Key Environmental Behaviors of Tire Wear Particles and Their Influencing Mechanisms

Hongwei Liu, Yuxin Yuan, Tianchi Cao, Tong Zhang, Wei Chen

Prog Chem ›› 2025, Vol. 37 ›› Issue (1) : 103-111.

PDF(1918 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(1918 KB)
Prog Chem ›› 2025, Vol. 37 ›› Issue (1) : 103-111. DOI: 10.7536/PC240708
Microplastics Special Issue

Key Environmental Behaviors of Tire Wear Particles and Their Influencing Mechanisms

Author information +
History +

Abstract

Due to the rapid growth in the number of vehicles and freight transport, tire wear particles (TWPs), generated from the friction between tires and road surfaces, have become the main source of microplastics in the environment. TWPs are widely detected in various environmental media, including soil, surface water, and sediments. An in-depth mechanistic understanding of the environmental interfacial processes of TWPs is of great significance for the control of microplastic pollution. In this paper, we first summarized recent progress in the interfacial chemical processes of TWPs, including the transport behavior, environmental transformation, release of toxic additives, and the adsorption of co-existing pollutants on TWPs. We then addressed some existing issues in current research and proposed future directions toward a better understanding of the environmental behavior and potential environmental risks of TWPs.

Contents

1 Introduction

2 Fate and transport of TWPs in the environment

2.1 Transport via rainfall and runoff

2.2 Atmospheric transport

2.3 Aggregation and sedimentation behavior of TWPs in the aquatic environment

3 Transformations of TWPs in the environment

3.1 Physical and chemical transformations of TWPs

3.2 Microbial transformation of TWPs

4 Release of additives from TWPs

5 Accumulation of contaminants on TWPs

6 Conclusion and outlook

Key words

tire wear particles / environmental interfacial processes / transport / transformation / release of additives

Cite this article

Download Citations
Hongwei Liu , Yuxin Yuan , Tianchi Cao , et al . Key Environmental Behaviors of Tire Wear Particles and Their Influencing Mechanisms[J]. Progress in Chemistry. 2025, 37(1): 103-111 https://doi.org/10.7536/PC240708

