2D Perovskites Based on Halogen-Substituted Spacer Cations in Solar Cells

Chaoyang Wu, Chao Wang, Feifan Chen, Xinhe Dong, Haiying Zheng

Prog Chem ›› 2025, Vol. 37 ›› Issue (4) : 575-592.

PDF(16627 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(16627 KB)
Prog Chem ›› 2025, Vol. 37 ›› Issue (4) : 575-592. DOI: 10.7536/PC240618
Review

2D Perovskites Based on Halogen-Substituted Spacer Cations in Solar Cells

Author information +
History +

Abstract

Two-dimensional (2D) perovskite materials have been receiving considerable attention owing to their high stability. Despite this,there is still significant potential for improving their power conversion efficiency. Designing effective spacer cations is one of the crucial methods to improve the photoelectric performance of 2D perovskite solar cells. Among the various strategies,halogen substitution has emerged as a particularly effective approach,which can fine-tune the stability and optical properties of the perovskite crystal structure,leading to notable improvements in photoelectric conversion efficiency as well as long-term stability. In recent years,there has been significant and notable progress of two-dimensional (2D) perovskites based on various halogen-substituted spacer cations in the preparation of high-performance perovskite solar cells. This paper initially provides a comprehensive overview of the development status of 2D perovskite materials and devices that employ different spacer cations. Following this,the focus shifts to an in-depth review of the advancements made in the fabrication of 2D perovskite solar cells (PSCs) and the surface modification of three-dimensional (3D) perovskites,specifically emphasizing the role of spacer cations that have been singly or multiply substituted with halogens such as fluorine,chlorine,and bromine. Finally,we present a concise discussion on the current challenges faced in this field and offer insights into the potential future directions for further research and development.

Contents

1 Introduction

2 2D perovskite materials and devices with different spacer cations

3 Characteristics of halogen-substituted spacer cation-based 2D perovskites and their applications in photovoltaic devices

3.1 Research on halogen-substituted spacer cation-based 2D perovskites and photovoltaic devices

3.2 Research on halogen-substituted 2D perovskite surface modification of 3D perovskites

4 Conclusion and future perspectives on halogen-substituted 2D perovskites

Key words

perovskite solar cells / 2D perovskite materials / spacer cations / halogen substitution / stability

Cite this article

Download Citations
Chaoyang Wu , Chao Wang , Feifan Chen , et al . 2D Perovskites Based on Halogen-Substituted Spacer Cations in Solar Cells[J]. Progress in Chemistry. 2025, 37(4): 575-592 https://doi.org/10.7536/PC240618

