
Semiconductor Ammonia Sensor and Its Application in Human Expiratory Health Monitoring
Mingxia Feng, Jintian Qian, Dawu Lv, Wenfeng Shen, Weijie Song, Ruiqin Tan
Prog Chem ›› 2025, Vol. 37 ›› Issue (5) : 743-757.
Semiconductor Ammonia Sensor and Its Application in Human Expiratory Health Monitoring
Human exhaled air has a close relationship with diseases,among which ammonia becomes a respiratory marker for diseases such as kidney disease. Traditional exhaled gas detection methods are mainly detected by gas chromatography,but the instrument is bulky and complex in operation. Emerging ammonia sensors,however,are garnering significant attention due to their portability,ease of integration,miniaturization,low cost,and simplicity of operation. This review systematically describes the working mechanism of ammonia gas sensors,sensor types,and common ammonia sensing materials. At the same time,it introduces the advantages of sensor array electronic nose technology over a single sensor,and puts forward the application research of ammonia sensors and electronic noses in diseases,aiming at the existing problems and prospects of ammonia gas sensors.
1 Introduction
2 Principe of semiconductor ammonia sensor
2.1 Quartz crystal microbalance ammonia sensor
2.2 Electrochemical ammonia sensor
2.3 Colorimetric ammonia sensor
2.4 Resistive ammonia sensor
3 Resistive ammonia sensing gas sensitive material
3.1 Metallic oxide
3.2 Conducting polymer
3.3 Carbon material
3.4 2D material
4 E-nose based on ammonia sensing
4.1 Eigenvalue extraction
4.2 Classical pattern recognition algorithm
4.3 Neural network
5 Applications of ammonia sensors in different diseases
5.1 Application of ammonia sensor in chronic kidney disease
5.2 Application of ammonia sensor in helicobacter pylori positive patients
6 Conclusion and outlook
semiconductor resistance / ammonia sensor / electronic nose / human breath / health monitoring
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
|
[73] |
|
[74] |
|
[75] |
|
[76] |
|
[77] |
|
[78] |
|
[79] |
|
[80] |
|
[81] |
|
[82] |
|
[83] |
|
[84] |
|
[85] |
|
[86] |
|
[87] |
|
[88] |
|
[89] |
|
[90] |
|
[91] |
|
[92] |
|
[93] |
|
[94] |
|
[95] |
|
[96] |
|
[97] |
|
[98] |
|
[99] |
|
[100] |
|
[101] |
|
[102] |
|
[103] |
|
[104] |
|
[105] |
|
[106] |
|
[107] |
|
[108] |
|
[109] |
|
[110] |
|
/
〈 |
|
〉 |