Semiconductor Ammonia Sensor and Its Application in Human Expiratory Health Monitoring

Mingxia Feng, Jintian Qian, Dawu Lv, Wenfeng Shen, Weijie Song, Ruiqin Tan

Prog Chem ›› 2025, Vol. 37 ›› Issue (5) : 743-757.

PDF(8176 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(8176 KB)
Prog Chem ›› 2025, Vol. 37 ›› Issue (5) : 743-757. DOI: 10.7536/PC240704
Review

Semiconductor Ammonia Sensor and Its Application in Human Expiratory Health Monitoring

Author information +
History +

Abstract

Human exhaled air has a close relationship with diseases,among which ammonia becomes a respiratory marker for diseases such as kidney disease. Traditional exhaled gas detection methods are mainly detected by gas chromatography,but the instrument is bulky and complex in operation. Emerging ammonia sensors,however,are garnering significant attention due to their portability,ease of integration,miniaturization,low cost,and simplicity of operation. This review systematically describes the working mechanism of ammonia gas sensors,sensor types,and common ammonia sensing materials. At the same time,it introduces the advantages of sensor array electronic nose technology over a single sensor,and puts forward the application research of ammonia sensors and electronic noses in diseases,aiming at the existing problems and prospects of ammonia gas sensors.

Contents

1 Introduction

2 Principe of semiconductor ammonia sensor

2.1 Quartz crystal microbalance ammonia sensor

2.2 Electrochemical ammonia sensor

2.3 Colorimetric ammonia sensor

2.4 Resistive ammonia sensor

3 Resistive ammonia sensing gas sensitive material

3.1 Metallic oxide

3.2 Conducting polymer

3.3 Carbon material

3.4 2D material

4 E-nose based on ammonia sensing

4.1 Eigenvalue extraction

4.2 Classical pattern recognition algorithm

4.3 Neural network

5 Applications of ammonia sensors in different diseases

5.1 Application of ammonia sensor in chronic kidney disease

5.2 Application of ammonia sensor in helicobacter pylori positive patients

6 Conclusion and outlook

Key words

semiconductor resistance / ammonia sensor / electronic nose / human breath / health monitoring

Cite this article

Download Citations
Mingxia Feng , Jintian Qian , Dawu Lv , et al . Semiconductor Ammonia Sensor and Its Application in Human Expiratory Health Monitoring[J]. Progress in Chemistry. 2025, 37(5): 743-757 https://doi.org/10.7536/PC240704