References

[1]
de Quilettes D W, Frohna K, Emin D, Kirchartz T, Bulovic V, Ginger D S, Stranks S D. Chem. Rev., 2019, 119(20): 11007.
[2]
Guo J H, Wang B Z, Lu D, Wang T, Liu T T, Wang R, Dong X Y, Zhou T, Zheng N, Fu Q, Xie Z Q, Wan X J, Xing G C, Chen Y S, Liu Y S. Adv. Mater., 2023, 35(28): 2212126.
[3]
Shrestha S, Li X X, Tsai H, Hou C H, Huang H H, Ghosh D, Shyue J J, Wang L, Tretiak S, Ma X D, Nie W Y. Chem, 2022, 8(4): 1107.
[4]
Lim J, Hörantner M T, Sakai N, Ball J M, Mahesh S, Noel N K, Lin Y H, Patel J B, McMeekin D P, Johnston M B, Wenger B, Snaith H J. Energy Environ. Sci., 2019, 12(1): 169.
[5]
Gao C, Zhang H T, Qiao F Y, Huang H P, Zhang D Z, Ding D, Du D X, Liang J J, Bao J H, Liu H, Shen W Z. Nano Energy, 2023, 116: 108765.
[6]
Zhu W G, Xin G Q, Wang Y P, Min X, Yao T K, Xu W Q, Fang M H, Shi S F, Shi J, Lian J. J. Mater. Chem. A, 2018, 6(6): 2577.
[7]
Zhang W C, Sun Z H, Zhang J, Han S G, Ji C M, Li L N, Hong M C, Luo J H. J. Mater. Chem. C, 2017, 5(38): 9967.
[8]
Wang A F, Guo Y Y, Zhou Z B, Niu X H, Wang Y G, Muhammad F, Li H B, Zhang T, Wang J L, Nie S M, Deng Z T. Chem. Sci., 2019, 10(17): 4573.
[9]
Braly I L, de Quilettes D W, Pazos-Outón L M, Burke S, Ziffer M E, Ginger D S, Hillhouse H W. Nat. Photonics, 2018, 12(6): 355.
[10]
Chen C, Xuan T T, Bai W H, Zhou T L, Huang F, Xie A, Wang L, Xie R J. Nano Energy, 2021, 85: 106033.
[11]
Tang S L, Gao H, Peng Y, Li M G, Chen R F, Huang W. Prog., 2022, 34(8): 1706. (in Chinese)
(唐森林, 高欢, 彭颖, 李明光, 陈润锋, 黄维. 化学进展, 2022, 34(8): 1706.).
[12]
Yang Y, Luo Y, Ma S P, Zhu C T, Zhu L,Guo X Y. Prog. Chem., 2021, 33(2): 281. (in Chinese)
(杨英, 罗媛, 马书鹏, 朱从潭, 朱刘, 郭学益. 化学进展, 2021, 33(2): 281.).
[13]
Zhou Y, Liu X P, Zhang X F, Han M Y, Chen J L, Liang Y P, Li B T, Ding Y, Cai M L,Dai S Y. Prog. Chem., 2024, 36(5): 613. (in Chinese)
(周颖, 刘雪朋, 张先付, 韩明远, 陈建林, 梁永鹏, 李博桐, 丁勇, 蔡墨朗, 戴松元. 化学进展, 2024, 36(5): 613.).
[14]
Kojima A, Teshima K, Shirai Y, Miyasaka T. J. Am. Chem. Soc., 2009, 131(17): 6050.
[15]
Chen H, Liu C, Xu J, Maxwell A, Zhou W, Yang Y, Zhou Q L, Bati A S R, Wan H Y, Wang Z W, Zeng L W, Wang J K, Serles P, Liu Y, Teale S, Liu Y J, Saidaminov M I, Li M Z, Rolston N, Hoogland S, Filleter T, Kanatzidis M G, Chen B, Ning Z J, Sargent E H. Science, 2024, 384(6692): 189.
[16]
Aftab S, Saeed M A, Hussain S, Kabir F, Aslam M, Rajpar A H, Al-Sehemi A G. Sol. RRL, 2024, 8(2): 2300803.
[17]