References

[1]
Wang C H, Zhao J, Xing B S. J. Hazard. Mater., 2021, 407: 124357.
[2]
Petersen F, Hubbart J A. Sci. Total Environ., 2021, 758: 143936.
[3]
Yang J, Li L Z, Zhou Q, Li R J, Tu C, Luo Y M. Acta Pedologica Sinica, 2021, 58(2):281.
(杨杰, 李连祯, 周倩, 李瑞杰, 涂晨, 骆永明. 土壤学报, 2021, 58(2):281.).
[4]
Mennekes D, Nowack B. Sci. Total Environ., 2022, 830: 154655.
[5]
Jiao M, Cao B D, Zhang T. Acta Scientiae Circumstantiae, 2020, 40(12): 16.
(焦萌, 曹秉帝, 张涛. 环境科学学报, 2020, 40(12): 16.).
[6]
Kovochich M, Parker J A, Oh S C, Lee J P, Wagner S, Reemtsma T, Unice K M. Environ. Sci. Technol. Lett., 2021, 8(12): 1057.
[7]
Wang T, Li B J, Zou X Q, Wang Y, Li Y L, Xu Y J, Mao L J, Zhang C C, Yu W W. Water Res., 2019, 162: 214.
[8]
Wagner S, Hüffer T, Klöckner P, Wehrhahn M, Hofmann T, Reemtsma T. Water Res., 2018, 139: 83.
[9]
Zhang M Z, Yin H, Tan J W, Wang X, Yang Z J, Hao L J, Du T Q, Niu Z H, Ge Y S. Atmos. Environ., 2023, 297: 119597.
[10]
Liu Z, Sun Y J, Wang J Q, Li J H, Jia H Z. Environ. Sci. Technol., 2022, 56(3): 1664.
[11]
Ding J, Zhu D, Wang H T, Lassen S B, Chen Q L, Li G, Lv M, Zhu Y G. Environ. Sci. Technol., 2020, 54(12): 7450.
[12]
Bouredji A, Pourchez J, Forest V. Sci. Total Environ., 2023, 894: 164989.
[13]
Tian Z Y, Zhao H Q, Peter K T, Gonzalez M, Wetzel J, Wu C, Hu X M, Prat J, Mudrock E, Hettinger R, Cortina A E, Biswas R G, Kock F V C, Soong R, Jenne A, Du B W, Hou F, He H, Lundeen R, Gilbreath A, Sutton R, Scholz N L, Davis J W, Dodd M C, Simpson A, McIntyre J K, Kolodziej E P. Science, 2021, 371(6525): 185.
[14]
Johannessen C, Liggio J, Zhang X M, Saini A, Harner T. Atmos. Pollut. Res., 2022, 13(9): 101533.
[15]
Wagner S, Klöckner P, Reemtsma T. Chemosphere, 2022, 288: 132467.
[16]
Wang H M, Luo Z X, Yu R L, Yan C Z, Zhou S F, Xing B S. Environ. Pollut., 2023, 322: 121150.
[17]
Fohet L, Andanson J M, Charbouillot T, Malosse L, Leremboure M, Delor-Jestin F, Verney V. Sci. Total Environ., 2023, 859: 160150.
[18]
Huang J J, Li Z Q, Wang Z, Ma H Z, Wang J Y, Xing B S. Chemosphere, 2023, 335: 139116.
[19]
Ding L, Guo X T, Du S W, Cui F Y, Zhang Y P, Liu P, Ouyang Z Z, Jia H Z, Zhu L Y. Environ. Sci. Technol., 2022, 56(24): 17785.
[20]
Luo Z X, Zhou X Y, Su Y, Wang H M, Yu R L, Zhou S F, Xu E G, Xing B S. Sci. Total Environ., 2021, 795: 148902.
[21]
Baensch-Baltruschat B, Kocher B, Kochleus C, Stock F, Reifferscheid G. Sci. Total Environ., 2021, 752: 141939.
[22]
Panko J M, Chu J, Kreider M L, Unice K M. Atmos. Environ., 2013, 72: 192.
[23]
Huber M, Welker A, Helmreich B. Sci. Total Environ., 2016, 541: 895.
[24]
Ziajahromi S, Lu H C, Drapper D, Hornbuckle A, Leusch F D L. Environ. Sci. Technol., 2023, 57(34): 12829.
[25]
Grigoratos T, Gustafsson M, Eriksson O, Martini G. Atmos. Environ., 2018, 182: 200.
[26]
Kreider M L, Panko J M, McAtee B L, Sweet L I, Finley B L. Sci. Total Environ., 2010, 408(3): 652.
[27]
Unice K M, Weeber M P, Abramson M M, Reid R C D, van Gils J A G, Markus A A, Vethaak A D, Panko J M. Sci. Total Environ., 2019, 646: 1639.
[28]
Sieber R, Kawecki D, Nowack B. Environ. Pollut., 2020, 258: 113573.