References

[1]
Das S, Pal M. J. Electrochem. Soc., 2020, 167(3): 037562.
[2]
Cikach F S Jr, Dweik R A. Prog. Cardiovasc. Dis., 2012, 55(1): 34.
[3]
Boshier P R, Marczin N, Hanna G B. J. Am. Soc. Mass Spectrom., 2010, 21(6): 1070.
[4]
Neri G, Lacquaniti A, Rizzo G, Donato N, Latino M, Buemi M. Nephrol. Dial. Transplant., 2012, 27(7): 2945.
[5]
Xu C N, Tamaki J, Miura N, Yamazoe N. Chem. Lett., 1990, 19(3): 441.
[6]
Dey A. Mater. Sci. Eng. B, 2018, 229: 206.
[7]
Liu C J, Hsieh J C, Ju Y H. J. Vac. Sci. Technol. A Vac. Surf. Films, 1996, 14(3): 753.
[8]
Zhang D Z, Wang D Y, Li P, Zhou X Y, Zong X Q, Dong G K. Sens. Actuat. B Chem., 2018, 255: 1869.
[9]
Gao N B, Li H Y, Zhang W H, Zhang Y Z, Zeng Y, Hu Z X, Liu J Y, Jiang J J, Miao L, Yi F, Liu H. Sens. Actuat. B Chem., 2019, 293: 129.
[10]
Rianjanu A, Fauzi F, Triyana K, Wasisto H S. ACS Appl. Nano Mater., 2021, 4(10): 9957.
[11]
Roto R, Rianjanu A, Fatyadi I A, Kusumaatmaja A, Triyana K. Sens. Actuat. A Phys., 2020, 304: 111902.
[12]
Srivastava A K, Sakthivel P. J. Vac. Sci. Technol. A Vac. Surf. Films, 2001, 19(1): 97.
[13]
Zhou D D, Kang Z J, Liu X H, Yan W Y, Cai H L, Xu J Q, Zhang D Z. Sens. Actuat. B Chem., 2023, 392: 134072.
[14]
Zhang B H, Li Z Q, Li C, Li M, Fu C, Tao R, Zha X H, Li H L, Luo J T. Sens. Actuat. A Phys., 2023, 350: 114138.
[15]
Giddey S, Badwal S P S, Kulkarni A. Int. J. Hydrog. Energy, 2013, 38(34): 14576.
[16]
Rogers E I, O’Mahony A M, Aldous L, Compton R G. ECS Trans., 2010, 33(7): 473.
[17]
Ji X B, Banks C E, Compton R G. Anal., 2005, 130(10): 1345.
[18]
Sazhin S G, Soborover E I, Tokarev S V. Russ. J. Nondestruct. Test., 2003, 39(10): 791.
[19]
King B H, Gramada A, Link J R, Sailor M J. Adv. Mater., 2007, 19(22): 4044.
[20]
Patel S, Jamunkar R, Sinha D, Monisha, Patle T K, Kant T, Dewangan K, Shrivas K. Trends Environ. Anal. Chem., 2021, 31: e00136.
[21]
Wu Y, Feng J, Hu G, Zhang E, Yu H H. Sensors, 2023, 23(5): 2749.
[22]
Lee S, Lee E H, Lee S W. Biosensors, 2022, 12(8): 664.
[23]
Bârsan N, Hübner M, Weimar U. Sens. Actuat. B Chem., 2011, 157(2): 510.
[24]
Walker J, Karnati P, Akbar S A, Morris P A. Sens. Actuat. B Chem., 2022, 355: 131242.
[25]
Hu Q, Wang Z M, Chang J Y, Wan P, Huang J H, Feng L. Sens. Actuat. B Chem., 2021, 344: 130179.
[26]
Zhang J, Qin Z Y, Zeng D W, Xie C S. Phys. Chem. Chem. Phys., 2017, 19(9): 6313.
[27]
Shishiyanu S T, Shishiyanu T S, Lupan O I. Sens. Actuat. B Chem., 2005, 107(1): 379.
[28]
Kathwate L H, Umadevi G, Kulal P M, Nagaraju P, Dubal D P, Nanjundan A K, Mote V D. Sens. Actuat. A Phys., 2020, 313: 112193.
[29]
Zhang D Z, Jiang C X, Sun Y E. J. Alloys Compd., 2017, 698: 476.
[30]
Boomashri M, Perumal P, Gunavathy K V, Alkallas F H, Ben Gouider Trabelsi A, Shkir M, AlFaify S. Ceram. Int., 2023, 49(6): 10096.
[31]
Wang T, Liu G F, Zhang D Z, Wang D Y, Chen F J, Guo J Y. Appl. Surf. Sci., 2022, 597: 153564.