Zhang Z, Liu J Q, Bi H, Wang L, Shen Q, Hayase S. Chem. Eng. J., 2024, 483: 149345.
[18]
Wang Y J, Yang T H, Cai W L, Mao P, Yang Y, Wu N, Liu C, Wang S Q, Du Y C, Huang W L, Zhao G T, Ding Z C, Yuan N Y, Ding J N, Zhong Y F, Liu S F, Zhao K. Adv. Mater., 2024, 36(23): 2312014.
[19]
Wu G B, Liang R, Ge M Z, Sun G X, Zhang Y, Xing G C. Adv. Mater., 2022, 34(8): 2105635.
[20]
Artuk K, Turkay D, Mensi M D, Steele J A, Jacobs D A, Othman M, Yu Chin X, Moon S J, Tiwari A N, Hessler-Wyser A, Jeangros Q, Ballif C, Wolff C M. Adv. Mater., 2024, 36(21): 2311745.
[21]
Xu T F, Xiang W C, Ru X N, Wang Z Z, Liu Y L, Li N, Xu H J, Liu S Z. Adv. Mater., 2024, 36(23): 2312237.
[22]
Wang L, Zhou Q, Huang Y Q, Zhang B,Feng Y Q. Prog. Chem., 2020, 32(1): 119. (in Chinese)
(王蕾, 周勤, 黄禹琼, 张宝, 冯亚青. 化学进展, 2020, 32(1): 119.).
[23]
Tang X H, Zhang T J, Chen W J, Chen H Y, Zhang Z C, Chen X N, Gu H, Kang S Q, Han C S, Xu T T, Cao J L, Zheng J L, Ou X M, Li Y W, Li Y F. Adv. Mater., 2024, 36(25): 2400218.
[24]
Wang T, Wan Z, Min X, Chen R, Li Y K, Yang J B, Pu X Y, Chen H, He X L, Cao Q, Feng G P, Chen X Y, Ma Z Y, Jiang L, Liu Z H, Li Z, Chen W, Li X H. Adv. Energy Mater., 2024, 14(5): 2302552.
[25]
Wang T, Yang J B, Cao Q, Pu X Y, Li Y K, Chen H, Zhao J S, Zhang Y X, Chen X Y, Li X H. Nat. Commun., 2023, 14: 1342.
[26]
Xia C G, Lv H J, Liu Y F, Zhang Z L. ACS Appl. Mater. Interfaces, 2024, 16(10): 12446.
[27]
Zheng H Y, Liu G Z, Zhu L Z, Ye J J, Zhang X H, Alsaedi A, Hayat T, Pan X, Dai S Y. Adv. Energy Mater., 2018, 8(21): 1800051.
[28]
Zhou T, Li Q H, Zhou L. Adv. Energy Mater., 2024, 14(22): 2400050.
[29]
Dai S Y, Pan X, Zheng H Y, Ye J J, Ma S, Tan Z, Yao J X, Zhang B.EP 3263575, 2019.
[30]
Dai S Y, Pan X, Zheng H Y, Ye J J, Yao J X, Zhang B, Chen H B, Ren Y K.CN 106098943, 2016.
(戴松元, 潘旭, 郑海英, 叶加久, 姚建曦, 张兵, 陈海彬, 任英科.CN 106098943, 2016.).
[31]
Fu W F, Liu H B, Shi X L, Zuo L J, Li X S, Jen A K. Adv. Funct. Mater., 2019, 29(25): 1900221.
[32]
Liu C, Yang Y, Chen H, Spanopoulos I, Bati A S R, Gilley I W, Chen J H, Maxwell A, Vishal B, Reynolds R P, Wiggins T E, Wang Z W, Huang C Y, Fletcher J, Liu Y, Chen L X, De Wolf S, Chen B, Zheng D, Marks T J, Facchetti A, Sargent E H, Kanatzidis M G. Nature, 2024, 633(8029): 359.
[33]
Soe C M M, Nagabhushana G P, Shivaramaiah R, Tsai H, Nie W Y, Blancon J C, Melkonyan F, Cao D H, Traoré B, Pedesseau L, Kepenekian M, Katan C, Even J, Marks T J, Navrotsky A, Mohite A D, Stoumpos C C, Kanatzidis M G. Proc. Natl. Acad. Sci. U. S. A., 2019, 116(1): 58.
