development and application of this emerging battery technology.

Contents

1 Introduction

1.1 Research background and significance of zinc-iodine batteries

1.2 The importance of carbon materials in zinc-iodine batteries

2 Overview of zinc-iodine batteries

2.1 Reaction mechanism of zinc-iodine batteries

2.2 Advantages and problems of zinc-iodine batteries

3 The application of carbon materials in the cathode of zinc-iodine batteries

3.1 Carbon nanotube-based cathodes

3.2 Graphene-based cathodes

3.3 Activated carbon-based cathodes

3.4 Biomass-derived carbon-based cathodes

3.5 Other porous carbon material-based cathodes

4 Conclusions and outlook

Key words

electrochemical energy storage / zinc-iodine battery / cathode / carbon materials

Cite this article

Download Citations
Yinyan Guan , Xiaorui Hao , Rui Xu , et al . Carbon Materials for Zinc-Iodine Battery Cathodes[J]. Progress in Chemistry. 2025, 37(5): 775-787 https://doi.org/10.7536/PC240610

References

[1]
Wu Y H, Zhao Z Q, Hao X R, Xu R, Li L S, Lv D, Huang X L, Zhao Q, Xu Y, Wu Y S. Carbon Neutralization, 2023, 2(5): 551.
[2]
Cai Z, Wang J D, Sun Y M. eScience, 2023, 3(1): 100093.
[3]
Ge H Y, Feng X L, Liu D P, Zhang Y. Nano Res. Energy, 2023, 2: e9120039.
[4]
Aizudin M, Fu W Q, Pottammel R P, Dai Z F, Wang H W, Rui X H, Zhu J X, Li C C, Wu X L, Ang E H. Small, 2024, 20(2): 2305217.
[5]
Wu Y H, Xia W H, Liu Y Z, Wang P F, Zhang Y H, Huang J R, Xu Y, Li D P, Ci L J. Tungsten, 2024, 6(2): 278.
[6]
Ye M Y, Hao X R, Zeng J F, Li L, Wang P F, Zhang C L, Liu L, Shi F N, Wu Y H. J. Semicond., 2024, 45(2): 021801.
[7]
Zhang L Q, Zhang M J, Guo H L, Tian Z H, Ge L F, He G J, Huang J J, Wang J T, Liu T X, Parkin I P, Lai F L. Adv. Sci., 2022, 9(13): 2105598.
[8]
Wu Y H, Zhao Q, Wang Z J. Chin. J. Struct. Chem., 2024, 43(5): 100271.
[9]
Xiao X, Wang T S, Zhao Y X, Gao W J, Wang S C. J. Colloid Interface Sci., 2023, 642: 340.
[10]
Wang T S, Gao W J, Zhao Y X, Wang S C, Huang W. J. Mater. Sci. Technol., 2024, 173: 107.
[11]
Yang Y Q, Liang S Q, Zhou J. Curr. Opin. Electrochem., 2021, 30: 100761.
[12]
Ma J Z, Liu M M, He Y L, Zhang J T. Angew. Chem. Int. Ed., 2021, 60(23): 12636.
[13]
Zou Y P, Liu T T, Du Q J, Li Y Y, Yi H B, Zhou X, Li Z X, Gao L J, Zhang L, Liang X. Nat. Commun., 2021, 12: 170.
[14]
Yang F H, Long J, Yuwono J A, Fei H F, Fan Y M, Li P, Zou J S, Hao J N, Liu S L, Liang G M, Lyu Y Q, Zheng X B, Zhao S Y, Davey K, Guo Z P. Energy Environ. Sci., 2023, 16(10): 4630.
[15]
Xu J W, Wang J G, Ge L H, Sun J R, Ma W Q, Ren M M, Cai X X, Liu W L, Yao J S. J. Colloid Interface Sci., 2022, 610: 98.
[16]
Yue Q, Wan Y, Li X Q, Zhao Q, Gao T T, Deng G W, Li B, Xiao D. Chem. Sci., 2024, 15(15): 5711.
[17]
Chen G H, Kang Y H, Yang H Y, Zhang M H, Yang J, Lv Z H, Wu Q L, Lin P X, Yang Y, Zhao J B. Adv. Funct. Mater., 2023, 33(28): 2300656.
[18]
Wu W L, Li C C, Wang Z Q, Shi H Y, Song Y, Liu X X, Sun X Q. Chem. Eng. J., 2022, 428: 131283.
[19]
Zeng X M, Meng X J, Jiang W, Liu J, Ling M, Yan L J, Liang C D. ACS Sustainable Chem. Eng., 2020, 8(38): 14280.