[32]
Lawaniya S D, Kumar S, Yu Y, Awasthi K. Sens. Actuat. B Chem., 2023, 382: 133566.
[33]
Baker C O, Huang X W, Nelson W, Kaner R B. Chem. Soc. Rev., 2017, 46(5): 1510.
[34]
Ćirić-Marjanović G. Synth. Met., 2013, 177: 1.
[35]
Ballabio M, Zhang T, Chen C, Zhang P, Liao Z Q, Hambsch M, Mannsfeld S C B, Zschech E, Sirringhaus H, Feng X L, Bonn M, Dong R H, Cánovas E. Adv. Funct. Mater., 2021, 31(43): 2105184.
[36]
Kang K, Watanabe S, Broch K, Sepe A, Brown A, Nasrallah I, Nikolka M, Fei Z P, Heeney M, Matsumoto D, Marumoto K, Tanaka H, Kuroda S I, Sirringhaus H. Nat. Mater., 2016, 15(8): 896.
[37]
Bhadra S, Khastgir D, Singha N K, Lee J H. Prog. Polym. Sci., 2009, 34(8): 783.
[38]
Chiang J C, MacDiarmid A G. Synth. Met., 1986, 13(1/3): 193.
[39]
Tian X, Cui X X, Xiao Y W, Chen T, Xiao X C, Wang Y D. ACS Appl. Mater. Interfaces, 2023, 15(7): 9604.
[40]
Li P D, Li J Z, Liu F, Shi J J, Gao X W, Xu H Y. ACS Appl. Nano Mater., 2023, 6(19): 17423.
[41]
Aalam S M, Sarvar M, Sadiq M, Ali J. ACS Omega, 2024, 9(4): 4486.
[42]
Qin Z J, Wu Z F, Sun Q H, Sun J, Zhang M, Chen F J, Zhang D Z, Lv C W, Duan H M. Carbon, 2023, 213: 118297.
[43]
Kim Y, Choi Y S, Park S Y, Kim T, Hong S P, Lee T H, Moon C W, Lee J H, Lee D, Hong B H, Jang H W. Nanoscale, 2019, 11(6): 2966.
[44]
Pham T, Li G H, Bekyarova E, Itkis M E, Mulchandani A. ACS Nano, 2019, 13(3): 3196.
[45]
Gao D Q, Xia B R, Zhu C R, Du Y H, Xi P X, Xue D S, Ding J, Wang J. J. Mater. Chem. A, 2018, 6(2): 510.
[46]
Weber M, Kim J Y, Lee J H, Kim J H, Iatsunskyi I, Coy E, Miele P, Bechelany M, Kim S S. J. Mater. Chem. A, 2019, 7(14): 8107.
[47]
Faye O, Eduok U, Szpunar J A. J. Phys. Chem. C, 2019, 123(49): 29513.
[48]
Lee E, VahidMohammadi A, Prorok B C, Yoon Y S, Beidaghi M, Kim D J. ACS Appl. Mater. Interfaces, 2017, 9(42): 37184.
[49]
Yang J C, Gui Y G, Wang Y F, He S S. J. Ind. Eng. Chem., 2023, 119: 476.
[50]
Cao L C T, Zhou M H, Opaprakasit P, Sreearunothai P, Nagao Y, Boonruang S, Fallah H, Tseng S F, Hsu S H. Adv. Mater. Interfaces, 2023, 10(16): 2300166.
[51]
Li L, Li G S, Zhang W Q, She C K, Lin J Q, Liu S H, Yue F Y, Jing C B, Cheng Y, Chu J H. Mater. Lett., 2020, 278: 128438.
[52]
Liu A, Lv S Y, Zhao L J, Liu F M, Wang J, You R, Yang Z J, He J M, Jiang L, Wang C G, Yan X, Sun P, Lu G Y. Sens. Actuat. B Chem., 2021, 330: 129313.
[53]
Das T, Das S, Karmakar M, Chakraborty S, Saha D, Pal M. Sens. Actuat. B Chem., 2020, 325: 128765.
[54]
Wu G D, Du H S, Lee D, Cha Y L, Kim W, Zhang X Y, Kim D J. ACS Appl. Mater. Interfaces, 2022, 14(50): 56056.
[55]
Duan X H, Duan Z H, Zhang Y J, Liu B H, Li X, Zhao Q N, Yuan Z, Jiang Y D, Tai H L. Sens. Actuat. B Chem., 2022, 369: 132302.
[56]
Jin L, Wu C L, Wei K, He L F, Gao H, Zhang H X, Zhang K, Asiri A M, Alamry K A, Yang L, Chu X F. ACS Appl. Nano Mater., 2020, 3(12): 12071.
[57]