[34]
Stoumpos C C, Cao D H, Clark D J, Young J, Rondinelli J M, Jang J I, Hupp J T, Kanatzidis M G. Chem. Mater., 2016, 28(8): 2852.
[35]
Forlano K M, Roy C R, Mihalyi-Koch W, Hossain T, Sanders K, Guzei I, Graham K R, Wright J C, Jin S. ACS Materials Lett., 2023, 5(11): 2913.
[36]
Zhao R Y, Sabatini R P, Zhu T, Wang S S, Morteza Najjarian A, Johnston A, Lough A J, Hoogland S, Sargent E H, Seferos D S. J. Am. Chem. Soc., 2021, 143(47): 19901.
[37]
Li X T, Ke W J, Traoré B, Guo P J, Hadar I, Kepenekian M, Even J, Katan C, Stoumpos C C, Schaller R D, Kanatzidis M G. J. Am. Chem. Soc., 2019, 141(32): 12880.
[38]
Soe C M M, Stoumpos C C, Kepenekian M, Traoré B, Tsai H, Nie W Y, Wang B H, Katan C, Seshadri R, Mohite A D, Even J, Marks T J, Kanatzidis M G. J. Am. Chem. Soc., 2017, 139(45): 16297.
[39]
Dai H L, You S H, Ye H, Zhu T T, Luo J H. Small, 2023, 19(46): 2304332.
[40]
Cao D H, Stoumpos C C, Farha O K, Hupp J T, Kanatzidis M G. J. Am. Chem. Soc., 2015, 137(24): 7843.
[41]
Spanopoulos I, Hadar I, Ke W J, Tu Q, Chen M, Tsai H, He Y H, Shekhawat G, Dravid V P, Wasielewski M R, Mohite A D, Stoumpos C C, Kanatzidis M G. J. Am. Chem. Soc., 2019, 141(13): 5518.
[42]
Wang L P, Yan Z, Qiu J H, Wu J B, Zhen C, Tai K P, Jiang X, Yang S H. Nano Energy, 2021, 90: 106537.
[43]
Duong T, Pham H, Yin Y T, Peng J, Mahmud M A, Wu Y L, Shen H P, Zheng J H, Tran-Phu T, Lu T, Li L, Kumar A, Andersson G G, Ho-Baillie A, Liu Y, White T, Weber K, Catchpole K. J. Mater. Chem. A, 2021, 9(34): 18454.
[44]
Zhang X Q, Wu G, Fu W F, Qin M C, Yang W T, Yan J L, Zhang Z Q, Lu X H, Chen H Z. Adv. Energy Mater., 2018, 8(14): 1702498.
[45]
Fu W F, Wang J, Zuo L J, Gao K, Liu F, Ginger D S, Jen A K. ACS Energy Lett., 2018, 3(9): 2086.
[46]
Qing J, Ramesh S, Xu Q, Liu X-K, Wang H Y, Yuan Z C, Chen Z, Hou L T, Sum T C, Gao F. Adv. Mater., 2021, 33(49): 2104381.
[47]
Lin D X, Xu X, Zhang T K, Pang N N, Wang J M, Li H Y, Shi T T, Chen K, Zhou Y, Wang X, Xu J B, Liu P Y, Xie W G. Nano Energy, 2021, 84: 105893.
[48]
Li Y, Milić J V, Ummadisingu A, Seo J Y, Im J H, Kim H S, Liu Y H, Dar M I, Zakeeruddin S M, Wang P, Hagfeldt A, Grätzel M. Nano Lett., 2019, 19(1): 150.
[49]
Lu D, Lv G W, Xu Z Y, Dong Y X, Ji X F, Liu Y S. J. Am. Chem. Soc., 2020, 142(25): 11114.
[50]
Qin Y, Zhong H J, Intemann J J, Leng S F, Cui M H, Qin C C, Xiong M, Liu F, Jen A K, Yao K. Adv. Energy Mater., 2020, 10(16): 1904050.
