Cellulose-Based Daytime Radiative Cooling Materials

Xiushuang Jiang, Junming Wang, Hongzhi Liu

Prog Chem ›› 2025, Vol. 37 ›› Issue (5) : 724-742.

PDF(4865 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(4865 KB)
Prog Chem ›› 2025, Vol. 37 ›› Issue (5) : 724-742. DOI: 10.7536/PC240612
Review

Cellulose-Based Daytime Radiative Cooling Materials

Author information +
History +

Abstract

With the improvement of living standard and heightened awareness of environmental protection,renewable and environmentally friendly cellulose materials have attracted much attention in the field of daytime radiative cooling due to their high mid-infrared emissivity and the advantages of tunability of hierarchical structure. In this review,the classification,advantages/disadvantages of radiative cooling materials,the principles of radiative cooling,and the factors influencing their performance are introduced. The classification,state of the art as well as radiative cooling properties of cellulose-based daytime radiative cooling materials are elaborated. The recent progress in the four main application areas including building thermal management,personal thermal management,photovoltaics and low-temperature storage/transportation are summarized. Finally,the existing challenges in the current research are discussed and the future development in this field is also envisaged.

Contents

1 Introduction

2 Radiative cooling

2.1 Principles

2.2 Influencing factors

3 Cellulose-based daytime radiative cooling materials and classification

3.1 Natural cellulose-based materials

3.2 Cellulose derivatives-based materials

3.3 Bacterial cellulose-based materials

4 Application fields

4.1 Building thermal management

4.2 Personal thermal management

4.3 Photovoltaics

4.4 Low-temperature storage/transportation

5 Conclusion and outlook

Key words

daytime radiative cooling / cellulose / cellulose derivatives / nanocellulose

Cite this article

Download Citations
Xiushuang Jiang , Junming Wang , Hongzhi Liu. Cellulose-Based Daytime Radiative Cooling Materials[J]. Progress in Chemistry. 2025, 37(5): 724-742 https://doi.org/10.7536/PC240612

