Application of Ionic Liquids in Lithium Metal Batteries

Ji Liu, Yaochun Yao, Shaoze Zhang, Keyu Zhang, Changjun Peng, Honglai Liu

Prog Chem ›› 2025, Vol. 37 ›› Issue (5) : 788-800.

PDF(6028 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(6028 KB)
Prog Chem ›› 2025, Vol. 37 ›› Issue (5) : 788-800. DOI: 10.7536/PC240614
Review

Application of Ionic Liquids in Lithium Metal Batteries

Author information +
History +

Abstract

Lithium metal batteries(LMBs)have emerged as a focal point for next-generation battery technology research due to their high energy density. However,the commercialization of lithium-metal batteries is hindered by a series of challenges,including lithium dendrite formation,volumetric expansion,and the rupture of the solid electrolyte interphase(SEI). Ionic liquids(ILs)are emerging as key candidate materials to address these issues due to their unique physical and chemical properties. Despite the significant potential of ionic liquids in lithium-metal batteries,several pressing issues,such as high costs and high viscosity,need to be addressed. Future research should focus on developing new low-cost,high-performance ionic liquids and further understanding their mechanisms in batteries. Additionally,combining advanced characterization techniques and theoretical calculations to explore the dynamic behavior and interfacial phenomena of ionic liquids in lithium metal batteries will help advance their practical applications. This review summarizes the safety issues involved in the research and development of lithium metal batteries,as well as the research progress of ionic liquids in their application as electrolytes and solid electrolytes in lithium metal batteries.

Contents

1 Introduction

2 The existing challenges confronting lithium metal batteries

2.1 Lithium dendrite

2.2 Rupture of SEI

2.3 Lithium anode volume expansion

3 Application of the ionic liquid in electrolytes of lithium metal batteries

3.1 Concept and classification

3.2 Ionic liquids in liquid-state electrolytes

3.3 Ionic liquids in pseudo-solid-state electrolytes

3.4 Ionic liquids in additives

3.5 Ionic liquids in lithium salts

4 Conclusion and outlook

Key words

lithium metal battery / lithium dendrite / electrolyte / solid-electrolyte interface

Cite this article

Download Citations
Ji Liu , Yaochun Yao , Shaoze Zhang , et al . Application of Ionic Liquids in Lithium Metal Batteries[J]. Progress in Chemistry. 2025, 37(5): 788-800 https://doi.org/10.7536/PC240614