[51]
Dong Y X, Lu D, Xu Z Y, Lai H T, Liu Y S. Adv. Energy Mater., 2020, 10(28): 2000694.
[52]
Li Y R, Cheng H L, Zhao K, Wang Z S. ACS Appl. Mater. Interfaces, 2019, 11(41): 37804.
[53]
Xu J M, Chen J B, Chen S, Gao H, Li Y R, Jiang Z Y, Zhang Y, Wang X Z, Zhu X J, Xu B M. Chem. Eng. J., 2023, 453: 139790.
[54]
Straus D B, Iotov N, Gau M R, Zhao Q H, Carroll P J, Kagan C R. J. Phys. Chem. Lett., 2019, 10(6): 1198.
[55]
Pan H, Zhao X J, Gong X, Shen Y, Wang M K. J. Phys. Chem. Lett., 2019, 10(8): 1813.
[56]
Shi J S, Gao Y R, Gao X, Zhang Y, Zhang J J, Jing X, Shao M. Adv. Mater., 2019, 31(37): 1901673.
[57]
Long C Y, Huang K Q, Chang J H, Zuo C T, Gao Y J, Luo X, Liu B, Xie H P, Chen Z H, He J, Huang H, Gao Y L, Ding L M, Yang J L. Small, 2021, 17(32): 2102368.
[58]
Liu G Z, Zheng H Y, Xu X X, Xu S D, Zhang X X, Pan X, Dai S Y. Adv. Funct. Mater., 2019, 29(47): 1807565.
[59]
Jiang J, Chu Z M, Yin Z G, Li J Z, Yang Y G, Chen J R, Wu J L, You J B, Zhang X W. Adv. Mater., 2022, 34(36): 2204460.
[60]
Park I H, Chu L Q, Leng K, Choy Y F, Liu W, Abdelwahab I, Zhu Z Y, Ma Z R, Chen W, Xu Q-H, Eda G, Loh K P. Adv. Funct. Mater., 2019, 29(39): 1904810.
[61]
Zhang F, Kim D H, Lu H P, Park J S, Larson B W, Hu J, Gao L G, Xiao C X, Reid O G, Chen X H, Zhao Q, Ndione P F, Berry J J, You W, Walsh A, Beard M C, Zhu K. J. Am. Chem. Soc., 2019, 141(14): 5972.
[62]
Li Q H, Dong Y X, Lv G W, Liu T T, Lu D, Zheng N, Dong X Y, Xu Z Y, Xie Z Q, Liu Y S. ACS Energy Lett., 2021, 6(6): 2072.
[63]
Yang R, Li R Z, Cao Y, Wei Y Q, Miao Y F, Tan W L, Jiao X C, Chen H, Zhang L D, Chen Q, Zhang H T, Zou W, Wang Y M, Yang M, Yi C, Wang N N, Gao F, McNeill C R, Qin T S, Wang J P, Huang W. Adv. Mater., 2018, 30(51): 1804771.
[64]
Smith I C, Hoke E T, Solis-Ibarra D, McGehee M D, Karunadasa H I. Angew. Chem. Int. Ed., 2014, 53(42): 11232.
[65]
Hu J, Oswald I W H, Stuard S J, Nahid M M, Zhou N H, Williams O F, Guo Z K, Yan L, Hu H M, Chen Z, Xiao X, Lin Y, Yang Z B, Huang J S, Moran A M, Ade H, Neilson J R, You W. Nat. Commun., 2019, 10: 1276.
[66]
Wang Z, Wei Q, Liu X D, Liu L, Tang X Y, Guo J, Ren S Q, Xing G C, Zhao D W, Zheng Y H. Adv. Funct. Mater., 2021, 31(5): 2008404.
[67]
Wei Y, Chen B Q, Zhang F, Tian Y Y, Yang X C, Cai B, Zhao J J. Sol. RRL, 2021, 5(4): 2000661.
[68]
Shao M, Bie T, Yang L P, Gao Y R, Jin X, He F, Zheng N, Yu Y, Zhang X L. Adv. Mater., 2022, 34(1): 2107211.