[20]
Zhang S J, Hao J N, Li H, Zhang P F, Yin Z W, Li Y Y, Zhang B K, Lin Z, Qiao S Z. Adv. Mater., 2022, 34(23): 2201716.
[21]
Zhao D Y, Zhu Q C, Zhou Q C, Zhang W M, Yu Y, Chen S, Ren Z F. Energy Environ. Mater., 2024, 7(1): e12522.
[22]
Chen M Y, Zhu W X, Guo H L, Tian Z H, Zhang L Q, Wang J T, Liu T X, Lai F L, Huang J J. Energy Storage Mater., 2023, 59: 102760.
[23]
Li Y X, Liu L J, Li H X, Cheng F Y, Chen J. Chem. Commun., 2018, 54(50): 6792.
[24]
Chai L L, Wang X, Hu Y, Li X F, Huang S M, Pan J Q, Qian J J, Sun X L. Adv. Sci., 2022, 9(33): 2105063.
[25]
He J F, Hong H, Hu S L, Zhao X L, Qu G M, Zeng L, Li H F. Nano Energy, 2024, 119: 109096.
[26]
Ji Y, Xie J P, Shen Z X, Liu Y, Wen Z R, Luo L, Hong G. Adv. Funct. Mater., 2023, 33(10): 2210043.
[27]
Lee J H, Srimuk P, Fleischmann S, Ridder A, Zeiger M, Presser V. J. Mater. Chem. A, 2017, 5(24): 12520.
[28]
Liu M M, Chen Q W, Cao X Y, Tan D X, Ma J Z, Zhang J T. J. Am. Chem. Soc., 2022, 144(47): 21683.
[29]
Yang Y Q, Guo S, Pan Y C, Lu B G, Liang S Q, Zhou J. Energy Environ. Sci., 2023, 16(5): 2358.
[30]
Yan L J, Zhang S J, Kang Q L, Meng X H, Li Z H, Liu T F, Ma T L, Lin Z. Energy Storage Mater., 2023, 54: 339.
[31]
He Y L, Liu M M, Zhang J T. Adv. Sustain. Syst., 2020, 4(11): 2000138.
[32]
Chen Z H, Wang F F, Ma R L, Jiao W Y, Li D Y, Du A, Yan Z J, Yin T Y, Yin X J, Li Q, Zhang X, Yang N J, Zhou Z, Yang Q H, Yang C P. ACS Energy Lett., 2024, 9(6): 2858.
[33]
Wu Y H, Wu X N, Guan Y Y, Xu Y, Shi F N, Liang J Y. New Carbon Mater., 2022, 37(5): 852.
[34]
Lin J, Zhang X D, Fan E S, Chen R J, Wu F, Li L. Energy Environ. Sci., 2023, 16(3): 745.
[35]
Zhang L Q, Guo H L, Zong W, Huang Y P, Huang J J, He G J, Liu T X, Hofkens J, Lai F L. Energy Environ. Sci., 2023, 16(11): 4872.
[36]
Svensson P H, Kloo L. Chem. Rev., 2003, 103(5): 1649.
[37]
Gao W Z, Cheng S T, Zhang Y X, Xie E Q, Fu J C. Adv. Funct. Mater., 2023, 33(17): 2211979.
[38]
Lin D, Rao D W, Chiovoloni S, Wang S W, Lu J Q, Li Y. Nano Lett., 2021, 21(9): 4129.
[39]
He J F, Mu Y B, Wu B K, Wu F H, Liao R X, Li H F, Zhao T S, Zeng L. Energy Environ. Sci., 2024, 17(1): 323.
[40]
Yang S, Guo X, Lv H M, Han C P, Chen A, Tang Z J, Li X L, Zhi C Y, Li H F. ACS Nano, 2022, 16(9): 13554.
[41]
Wu J W, Yang J L, Zhang B, Fan H J. Adv. Energy Mater., 2024, 14(3): 2302738.
[42]
Kang Y H, Chen G H, Hua H M, Zhang M H, Yang J, Lin P X, Yang H Y, Lv Z H, Wu Q L, Zhao J B, Yang Y. Angew. Chem. Int. Ed., 2023, 62(22): e202300418.
[43]
Wang Y L, Sun Q L, Zhao Q Q, Cao J S, Ye S H. Energy Environ. Sci., 2011, 4(10): 3947.
[44]
Ma L T, Ying Y R, Chen S M, Huang Z D, Li X L, Huang H T, Zhi C Y. Angew. Chem. Int. Ed., 2021, 60(7): 3791.
[45]
Bai C, Cai F S, Wang L C, Guo S Q, Liu X Z, Yuan Z H. Nano Res., 2018, 11(7): 3548.
[46]
Qiao L, Wang C, Zhao X S. ACS Appl. Energy Mater., 2021, 4(7): 7012.
[47]
Prehal C, Fitzek H, Kothleitner G, Presser V, Gollas B, Freunberger S A, Abbas Q. Nat. Commun., 2020, 11: 5742.
[48]
Hu J F, Zhang Z F, Deng T, Cui F C, Shi X Y, Tian Y Y, Zhu G S. Adv. Mater., 2024: 2401091.