References

[1]
Whittingham M S. Chem. Rev., 2004, 104(10): 4271.
[2]
Huang Y Y. Physics, 2007, 36(8): 643.
(黄彦瑜. 物理, 2007, 36(8): 643.).
[3]
Meng J W, Lei M, Lai C Z, Wu Q P, Liu Y Y, Li C L. Angew. Chem. Int. Ed., 2021, 60(43): 23256.
[4]
Zhang Q. Doctoral Dissertation of Shanghai Jiao Tong University, 2022.
(张强. 上海交通大学博士论文, 2022.).
[5]
Zhou B X, Stoševski I, Bonakdarpour A, Wilkinson D P. Adv. Funct. Mater., 2024, 34(7): 2311212.
[6]
Sun Y, Li J C, Xu S, Zhou H S, Guo S H. Adv. Mater., 2024, 36(14): 2311687.
[7]
Yang D, You D, Bingnan Deng, Wang Q, Ai W X, Zhicong Ni, Zeng Y J, Li X, Zhang Y Y. Ionics, 2023, 29(12): 5161.
[8]
Kim Y, Stepien D, Moon H, Schönherr K, Schumm B, Kuenzel M, Althues H, Bresser D, Passerini S. ACS Appl. Mater. Interfaces, 2023, 15(17): 20987.
[9]
Wan H L, Xu J J, Wang C S. Nat. Rev. Chem., 2024, 8(1): 30.
[10]
Zhao Q, Stalin S, Archer L A. Joule, 2021, 5(5): 1119.
[11]
Jagger B, Pasta M. Joule, 2023, 7(10): 2228.
[12]
Qin K Q, Holguin K, Mohammadiroudbari M, Huang J H, Kim E Y S, Hall R, Luo C. Adv. Funct. Mater., 2021, 31(15): 2009694.
[13]
Ding L Y, Chen Y M, Sheng Y L, Yue X Y, Liang Z. Angew. Chem. Int. Ed., 2024, 63(51): e202411933.
[14]
Bai P X, Ji X, Zhang J X, Zhang W R, Hou S, Su H, Li M J, Deng T, Cao L S, Liu S F, He X Z, Xu Y H, Wang C S. Angew. Chem. Int. Ed., 2022, 61(26): e202202731.
[15]
Shamsi S A, Danielson N D. J. Sep. Sci., 2007, 30(11): 1729.
[16]
Wasserscheid P, Waffenschmidt H. J. Mol. Catal. A Chem., 2000, 164(1/2): 61.
[17]
Jiang W Y, Yu W Z. Met. Mater. Metall. Eng., 2008, 36(4): 51.
(蒋伟燕, 余文轴. 金属材料与冶金工程, 2008, 36(4): 51.).
[18]
Amarasekara A S. Chem. Rev., 2016, 116(10): 6133.
[19]
Garcia B, Lavallée S, Perron G, Michot C, Armand M. Electrochim. Acta, 2004, 49(26): 4583.
[20]
Alvarado J, Schroeder M A, Pollard T P, Wang X F, Lee J Z, Zhang M H, Wynn T, Ding M, Borodin O, Meng Y S, Xu K. Energy Environ. Sci., 2019, 12(2): 780.
[21]
Zou Y G, Cao Z, Zhang J L, Wahyudi W, Wu Y Q, Liu G, Li Q, Cheng H R, Zhang D Y, Park G T, Cavallo L, Anthopoulos T D, Wang L M, Sun Y K, Ming J. Adv. Mater., 2021, 33(43): 2102964.
[22]
Li Y X, Ding F W, Shao Y Y, Wang H Y, Guo X L, Liu C, Sui X L, Sun G, Zhou J, Wang Z B. Angew. Chem. Int. Ed., 2024, 63(8): e202317148.
[23]
Liu X, Mariani A, Adenusi H, Passerini S. Angew. Chem. Int. Ed., 2023, 62(17): e202219318.
[24]
Wu F L, Kim G T, Diemant T, Kuenzel M, Schür A R, Gao X P, Qin B S, Alwast D, Jusys Z, Behm R J, Geiger D, Kaiser U, Passerini S. Adv. Energy Mater., 2020, 10(34): 2001830.
[25]
Meisner Q J, Rojas T, Glossmann T, Hintennach A, Liu Q, Cao J Y, Redfern P C, Ngo A T, Curtiss L A, Zhang Z C. J. Electrochem. Soc., 2020, 167(7): 070528.
[26]