References

[1]
Shankar S, Khodaei D, Lacroix M. Food Hydrocoll., 2021, 117: 106750.
[2]
Ly K C S, Liu X H, Song X K, Xiao C Y, Wang P, Zhou H, Fan T X. Adv. Funct. Mater., 2022, 32(31): 2203789.
[3]
Yin X B, Yang R G, Tan G, Fan S H. Science, 2020, 370(6518): 786.
[4]
Li X Q, Sun B W, Sui C X, Nandi A, Fang H M, Peng Y C, Tan G, Hsu P C. Nat. Commun., 2020, 11: 6101.
[5]
Gao H Y. IOP Conf. Ser. Earth Environ. Sci., 2019, 252: 032007.
[6]
Sun X S, Sun Y B, Zhou Z G, Alam M A, Bermel P. Nanophotonics, 2017, 6(5): 997.
[7]
Li W, Fan S H. Opt. Photonics News, 2019, 30(11): 32.
[8]
Li X Q, Xie W R, Sui C X, Hsu P C. ACS Mater. Lett., 2020, 2(12): 1624.
[9]
Wu X K, Li J L, Xie F, Wu X E, Zhao S M, Jiang Q Y, Zhang S L, Wang B S, Li Y R, Gao D, Li R, Wang F, Huang Y, Zhao Y L, Zhang Y Y, Li W, Zhu J, Zhang R F. Nat. Commun., 2024, 15: 815.
[10]
Zhou J W, Chen T G, Tsurimaki Y, Hajj-Ahmad A, Fan L L, Peng Y C, Xu R, Wu Y C, Assawaworrarit S, Fan S H, Cutkosky M R, Cui Y. Joule, 2023, 7(12): 2830.
[11]
Zhang X A, Yu S J, Xu B B, Li M, Peng Z W, Wang Y X, Deng S L, Wu X J, Wu Z P, Ouyang M, Wang Y H. Science, 2019, 363(6427): 619.
[12]
Peng Y C, Chen J, Song A Y, Catrysse P B, Hsu P C, Cai L L, Liu B F, Zhu Y Y, Zhou G M, Wu D S, Lee H R, Fan S H, Cui Y. Nat. Sustain., 2018, 1(2): 105.
[13]
Song Y N, Lei M Q, Lei J, Li Z M. Mater. Today Energy, 2020, 18: 100504.
[14]
Wu X K, Li J L, Jiang Q Y, Zhang W S, Wang B S, Li R, Zhao S M, Wang F, Huang Y, Lyu P, Zhao Y L, Zhu J, Zhang R F. Nat. Sustain., 2023, 6(11): 1446.
[15]
Hsu P C, Song A Y, Catrysse P B, Liu C, Peng Y C, Xie J, Fan S H, Cui Y. Science, 2016, 353(6303): 1019.
[16]
Cai L L, Song A Y, Li W, Hsu P C, Lin D C, Catrysse P B, Liu Y Y, Peng Y C, Chen J, Wang H X, Xu J W, Yang A K, Fan S H, Cui Y. Adv. Mater., 2018, 30(35): 1802152.
[17]
Zeng S N, Pian S J, Su M Y, Wang Z N, Wu M Q, Liu X H, Chen M Y, Xiang Y Z, Wu J W, Zhang M N, Cen Q Q, Tang Y W, Zhou X H, Huang Z H, Wang R, Tunuhe A, Sun X Y, Xia Z G, Tian M W, Chen M, Ma X, Yang L Y, Zhou J, Zhou H M, Yang Q, Li X, Ma Y G, Tao G M. Science, 2021, 373(6555): 692.
[18]
Wu J R, He J, Yin K, Zhu Z, Xiao S, Wu Z P, Duan J A. Nano Lett., 2021, 21(10): 4209.
[19]
Li S, Zhou Z H, Liu J W, Zhang J, Tang H J, Zhang Z F, Na Y L, Jiang C X. Renew. Energy, 2022, 198: 947.
[20]
Nakamura K. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2011, 301(5): R1207.
[21]
Chen Y N, Wang Z Y, Dai Y T, Yang D Y, Qiu F X, Li Y Q, Zhang T. ACS Sustainable Chem. Eng., 2023, 11(41): 15135.
[22]
Li J L, Liang Y, Li W, Xu N, Zhu B, Wu Z, Wang X Y, Fan S H, Wang M H, Zhu J. Sci. Adv., 2022, 8(6): eabj9756.
[23]
Zhang K, Mo C Q, Tang X L, Lei X J. ACS Sustainable Chem. Eng., 2023, 11(20): 7745.
[24]