[69]
Zhang Y X, Chen M Q, He T F, Chen H B, Zhang Z, Wang H B, Lu H L, Ling Q, Hu Z Y, Liu Y S, Chen Y S, Long G K. Adv. Mater., 2023, 35(17): 2210836.
[70]
Liang J H, Zhang Z F, Zheng Y T, Wu X Y, Wang J L, Zhou Z, Yang Y J, Huang Y, Chen Z H, Chen C C. J. Mater. Chem. A, 2021, 9(19): 11741.
[71]
Yan G J, Sui G M, Chen W T, Su K, Feng Y Q, Zhang B. Chem. Mater., 2022, 34(7): 3346.
[72]
Lai X, Li W H, Gu X Y, Chen H, Zhang Y N, Li G Q, Zhang R, Fan D Y, He F, Zheng N, Yu J H, Chen R, Kyaw A K K, Sun X W. Chem. Eng. J., 2022, 427: 130949.
[73]
Wang Z, Liu X D, Ren H, Liu L, Tang X Y, Yao X H, Su Z H, Gao X Y, Wei Q, Xie H J, Zheng Y H, Li M J. ACS Appl. Mater. Interfaces, 2022, 14(6): 7917.
[74]
Shi C, Li Z Z, Kang K Y, Zhou X F, Wang H X, Yao H H, Zhang H, Wang Q, Jin Z W. Sol. RRL, 2022, 6(10): 2200694.
[75]
Lehner L E, Demchyshyn S, Frank K, Minenkov A, Kubicki D J, Sun H, Hailegnaw B, Putz C, Mayr F, Cobet M, Hesser G, Schöfberger W, Sariciftci N S, Scharber M C, Nickel B, Kaltenbrunner M. Adv. Mater., 2023, 35(5): 2208061.
[76]
Wang D, Chen S C, Zheng Q D. J. Mater. Chem. A, 2021, 9(19): 11778.
[77]
Lv G W, Li L, Lu D, Xu Z Y, Dong Y X, Li Q H, Chang Z T, Yin W J, Liu Y S. Nano Lett., 2021, 21(13): 5788.
[78]
Tan S Q, Zhou N, Chen Y H, Li L, Liu G L, Liu P F, Zhu C, Lu J Z, Sun W T, Chen Q, Zhou H P. Adv. Energy Mater., 2019, 9(5): 1803024.
[79]
Chen M Q, Dong X Y, Xin Y F, Gao Y P, Fu Q, Wang R, Xu Z Y, Chen Y, Liu Y S. Angew. Chem. Int. Ed., 2024, 63(3): e202315943.
[80]
Zhang H, Wang R, Yang L, Hu Z Y, Liu H, Liu Y S. Angew. Chem. Int. Ed., 2024, 63(7): e202318206.
[81]
Li X C, Hu W P, Shang Y B, Yu X, Wang X, Zhou W R, Wang M T, Luo Q, Ma C Q, Lu Y L, Yang S F. J. Energy Chem., 2022, 66: 680.
[82]
Liu G Z, Xu X X, Xu S D, Zhang L Y, Xu H F, Zhu L Z, Zhang X X, Zheng H Y, Pan X. J. Mater. Chem. A, 2020, 8(12): 5900.
[83]
Cheng G Q, Wang J, Yang R, Li C, Zhang H, Wang N N, Li R Z, Wang J P, Huang W. J. Energy Chem., 2022, 66: 205.
[84]
Yan N, Gao Y, Yang J J, Fang Z M, Feng J S, Wu X J, Chen T, Liu S F. Angew. Chem. Int. Ed., 2023, 62(11): e202216668.
[85]
Lee H B, Kumar N, Tyagi B, Ko K J, Kang J W. Sol. RRL, 2021, 5(3): 2000589.
[86]
Li C H, Pan Y M, Hu J L, Qiu S D, Zhang C L, Yang Y Z, Chen S, Liu X H, Brabec C J, Nazeeruddin M K, Mai Y H, Guo F. ACS Energy Lett., 2020, 5(5): 1386.
[87]
Jiang X Q, Zhang J F, Liu Y, Wang Z Y, Liu X, Guo X, Li C. Nano Energy, 2021, 90: 106521.