Liu X, Mariani A, Diemant T, Di Pietro M E, Dong X, Kuenzel M, Mele A, Passerini S. Adv. Energy Mater., 2022, 12(25): 2200862.
[27]
Liu X, Mariani A, Diemant T, Di Pietro M E, Dong X, Mele A, Passerini S. Adv. Mater., 2024, 36(1): 2309062.
[28]
Campion C L, Li W T, Lucht B L. J. Electrochem. Soc., 2005, 152(12): A2327.
[29]
Yang H, Zhuang G V, Ross P N. J. Power Sources, 2006, 161(1): 573.
[30]
Kim J, Lee J G, Kim H S, Lee T J, Park H, Ryu J H, Oh S M. J. Electrochem. Soc., 2017, 164(12): A2418.
[31]
Zhou P, Xia Y C, Wu Y H, Hou W H, Lu Y, Yan S S, Zhou H Y, Zhang W L, Liu K. ACS Appl. Mater. Interfaces, 2022, 14(34): 38921.
[32]
Liu Q, Jiang W, Yang Z Z, Zhang Z C. ACS Appl. Mater. Interfaces, 2021, 13(48): 58229.
[33]
Philippi F, Rauber D, Eliasen K L, Bouscharain N, Niss K, Kay C W M, Welton T. Chem. Sci., 2022, 13(9): 2735.
[34]
Rauber D, Hofmann A, Philippi F, Kay C W M, Zinkevich T, Hanemann T, Hempelmann R. Appl. Sci., 2021, 11(12): 5679.
[35]
Shimizu M, Yamaguchi K, Usui H, Ieuji N, Yamashita T, Komura T, Domi Y, Nokami T, Itoh T, Sakaguchi H. J. Electrochem. Soc., 2020, 167(7): 070516.
[36]
Warrington A, Hasanpoor M, Balkis A, Howlett P C, Hutt O E, Forsyth M, Pringle J M. Energy Storage Mater., 2023, 63: 102984.
[37]
Warrington A, Kang C S M, Forsyth C, Doherty C M, Acharya D, O’dell L A, Sirigiri N, Boyle J W, Hutt O E, Forsyth M, Pringle J M. Mater. Chem. Front., 2022, 6(11): 1437.
[38]
Warrington A, O’Dell L A, Hutt O E, Forsyth M, Pringle J M. Energy Adv., 2023, 2(4): 530.
[39]
Liu Q, Dzwiniel T L, Pupek K Z, Zhang Z C. J. Electrochem. Soc., 2019, 166(16): A3959.
[40]
Yoon H, Howlett P C, Best A S, Forsyth M, MacFarlane D R. J. Electrochem. Soc., 2013, 160(10): A1629.
[41]
Liu C Y, Ma X D, Xu F, Zheng L P, Zhang H, Feng W F, Huang X J, Armand M, Nie J, Chen H L, Zhou Z B. Electrochim. Acta, 2014, 149: 370.
[42]
Arano K, Begic S, Chen F F, Rakov D, Mazouzi D, Gautier N, Kerr R, Lestriez B, Le Bideau J, Howlett P C, Guyomard D, Forsyth M, Dupre N. ACS Appl. Mater. Interfaces, 2021, 13(24): 28281.
[43]
Liu X, Mariani A, Zarrabeitia M, Di Pietro M E, Dong X, Elia G A, Mele A, Passerini S. Energy Storage Mater., 2022, 44: 370.
[44]
Varzi A, Raccichini R, Passerini S, Scrosati B. J. Mater. Chem. A, 2016, 4(44): 17251.
[45]
Armand M. Solid State Ion., 1994, 69(3/4): 309.
[46]
Luo C W, Yi M, Cao Z J, Hui W, Wang Y A. ACS Appl. Electron. Mater., 2024, 6(2): 641.
[47]
Chen M H, Yue Z Y, Wu Y X, Wang Y, Li Y, Chen Z. Sustain. Mater. Technol., 2023, 36: e00587.
[48]
Park K H, Bai Q, Kim D H, Oh D Y, Zhu Y Z, Mo Y F, Jung Y S. Adv. Energy Mater., 2018, 8(18): 1800035.
[49]
Chen R J, Qu W J, Guo X, Li L, Wu F. Mater. Horiz., 2016, 3(6): 487.
[50]
Lim Y J, Kim H W, Lee S S, Kim H J, Kim J K, Jung Y G, Kim Y. ChemPlusChem, 2015, 80(7): 1100.