Wang C, Cai Y Y, Zhou W, Chen P, Xu L, Han T, Hu Y L, Xu X H, Liu B T, Yu X. ACS Appl. Mater. Interfaces, 2022, 14(10): 12630.
[58]
Li S, Liu A, Yang Z, He J, Wang J, Liu F, Lu H, Yan X, Sun P, Liang X, Gao Y, Lu G. Sens. Actuators B Chem., 2019, 299: 126970.
[59]
Kulkarni S B, Navale Y H, Navale S T, Stadler F J, Ramgir N S, Patil V B. Sens. Actuat. B Chem., 2019, 288: 279.
[60]
Fan S X, Tang W. Sens. Actuat. B Chem., 2022, 362: 131789.
[61]
Wu G D, Du H S, Cha Y L, Lee D, Kim W, Feyzbar-Khalkhali-Nejad F, Oh T S, Zhang X Y, Kim D J. Sens. Actuat. B Chem., 2023, 375: 132858.
[62]
Li H Y, Lee C S, Kim D H, Lee J H. ACS Appl. Mater. Interfaces, 2018, 10(33): 27858.
[63]
Jia A Q, Liu B T, Liu H Y, Li Q F, Yun Y X. Front. Chem., 2020, 8: 383.
[64]
Gautam S K, Panda S. Talanta, 2023, 258: 124418.
[65]
Haick H. J. Phys. D: Appl. Phys., 2007, 40(23): 7173.
[66]
Persaud K, Dodd G. Nature, 1982, 299(5881): 352.
[67]
Li Y, Wei X Y, Zhou Y M, Wang J, You R. Microsyst. Nanoeng., 2023, 9: 129.
[68]
Yan J, Guo X Z, Duan S K, Jia P F, Wang L D, Peng C, Zhang S L. Sensors, 2015, 15(11): 27804.
[69]
Zhang T C, Tan R Q, Shen W F, Lv D W, Yin J Q, Chen W G, Fu H Y, Song W J. Sens. Actuat. B Chem., 2023, 382: 133555.
[70]
Yan J, Duan S K, Huang T W, Wang L D. Sens. Rev., 2016, 36(1): 23.
[71]
Ogbeide O, Bae G, Yu W B, Morrin E, Song Y, Song W, Li Y, Su B L, An K S, Hasan T. Adv. Funct. Mater., 2022, 32(25): 2113348.
[72]
Sun H, Tian F C, Liang Z F, Sun T, Yu B, Yang S X, He Q H, Zhang L L, Liu X M. IEEE Trans. Ind. Electron., 2017, 64(9): 7350.
[73]
Martinelli E, Falconi C, D’Amico A, Di Natale C. Sens. Actuat. B Chem., 2003, 95(1/3): 132.
[74]
Liu B, Yu H Q, Zeng X P, Zhang D, Gong J, Tian L, Qian J H, Zhao L L, Zhang S Y, Liu R. Sens. Actuat. B Chem., 2021, 339: 129896.
[75]
Shakya P, Kennedy E, Rose C, Rosenstein J K. IEEE Sens. J., 2021, 21(3): 2495.
[76]
Fulcher B D, Jones N S. Cell Syst., 2017, 5(5): 527.
[77]
Weng X H, Li G H, Liu Z W, Liu R, Liu Z Y, Wang S Y, Zhao S S, Ma X T, Chang Z Y. Endocr. Connect., 2023, 12(3): e220437.
[78]
Guo D M, Zhang D, Li N M, Zhang L, Yang J H. IEEE Trans. Biomed. Eng., 2010, 57(11): 2753.
[79]
Moon H G, Jung Y, Han S D, Shim Y S, Shin B, Lee T, Kim J S, Lee S, Jun S C, Park H H, Kim C, Kang C Y. ACS Appl. Mater. Interfaces, 2016, 8(32): 20969.
[80]
Xu S, Zhou Z Y, Lu H Z, Luo X W, Lan Y B. Sensors, 2014, 14(3): 5486.
[81]
Pan X F, Zhao X J, Xu W, Fan Z Y, Bermak A. IEEE Trans. Electron Devices, 2022, 69(8): 4514.
[82]
V A B, Subramoniam M, Mathew L. Expert Rev. Mol. Diagn., 2021, 21(11): 1223.
[83]
Ding X Y, Zhang Y C, Zhang Y, Ding X F, Zhang H X, Cao T, Qu Z-B, Ren J, Li L, Guo Z J, Xu F, Wang Q X, Wu X, Shi G Y, Haick H, Zhang M. ACS Nano, 2022, 16(10): 17376.
[84]
Marzorati D, Mainardi L, Sedda G, Gasparri R, Spaggiari L, Cerveri P. 2019 41ST Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2019: 1584.
[85]