Guo C Y, Pan H D, Xu Q H, Wang J Y, Zhao D L. J. Refrig., 2022, 43(3): 1.
(郭晨玥, 潘浩丹, 徐琪皓, 王佳云, 盛茗峰, 赵东亮. 制冷学报, 2022, 43(3): 1.).
[25]
Zhu L X, Raman A, Wang K X, Abou Anoma M, Fan S H. Optica, 2014, 1(1): 32.
[26]
Raman A P, Abou Anoma M, Zhu L X, Rephaeli E, Fan S H. Nature, 2014, 515(7528): 540.
[27]
Zhou L, Song H M, Liang J W, Singer M, Zhou M, Stegenburgs E, Zhang N, Xu C, Ng T, Yu Z F, Ooi B, Gan Q Q. Nat. Sustain., 2019, 2(8): 718.
[28]
Peng Y C, Fan L L, Jin W L, Ye Y S, Huang Z J, Zhai S, Luo X, Ma Y X, Tang J, Zhou J W, Greenburg L C, Majumdar A, Fan S H, Cui Y. Nat. Sustain., 2022, 5(4): 339.
[29]
Bhatia B, Leroy A, Shen Y C, Zhao L, Gianello M, Li D H, Gu T, Hu J J, Soljačić M, Wang E N. Nat. Commun., 2018, 9: 5001.
[30]
Lin K X, Chen S R, Zeng Y J, Ho T C, Zhu Y H, Wang X, Liu F Y, Huang B L, Chao C Y, Wang Z K, Tso C Y. Science, 2023, 382(6671): 691.
[31]
Bao H, Yan C, Wang B X, Fang X, Zhao C Y, Ruan X L. Sol. Energy Mater. Sol. Cells, 2017, 168: 78.
[32]
Zhao X P, Li T Y, Xie H, Liu H, Wang L Z, Qu Y R, Li S C, Liu S F, Brozena A H, Yu Z F, Srebric J, Hu L B. Science, 2023, 382(6671): 684.
[33]
Mandal J, Fu Y K, Overvig A C, Jia M X, Sun K R, Shi N N, Zhou H, Xiao X H, Yu N F, Yang Y. Science, 2018, 362(6412): 315.
[34]
Wang T, Wu Y, Shi L, Hu X H, Chen M, Wu L M. Nat. Commun., 2021, 12: 365.
[35]
Huang G, Yengannagari A R, Matsumori K, Patel P, Datla A, Trindade K, Amarsanaa E, Zhao T H, Köhler U, Busko D, Richards B S. Nat. Commun., 2024, 15: 3798.
[36]
Wang X, Liu X H, Li Z Y, Zhang H W, Yang Z W, Zhou H, Fan T X. Adv. Funct. Mater., 2020, 30(5): 1907562.
[37]
Liu H H, Kang H J, Jia X, Qiao X S, Qin W, Wu X H. Adv. Mater. Technol., 2022, 7(10): 2101583.
[38]
Meng S, Long L S, Wu Z X, Denisuk N, Yang Y, Wang L P, Cao F, Zhu Y G. Sol. Energy Mater. Sol. Cells, 2020, 208: 110393.
[39]
Kou J L, Jurado Z, Chen Z, Fan S H, Minnich A J. ACS Photonics, 2017, 4(3): 626.
[40]
Xie F, Jin W L, Nolen J R, Pan H, Yi N Q, An Y, Zhang Z Y, Kong X T, Zhu F, Jiang K, Tian S C, Liu T J, Sun X J, Li L N, Li D B, Xiao Y F, Alu A, Fan S H, Li W. Science, 2024, 386(6723): 788.
[41]
Fang Z Q, Zhu H L, Bao W Z, Preston C, Liu Z, Dai J Q, Li Y Y, Hu L B. Energy Environ. Sci., 2014, 7(10): 3313.
[42]
Lei C, Chen J Q, Robertson G P. GCB Bioenergy, 2023, 15(11): 1373.
[43]
Feng S J, Zhou Y M, Liu C H, Zhang T, Bu X H, Huang Y Z, He M. Chem. Eng. J., 2023, 452: 139377.
[44]
Li Z D, Tian Q, Chen Y, Zhao B C, Qiu F X, Zhang T. Cellulose, 2023, 30(8): 5145.
[45]
Liao M N, Banerjee D, Hallberg T, Åkerlind C, Alam M M, Zhang Q L, Kariis H, Zhao D, Jonsson M P. Adv. Sci., 2023, 10(8): 2206510.
[46]
Zhang K, Lei X J, Mo C Q, Huang J, Wang M, Kang E T, Xu L Q. Adv. Sci., 2023, 10(11): 2206925.
[47]
Cai C Y, Ding C X, Wu X D, Chen Y. Acta Mater. Compos. Sin., 2024, 41(11): 5800.