[49]
Jin X T, Song L, Dai C L, Xiao Y K, Han Y Y, Li X Y, Wang Y, Zhang J T, Zhao Y, Zhang Z P, Chen N, Jiang L, Qu L T. Adv. Mater., 2022, 34(15): 2109450.
[50]
Hu L H, Wu F Y, Lin C T, Khlobystov A N, Li L J. Nat. Commun., 2013, 4: 1687.
[51]
Geim A K, Novoselov K S. Nat. Mater., 2007, 6(3): 183.
[52]
Sun Y W, Papageorgiou D G, Humphreys C J, Dunstan D J, Puech P, Proctor J E, Bousige C, Machon D, San-Miguel A. Appl. Phys. Rev., 2021, 8(2): 021310.
[53]
Wang C Y, Wang M Q, He Z C, Liu L, Huang Y D. ACS Appl. Energy Mater., 2020, 3(2): 1742.
[54]
Kim S D, Sarkar A, Ahn J H. Small, 2021, 17(48): 2006262.
[55]
Park H, Bera R K, Ryoo R. Adv. Energy Sustain. Res., 2021, 2(10): 2100076.
[56]
Yu D L, Kumar A, Nguyen T A, Nazir M T, Yasin G. ACS Sustainable Chem. Eng., 2020, 8(36): 13769.
[57]
Liu T T, Wang H J, Lei C J, Mao Y, Wang H Q, He X, Liang X. Energy Storage Mater., 2022, 53: 544.
[58]
Dang H X, Sellathurai A J, Barz D P J. Energy Storage Mater., 2023, 55: 680.
[59]
Zhang Y X, Wang L Q, Li Q Y, Hu B, Kang J M, Meng Y H, Zhao Z D, Lu H B. Nano-Micro Lett., 2022, 14: 208.
[60]
Zhang J, Dou Q Y, Yang C, Zang L M, Yan X B. J. Mater. Chem. A, 2023, 11(7): 3632.
[61]
Li W, Wang K L, Jiang K. J. Mater. Chem. A, 2020, 8(7): 3785.
[62]
Zhang Y, Zhang X, Li X, Chen C X, Yu D F, Zhao G Y. J. Alloys Compd., 2024, 976: 173041.
[63]
Pan H L, Li B, Mei D H, Nie Z M, Shao Y Y, Li G S, Li X S, Han K S, Mueller K T, Sprenkle V, Liu J. ACS Energy Lett., 2017, 2(12): 2674.
[64]
Xu J W, Ma W Q, Ge L H, Ren M M, Cai X X, Liu W L, Yao J S, Zhang C B, Zhao H. J. Alloys Compd., 2022, 912: 165151.
[65]
Ji Y, Xu J W, Wang Z R, Ren M M, Wu Y, Liu W L, Yao J S, Zhang C B, Zhao H. J. Electroanal. Chem., 2023, 931: 117188.
[66]
Han W, Li X. J. Power Sources, 2023, 580: 233296.
[67]
Li W, Fang R Y, Xia Y, Zhang W K, Wang X L, Xia X H, Tu J P. Batteries & Supercaps, 2019, 2(1): 9.
[68]
Yan L J, Liu T F, Zeng X M, Sun L, Meng X H, Ling M, Fan M Q, Ma T L. Carbon, 2022, 187: 145.
[69]
Liu W F, Liu P G, Lyu Y H, Wen J, Hao R, Zheng J Y, Liu K Y, Li Y J, Wang S Y. ACS Appl. Mater. Interfaces, 2022, 14(7): 8955.
[70]
Xu Y Q, Li Y X, Jia H F, Liu B Q, Wang C G, Li L. Mater. Lett., 2023, 353: 135241.
[71]
Guo Q, Wang H Z, Sun X T, Yang Y N, Chen N, Qu L T. ACS Mater. Lett., 2022, 4(10): 1872.
[72]
Hou Y J, Zhu C Z, Wang Q, Zhao X M, Luo K, Gong Z S, Yuan Z H. Chinese Chem. Lett., 2024, 35(5): 108697.

Funding

Education Department of Liaoning Province(JYTQN2023285)
Education Department of Liaoning Province(LJKMZ20220499)
Shenyang University of Technology(QNPY202209-4)
China Scholarship Council(202408320117)
Key Laboratory of Functional Inorganic Material Chemistry(Heilongjiang University)Ministry of Education,and the Science and Technology Department of Liaoning Province(2024-BSLH-172)
Key Laboratory of Functional Inorganic Material Chemistry(Heilongjiang University)Ministry of Education,and the Science and Technology Department of Liaoning Province(2023-MSLH-257)
PDF(4024 KB)

Accesses

Citation

Detail

Sections
Recommended

/