Krizhevsky A, Sutskever I & Hinton, G E. Commun ACM. 2017, 60(6): 84.
[86]
Feng L H, Dai H H, Song X, Liu J M, Mei X. Sens. Actuat. B Chem., 2022, 351: 130986.
[87]
Kang M G, Cho I, Park J, Jeong J, Lee K, Lee B, Del Orbe Henriquez D, Yoon K, Park I. ACS Sens., 2022, 7(2): 430.
[88]
Aulia D, Sarno R, Hidayati S C, Rivai M. IEEE Access, 2023, 11: 74924.
[89]
Mohammed Alsumaidaee Y A, Yaw C T, Koh S P, Tiong S K, Chen C P, Yusaf T, Abdalla A N, Ali K, Raj A A. Sensors, 2023, 23(6): 3108.
[90]
Tsujii M, Kawano S, Tsuji S, Fusamoto H, Kamada T, Sato N. Gastroenterology, 1992, 102(6): 1881.
[91]
Chan M J, Li Y J, Wu C C, Lee Y C, Zan H W, Meng H F, Hsieh M H, Lai C S, Tian Y C. Biomedicines, 2020, 8(11): 468.
[92]
Brannelly N T, Hamilton-Shield J P, Killard A J. Crit. Rev. Anal. Chem., 2016, 46(6): 490.
[93]
Ok F, Erdogan O, Durmus E, Carkci S, Canik A. J. Med. Virol., 2021, 93(2): 786.
[94]
Ruan Q R, Yang K, Wang W X, Jiang L Y, Song J X. Intensive Care Med., 2020, 46(5): 846.
[95]
Shafi T, Michels W M, Levey A S, Inker L A, Dekker F W, Krediet R T, Hoekstra T, Schwartz G J, Eckfeldt J H, Coresh J. Kidney Int., 2016, 89(5): 1099.
[96]
Whittier W L, Sayeed K, Korbet S M. Clin. Kidney J., 2016, 9(1): 102.
[97]
Limeres J, Garcez J F, Marinho J S, Loureiro A, Diniz M, Diz P. Br. J. Biomed. Sci., 2017, 74(1):24.
[98]
Španěl P, Davies S, Smith D. Rapid Commun. Mass Spectrom., 1998, 12(12): 763.
[99]
Aguilar A D, Forzani E S, Nagahara L A, Amlani I, Tsui R, Tao N J. IEEE Sens. J., 2008, 8(3): 269.
[100]
Davies S, Spanel P, Smith D. Kidney Int., 1997, 52(1): 223.
[101]
Endre Z H, Pickering J W, Storer M K, Hu W P, Moorhead K T, Allardyce R, McGregor D O, Scotter J M. Physiol. Meas., 2011, 32(1): 115.
[102]
Le Maout P, Wojkiewicz J L, Redon N, Lahuec C, Seguin F, Dupont L, Mikhaylov S, Noskov Y, Ogurtsov N, Pud A. Sens. Actuat. B Chem., 2018, 274: 616.
[103]
Kearney D J, Hubbard T, Putnam D. Dig. Dis. Sci., 2002, 47(11): 2523.
[104]
Bazzoli F, Zagari M, Fossi S, Pozzato P, Ricciardiello L, Mwangemi C, Roda A, Roda E. Helicobacter, 1997, 2(s1): 34.
[105]
Ng R B F, Wang J W, Luo Y F, Chen X D. IEEE Nanotechnol. Mag., 2024, 18(1): 13.
[106]
Xiao S H, Hu M J, Hong Y H, Hu M J, Sun T T, Chen D J. Biosensors, 2024, 14(9): 411.
[107]
Lv W, Yang J H, Xu Q D, Mehrez J A, Shi J, Quan W J, Luo H Y, Zeng M, Hu N T, Wang T, Wei H, Yang Z. Nat. Commun., 2024, 15: 6936.
[108]
Ushimi Y, Ito Y, Horiuchi H, Kadota M, Nozaki Y, Hotta Y, Shiratori S. Electron. Commun. Jpn., 2015, 98(6): 1.
[109]
Zhang J Y, Xue Y Y, Sun Q Y, Zhang T, Chen Y T, Yu W J, Xiong Y Z, Wei X W, Yu G T, Wan H, Wang P. Sens. Actuat. B Chem., 2021, 326: 128822.
[110]
Yao Y B, Chen B, Liu C J, Feng C H, Gao X L, Gu Y. Expert Syst. Appl., 2024, 250: 123757.

Funding

Ningbo Key Scientific and Technological Project(NBSTI 2023Z021)
PDF(8176 KB)

Accesses

Citation

Detail

Sections
Recommended

/