[88]
Xiong Y, Li M, Peng L P, Thant A A, Wang N N, Zhu Y Q, Xu L. ACS Appl. Mater. Interfaces, 2023, 15(12): 15420.
[89]
Mohammed M K A, Shalan A E, Dehghanipour M, Mohseni H R. Chem. Eng. J., 2022, 428: 131185.
[90]
Kareem H S, Elewi M H, Naji A M, Ahmed D S, Mohammed M K A. Chem. Eng. J., 2022, 443: 136469.
[91]
Xu H F, Sun Y H, Zheng H Y, Liu G Z, Xu X X, Xu S D, Zhang L Y, Chen X J, Pan X. J. Mater. Chem. C, 2019, 7(48): 15276.
[92]
Liu Y H, Akin S, Pan L F, Uchida R, Arora N, Milić J V, Hinderhofer A, Schreiber F, Uhl A R, Zakeeruddin S M, Hagfeldt A, Dar M I, Grätzel M. Sci. Adv., 2019, 5(6): eaaw2543.
[93]
Chen X Y, Xia Y K, Huang Q Y, Li Z, Mei A Y, Hu Y, Wang T, Cheacharoen R, Rong Y G, Han H W. Adv. Energy Mater., 2021, 11(18): 2100292.
[94]
Ye J Y, Tong J H, Hu J, Xiao C X, Lu H P, Dunfield S P, Kim D H, Chen X H, Larson B W, Hao J, Wang K, Zhao Q, Chen Z, Hu H M, You W, Berry J J, Zhang F, Zhu K. Sol. RRL, 2020, 4(6): 2000082.
[95]
Paek S, Roldán-Carmona C, Cho K T, Franckevičius M, Kim H, Kanda H, Drigo N, Lin K-H, Pei M Y, Gegevičius R, Yun H J, Yang H, Schouwink P A, Corminboeuf C, Asiri A M, Nazeeruddin M K. Adv. Sci., 2020, 7(19): 2001014.
[96]
Xia J M, Liang C, Mei S L, Gu H, He B C, Zhang Z P, Liu T H, Wang K Y, Wang S S, Chen S, Cai Y Q, Xing G C. J. Mater. Chem. A, 2021, 9(5): 2919.
[97]
Byeon J, Cho S H, Jiang J K, Jang J, Katan C, Even J, Xi J, Choi M, Lee Y S. ACS Appl. Mater. Interfaces, 2023, 15(23): 27853.
[98]
Wang L, Zhou Q, Zhang Z L, Li W B, Wang X B, Tian Q, Yu X Y, Sun T, Wu J H, Zhang B, Gao P. J. Energy Chem., 2022, 64: 179.
[99]
Liu G Z, Zheng H Y, Xu H F, Zhang L Y, Xu X X, Xu S D, Pan X. Nano Energy, 2020, 73: 104753.
[100]
Karabag Z G, Karabag A, Gunes U, Gao X-X, Syzgantseva O A, Syzgantseva M A, Yaylali F V, Shibayama N, Kanda H, Rafieh A I, Turnell-Ritson R C, Dyson P J, Yerci S, Nazeeruddin M K, Gunbas G. Adv. Energy Mater., 2023, 13(45): 2302038.
[101]
Ma K, Sun J N, Atapattu H R, Larson B W, Yang H J, Sun D W, Chen K, Wang K, Lee Y, Tang Y H, Bhoopalam A, Huang L B, Graham K R, Mei J G, Dou L T. Sci. Adv., 2023, 9(23): eadg0032.
[102]
Dai Z H, Li S R, Liu X, Chen M, Athanasiou C E, Sheldon B W, Gao H J, Guo P J, Padture N P. Adv. Mater., 2022, 34(47): 2205301.

Funding

National Natural Science Foundation of China(52102196)
PDF(16627 KB)

Accesses

Citation

Detail

Sections
Recommended

/