(蔡晨阳, 丁春香, 武小丹, 陈溢. 复合材料学报, 2024, 41(11): 5800.).
[48]
Zhang Q, Li X D, Wang W W, Liu X. Energy Storage Sci. Technol., 2023, 12(5): 1427.
(张奇, 李晓东, 王文雯, 刘晓. 储能科学与技术, 2023, 12(5): 1427.).
[49]
Fan S H. Joule, 2017, 1(2): 264.
[50]
Hossain M M, Gu M. Adv. Sci., 2016, 3(7): 1500360.
[51]
Xiang B, Zhang R, Luo Y L, Zhang S, Xu L, Min H H, Tang S C, Meng X K. Nano Energy, 2021, 81: 105600.
[52]
Cai C Y, Wei Z C, Ding C X, Sun B J, Chen W B, Gerhard C, Nimerovsky E, Fu Y, Zhang K. Nano Lett., 2022, 22(10): 4106.
[53]
Wang X Y, Zhang Q, Wang S H, Jin C Q, Zhu B, Su Y C, Dong X Y, Liang J, Lu Z D, Zhou L, Li W, Zhu S N, Zhu J. Sci. Bull., 2022, 67(18): 1874.
[54]
Cai C Y, Wu X D, Cheng F L, Ding C X, Wei Z C, Wang X, Fu Y. Adv. Funct. Mater., 2024, 34(40): 2405903.
[55]
Zeyghami M, Goswami D Y, Stefanakos E. Sol. Energy Mater. Sol. Cells, 2018, 178: 115.
[56]
Jaramillo-Fernandez J, Yang H, Schertel L, Whitworth G L, Garcia P D, Vignolini S, Sotomayor-Torres C M. Adv. Sci., 2022, 9(8): 2104758.
[57]
Suichi T, Ishikawa A, Hayashi Y, Tsuruta K. AIP Adv., 2018, 8(5): 055124.
[58]
Bijarniya J P, Sarkar J, Maiti P. Sci. Rep., 2021, 11: 893.
[59]
Gamage S, Kang E S H, Åkerlind C, Sardar S, Edberg J, Kariis H, Ederth T, Berggren M, Jonsson M P. J. Mater. Chem. C, 2020, 8(34): 11687.
[60]
Li T, Zhai Y, He S M, Gan W T, Wei Z Y, Heidarinejad M, Dalgo D, Mi R Y, Zhao X P, Song J W, Dai J Q, Chen C J, Aili A, Vellore A, Martini A, Yang R G, Srebric J, Yin X B, Hu L B. Science, 2019, 364(6442): 760.
[61]
Gamage S, Banerjee D, Alam M M, Hallberg T, Åkerlind C, Sultana A, Shanker R, Berggren M, Crispin X, Kariis H, Zhao D, Jonsson M P. Cellulose, 2021, 28(14): 9383.
[62]
She Y N, Wang J, Zhu C F, Tian F Y, Jin Y Y, Mao W, Wu Y T, Chen K, Xu X W. Ind. Crops Prod., 2023, 193: 116242.
[63]
Chen Y P, Zhang J Y, Zhuang Z R, Zhou J H, Peng Y, Dang B K, Sun Q F. Ind. Crops Prod., 2024, 220: 119094.
[64]
Piao X X, Cao Y W, Guo H X, Jin C D, Wang Z. ACS Sustainable Chem. Eng., 2022, 10(48): 15692.
[65]
Chen Y P, Dang B K, Fu J Z, Wang C, Li C C, Sun Q F, Li H Q. Nano Lett., 2021, 21(1): 397.
[66]
Zhang J Y, Yin K R, Zhuang Z R, Zhou J H, Tang Y X, Xu J Y, Chen Y P, Li Y Y, Sun Q F. Mater. Horiz., 2024, 11(15): 3633.
[67]
Zhu W K, Zhang Y, Mohammad N, Xu W H, Tunc S, Shan X W, Zhou C L, Semple K, Dai C P, Li T. Cell Rep. Phys. Sci., 2022, 3(11): 101125.
[68]
Sun H D, Tang F J, Chen Q F, Xia L M, Guo C Y, Liu H, Zhao X P, Zhao D L, Huang L L, Li J G, Chen L H. Chem. Eng. J., 2023, 455: 139786.
[69]
Zhao B C, Yue X J, Tian Q, Qiu F X, Zhang T. Cellulose, 2022, 29(3): 1981.
[70]
Zhang H Y, Yu M, Du Y, Xu L, Ma D P, Wang Q. Mater. Chem. Phys., 2022, 285: 126069.
[71]