[51]
Park J, Jin H, Yeon S, Kim H W, Ko M. Energy Technol., 2023, 11(2): 2201153.
[52]
Jung Y S, Oh D Y, Nam Y J, Park K H. Isr. J. Chem., 2015, 55(5): 472.
[53]
Yu S, Schmidt R D, Garcia-Mendez R, Herbert E, Dudney N J, Wolfenstine J B, Sakamoto J, Siegel D J. Chem. Mater., 2016, 28(1): 197.
[54]
Han X G, Gong Y H, Fu K, He X F, Hitz G T, Dai J Q, Pearse A, Liu B Y, Wang H, Rubloff G, Mo Y F, Thangadurai V, Wachsman E D, Hu L B. Nat. Mater., 2017, 16(5): 572.
[55]
Wu Y X, Li Y, Wang Y, Liu Q, Chen Q G, Chen M H. J. Energy Chem., 2022, 64: 62.
[56]
Jeon H, Kim D. J. Membr. Sci., 2021, 624: 119029.
[57]
Widstrom M D, Ludwig K B, Matthews J E, Jarry A, Erdi M, Cresce A V, Rubloff G, Kofinas P. Electrochim. Acta, 2020, 345: 136156.
[58]
Liu Z, Borodin A, Endres F. Energy Technol., 2022, 10(2): 2100907.
[59]
Tang J Q, Zhai B B, Liu J F, Ren W H, Han Y, Yang H, Chen Y S, Zhao C, Fang Y. Phys. Chem. Chem. Phys., 2021, 23(11): 6775.
[60]
Gu Y, Yan H, Wang W W, Zhang X G, Yan J W, Mao B W. Nano Lett., 2023, 23(21): 9872.
[61]
Gu Y, Chen H N, Wang W W, Yan H, Yan J W, Mao B W. ChemElectroChem, 2024, 11(4): e202300684.
[62]
Dong M Y, Zhang K Y, Wan X Y, Wang S L, Fan S K, Ye Z Z, Wang Y Q, Yan Y G, Peng X S. Small, 2022, 18(14): 2108026.
[63]
Chen N, Zhang H Q, Li L, Chen R J, Guo S J. Adv. Energy Mater., 2018, 8(12): 1702675.
[64]
Hu H, Li J, Ji X. Chem.-Eur. J., 2023, 30(5): e202302826.
[65]
Liu L W, Xue J Y, Liu Y, Lu S W, Weng S X, Wang Z C, Zhang F R, Fu D S, Xu J J, Wu X D. ACS Appl. Mater. Interfaces, 2024, 16(7): 8895.
[66]
Sha Y F, Yu T H, Dong T, Wu X L, Tao H Y, Zhang H T. ACS Appl. Energy Mater., 2021, 4(12): 14755.
[67]
Fong K D, Wang T S, Kim H K, Kumar R V, Smoukov S K. ACS Energy Lett., 2017, 2(9): 2014.
[68]
Li Y H, Sun Z J, Shi L, Lu S Y, Sun Z H, Shi Y C, Wu H, Zhang Y F, Ding S J. Chem. Eng. J., 2019, 375: 121925.
[69]
Li X W, Zheng Y W, Li C Y. Energy Storage Mater., 2020, 29: 273.
[70]
Zhu C J, Ning Y, Jiang Y Z, Li G J, Pan Q W. Polymers, 2022, 14(17): 3435.
[71]
Ma J Y, Ma X Y, Zhang H P, Chen F, Guan X H, Niu J P, Hu X P. J. Membr. Sci., 2022, 659: 120811.
[72]
Bao W, Hu Z Y, Wang Y Y, Jiang J H, Huo S K, Fan W Z, Chen W J, Jing X, Long X Y, Zhang Y F. Chem. Eng. J., 2022, 437: 135420.
[73]
Li S, Luo Z, Li L, Hu J G, Zou G Q, Hou H S, Ji X B. Energy Storage Mater., 2020, 32: 306.
[74]
Li S. Masteral Dissertation of Central South University, 2024.
(李硕. 中南大学硕士论文, 2024.).
[75]
Feng J W, Hu S G, Han B, Xiao Y L, Deng Y H, Wang Z Y. Energy Storage Sci. Technol., 2020, 9(6): 1629.
(冯建文, 胡时光, 韩兵, 肖映林, 邓永红, 王朝阳. 储能科学与技术, 2020, 9(6): 1629.).
[76]
Kim S, Lee T K, Kwak S K, Choi N S. ACS Energy Lett., 2022, 7(1): 67.
[77]