Rahimi Kord Sofla M, Brown R J, Tsuzuki T, Rainey T J. Adv. Nat. Sci.: Nanosci. Nanotechnol., 2016, 7(3): 035004.
[72]
Liu H Z, Geng B Y, Chen Y F, Wang H Y. ACS Sustainable Chem. Eng., 2017, 5(1): 49.
[73]
Lv P F, Lu X M, Wang L, Feng W. Adv. Funct. Mater., 2021, 31(45): 2104991.
[74]
Dufresne A. Mater. Today, 2013, 16(6): 220.
[75]
Sun H D, Chen Y W, Zeng W C, Tang F J, Bi Y H, Lu Q X, Mondal A K, Huang L L, Chen L H, Li J G. Carbohydr. Polym., 2023, 314: 120948.
[76]
Shanker R, Ravi Anusuyadevi P, Gamage S, Hallberg T, Kariis H, Banerjee D, Svagan A J, Jonsson M P. ACS Nano, 2022, 16(7): 10156.
[77]
Fernandes S N, Lopes L F, Godinho M H. Curr. Opin. Solid State Mater. Sci., 2019, 23(2): 63.
[78]
Zhu W K, Droguet B, Shen Q C, Zhang Y, Parton T G, Shan X W, Parker R M, De Volder M F L, Deng T, Vignolini S, Li T. Adv. Sci., 2022, 9(26): 2202061.
[79]
Cai C Y, Sun Y B, Chen Y, Wei Z C, Wang Y B, Chen F L, Cai W Q, Ji J W, Ji Y X, Fu Y. J. Bioresour. Bioprod., 2023, 8(4): 421.
[80]
Anusuyadevi P R, Singha S, Banerjee D, Jonsson M P, Hedenqvist M S, Svagan A J. Adv. Mater. Interfaces, 2023, 10(7): 2202112.
[81]
Cai C Y, Chen W B, Wei Z C, Ding C X, Sun B J, Gerhard C, Fu Y, Zhang K. Nano Energy, 2023, 114: 108625.
[82]
Geng A B, Han Y M, Cao J Y, Cai C Y. Int. J. Biol. Macromol., 2024, 264: 130676.
[83]
Chen Y, Sun Y B, Cheng F L, Ji Y X, Cai C Y, Fu Y. ACS Sustainable Chem. Eng., 2024, 12(29): 10680.
[84]
Jaiswal A K, Hokkanen A, Khakalo S, Mäkelä T, Savolainen A, Kumar V. ACS Appl. Mater. Interfaces, 2024, 16(12): 15262.
[85]
Liu R, Zhou Z G, Mo X W, Liu P, Hu B, Duan J J, Zhou J. ACS Appl. Mater. Interfaces, 2022, 14(41): 46972.
[86]
Vatanpour V, Pasaoglu M E, Barzegar H, Teber O O, Kaya R, Bastug M, Khataee A, Koyuncu I. Chemosphere, 2022, 295: 133914.
[87]
Wei W, Zhu Y, Li Q, Cheng Z F, Yao Y J, Zhao Q, Zhang P, Liu X P, Chen Z, Xu F, Gao Y F. Sol. Energy Mater. Sol. Cells, 2020, 211: 110525.
[88]
Xue T, Chen X, Wang C X, Yin Y J. Chem. Eng. J., 2024, 500: 156713.
[89]
Zeng Z W, Tang B, Zeng F R, Chen H, Chen S Q, Liu B W, Wang Y Z, Zhao H B. Adv. Funct. Mater., 2024, 34(39): 2403061.
[90]
Ma H C, Wang L, Dou S L, Zhao H P, Huang M, Xu Z W, Zhang X Y, Xu X D, Zhang A Q, Yue H Y, Ali G, Zhang C H, Zhou W Y, Li Y, Zhan Y H, Huang C. ACS Appl. Mater. Interfaces, 2021, 13(16): 19282.
[91]
Chen X, He M, Feng S J, Xu Z J, Peng H, Shi S N, Liu C H, Zhou Y M. Opt. Mater., 2021, 120: 111431.
[92]
Liu C H, Feng S J, He M, Chen X, Shi S N, Bu X H, Zhou Y M. Mater. Today Commun., 2022, 31: 103530.
[93]
Cai C Y, Chen F L, Wei Z C, Ding C X, Chen Y, Wang Y B, Fu Y. Chem. Eng. J., 2023, 476: 146668.
[94]
Zhang S, Jing W L, Chen Z, Zhang C Y, Wu D X, Gao Y F, Zhu H T. Renew. Energy, 2022, 194: 850.
[95]
Cai H R, Feng S J, Feng M X, He X, Liu C H, He M, Bu X H, Huang J, Zhou Y M. ACS Appl. Polym. Mater., 2023, 5(12): 10053.