Lu Y Y, Tu Z Y, Archer L A. Nat. Mater., 2014, 13(10): 961.
[78]
Yang Q F, Hu J L, Meng J W, Li C L. Energy Environ. Sci., 2021, 14(6): 3621.
[79]
Sun H H, Liu J D, He J, Wang H P, Jiang G X, Qi S H, Ma J M. Sci. Bull., 2022, 67(7): 725.
[80]
Wang W, Ma W, Yang Q L, Lin Z K, Tang J, Wang M H, He Y, Fan C, Sun K N. Ind. Eng. Chem. Res., 2022, 61(30): 10883.
[81]
Huang J Q, Zhang H T, Yuan X D, Sha Y F, Li J, Dong T, Song Y T, Zhang S J. Chem. Eng. J., 2023, 464: 142578.
[82]
Ding F, Xu W, Graff G L, Zhang J, Sushko M L, Chen X L, Shao Y Y, Engelhard M H, Nie Z M, Xiao J, Liu X J, Sushko P V, Liu J, Zhang J G. J. Am. Chem. Soc., 2013, 135(11): 4450.
[83]
Gao T, Qian Z W, Chen H B, Shahbazian-Yassar R, Nakamura I. Mol. Syst. Des. Eng., 2022, 7(3): 260.
[84]
Zhang S J, Cheng B, Fang Y X, Dang D, Shen X, Li Z Q, Wu M, Hong Y, Liu Q B. Chin. Chem. Lett., 2022, 33(8): 3951.
[85]
Kim K, Park J, Jeong G, Yu J S, Kim Y C, Park M S, Cho W, Kanno R. ChemSusChem, 2019, 12(12): 2637.
[86]
Zhou X, Jiang H, Zheng H, Sun Y, Liang X, Xiang H F. J. Membr. Sci., 2020, 603: 117820.
[87]
Tsurumaki A, Rettaroli R, Mazzapioda L, Navarra M A. Appl. Sci., 2022, 12(14): 7318.
[88]
Zeng L C. Doctoral Dissertation of University of Science and Technology of China, 2017.
(曾林超. 中国科学技术大学博士论文, 2017.).
[89]
Budi A, Basile A, Opletal G, Hollenkamp A F, Best A S, Rees R J, Bhatt A I, O’Mullane A P, Russo S P. J. Phys. Chem. C, 2012, 116(37): 19789.
[90]
Ahmed F, Fang C, Li D F, Zhao Y Z, Liu G. ACS Appl. Energy Mater., 2023, 6(13): 7212.
[91]
Howlett P C, Brack N, Hollenkamp A F, Forsyth M, MacFarlane D R. J. Electrochem. Soc., 2006, 153(3): A595.
[92]
Winter M. Z. Phys. Chemie-Int. J. Res. Phys. Chem. Chem. Phys., 2009, 223(10/11): 1395.
[93]
Preibisch Y, Peschel C, Dohmann J F, Winter M, Nowak S. J. Electrochem. Soc., 2021, 168(2): 026501.

Funding

National Natural Science Foundation of China(22108111)
National Natural Science Foundation of China(52064031)
National Natural Science Foundation of China(52104302)
Natural Science Foundation of Yunnan Province(202202AB080013)
Natural Science Foundation of Yunnan Province(202101BE070001-020)
Natural Science Foundation of Yunnan Province(202201AT070098)
Natural Science Foundation of Yunnan Province(202201AU070158)
Xingdian Talent Support Project(YNQR-QNRC-2020-081)
China Undergraduate Innovation and Entrepreneurship Training Program(202210674025)
China Undergraduate Innovation and Entrepreneurship Training Program(202410674078)
Yunnan Provincce Undergraduate Innovation and Entrepreneurship Training Program(S202310674135)
Kunming University of Science and Technology Analysis and Testing Funding(2023M20222202134)
PDF(6028 KB)

Accesses

Citation

Detail

Sections
Recommended

/