[96]
Zhao B C, Yue X J, Tian Q, Qiu F X, Li Y Q, Zhang T. Cellulose, 2022, 29(14): 7775.
[97]
Shi S K, Lv P F, Valenzuela C, Li B X, Liu Y, Wang L, Feng W. Small, 2023, 19(39): 2301957.
[98]
Shi S K, Valenzuela C, Yang Y Z, Liu Y, Li B X, Wang L, Feng W. Chin. J. Chem., 2023, 41(20): 2611.
[99]
Wang Q, Zhong S L, Zheng Z H, Lei H, Li S Y, Yu W. Mater. Lett., 2023, 352: 135220.
[100]
Zhong S L, Gou Y C, Huang X W, Zheng Z H, Yu W, Li S Y, Lei H. Opt. Mater., 2023, 142: 114068.
[101]
Song J W, Chen C J, Zhu S Z, Zhu M W, Dai J Q, Ray U, Li Y J, Kuang Y D, Li Y F, Quispe N, Yao Y G, Gong A, Leiste U H, Bruck H A, Zhu J Y, Vellore A, Li H, Minus M L, Jia Z, Martini A, Li T, Hu L B. Nature, 2018, 554(7691): 224.
[102]
Chen Y P, Dang B K, Jin C D, Sun Q F. ACS Nano, 2019, 13(1): 371.
[103]
Belhadj B, Bederina M, Dheilly R M, Mboumba-Mamboundou L B, Quéneudec M. Energy Build., 2020, 225: 110348.
[104]
Tian Y P, Shao H, Liu X J, Chen F Q, Li Y S, Tang C Y, Zheng Y. ACS Appl. Mater. Interfaces, 2021, 13(19): 22521.
[105]
Zhang J Y, Cheng Y H, Xu C J, Gao M Y, Zhu M F, Jiang L. Adv. Funct. Mater., 2021, 31(19): 2009349.
[106]
Zhong S J, Yuan S X, Zhang X, Zhang J W, Xu L, Xu T Q, Zuo T, Cai Y, Yi L M. ACS Appl. Mater. Interfaces, 2023, 15(33): 39807.
[107]
Yue X J, Zhang T, Yang D Y, Qiu F X, Wei G Y, Zhou H. Nano Energy, 2019, 63: 103808.
[108]
Yang W Q, Xiao P, Li S, Deng F, Ni F, Zhang C, Gu J C, Yang J L, Kuo S W, Geng F X, Chen T. Small, 2023, 19(30): 2302509.
[109]
Feng S J, Zhou Y M, Chen X, Shi S N, Liu C H, Zhang T. J. Mater. Chem. A, 2021, 9(44): 25178.
[110]
Du L L, Zhou Z G, Li J J, Hu B, Wang C L, Zheng J H, Liu W, Li R H, Chen W X. Chem. Eng. J., 2023, 469: 143765.
[111]
Li J G, Tang F J, Bi Y H, Sun H D, Huang L L, Chen L H. Nano Energy, 2023, 117: 108921.
[112]
Zhong S J, Song L M, Ren W J, Liu W J, Yuan S X, Xu T Q, Xu L, Zhang J W, Cai Y, Yi L M. Chem. Eng. J., 2024, 489: 151482.
[113]
Zhang Y X, Wu D S, Liao S Q, Chen D S, Mensah A, Guo X, Lv P F, Wei Q F. Compos. Part A Appl. Sci. Manuf., 2023, 172: 107622.
[114]
Zhao B C, Li C Z, Chen Y F, Tian Q, Yurekli Y, Qiu F X, Zhang T. Cellulose, 2023, 30(8): 5171.
[115]
Lv T Z, Huang J P, Liu W, Zhang R. Case Stud. Therm. Eng., 2020, 18: 100596.
[116]
Chowdhury F I, Xu Q W, Sinha K, Wang X H. J. Quant. Spectrosc. Radiat. Transf., 2021, 272: 107824.
[117]
Li M X, Shi Z X, He S L, Hu Q, Cai P, Gan L, Huang J, Zhang Y Q. Carbohydr. Polym., 2023, 321: 121317.

Funding

Ningbo Key R&D Projects(2022Z101)
Ningbo Key R&D Projects(2023Z188)
Ningbo “3315 Innovative Team” Project
Scientific Research Foundation of NingboTech University(20200323Z0018)
PDF(4865 KB)

Accesses

Citation

Detail

Sections
Recommended

/