[29]
Baensch-Baltruschat B, Kocher B, Stock F, Reifferscheid G. Sci. Total Environ., 2020, 733: 137823.
[30]
Fauser P, Tjell J C, Mosbaek H, Pilegaard K. Rubber Chem. Technol., 1999, 72(5): 969.
[31]
Vijayan A, Osterlund H, Magnusson K, Marsalek J, Viklander M. Sci. Total Environ., 2022, 851: 158306.
[32]
Fauser P, Tjell J C, Mosbaek H, Pilegaard K. Petrol. Sci. Technol., 2002, 20(1-2): 127.
[33]
Wik A, Dave G. Environ. Pollut., 2009, 157(1): 1.
[34]
Kole P J, Löhr A J, Van Belleghem F, Ragas A. Int. J. Environ. Res. Public Health, 2017, 14(10): 1265.
[35]
Spanheimer V, Katrakova-Krüger D. Sci. Rep., 2022, 12: 15841.
[36]
Dall’Osto M, Beddows D C S, Gietl J K, Olatunbosun O A, Yang X G, Harrison R M. Atmos. Environ., 2014, 94: 224.
[37]
Oriekhova O, Stoll S. Environ. Sci.: Nano, 2018, 5(3): 792.
[38]
Wu J Y, Ye Q Y, Wu P X, Xu S R, Liu Y J, Ahmed Z, Rehman S, Zhu N W. Chem. Eng. J., 2022, 428: 131191.
[39]
Walch H, Praetorius A, von der Kammer F, Hofmann T. Water Res., 2023, 229: 119385.
[40]
Pulido-Reyes G, Leganes F, Fernández-Piñas F, Rosal R. Environ. Toxicol. Chem., 2017, 36(12): 3181.
[41]
Zhu M L, Zhang Z H, Zhang T, Hofmann T, Chen W. Environ. Sci. Technol., 2023, 57(1): 331.
[42]
Meland S, Granheim G M, Rundberget J T, Rødland E. Environ. Sci. Technol. Lett., 2024, 11(1): 35.
[43]
Hüffer T, Wagner S, Reemtsma T, Hofmann T. Trac Trends Anal. Chem., 2019, 113: 392.
[44]
Rillig M C, Ingraffia R, de Souza Machado A A. Front. Plant Sci., 2017, 8: 1805.
[45]
Liu J, Zhang T, Tian L L, Liu X L, Qi Z C, Ma Y N, Ji R, Chen W. Environ. Sci. Technol., 2019, 53(10): 5805.
[46]
Enfrin M, Dumée L F, Lee J. Water Res., 2019, 161: 621.
[47]
Shin H, Jeong S, Hong J, Wi E, Park E, Yang S I, Kwon J T, Lee H, Lee J, Kim Y. Environ. Pollut., 2023, 330: 121787.
[48]
Julienne F, Delorme N, Lagarde F. Chemosphere, 2019, 236: 124409.
[49]
Kim J, Yang S I, Moon H, Hong J, Hong J, Choi W, Son H, Lee B C, Kim G B, Kim Y. J. Ind. Eng. Chem., 2021, 96: 322.
[50]
Ossola G, Wojcik A. Cem. Concr. Compos., 2014, 52: 34.
[51]
Dauer L T. Health Phys., 2002, 82(6): 907.
[52]
Rånby B. J. Anal. Appl. Pyrolysis, 1989, 15: 237.
[53]
Thomas J, Moosavian S K, Cutright T, Pugh C, Soucek M D. Polym. Degrad. Stab., 2022, 195: 109814.
[54]
Chen L, Liu Z, Yang T H, Zhao W J, Yao Y Z, Liu P, Jia H Z. Environ. Sci. Technol., 2024, 58(10): 4500.
[55]
Fan X L, Gan R, Liu J Q, Xie Y, Xu D Z, Xiang Y, Su J K, Teng Z, Hou J. Sci. Total Environ., 2021, 771: 145451.
[56]
Fan P, Lu C H. J. Polym. Environ., 2011, 19(4): 943.
[57]
Baldwin J M, Bauer D R, Ellwood K R. Polym. Degrad. Stab., 2007, 92(1): 103.
[58]
Osswald K, Reincke K, Schossig M, Sökmen S, Langer B. Polym. Test., 2019, 79: 106053.
[59]
Ali Shah A, Hasan F, Shah Z, Kanwal N, Zeb S. Int. Biodeterior. Biodegrad., 2013, 83: 145.
[60]
Aboelkheir M G, Bedor P B, Leite S G, Pal K, Toledo Filho R D, Gomes de Souza F Jr. Sci. Rep., 2019, 9: 19304.
[61]
Imai S, Ichikawa K, Muramatsu Y, Kasai D, Masai eiji, Fukuda M. Enzyme Microb. Technol., 2011, 49(6-7): 526.
[62]
Cadle S H, Williams R L. Rubber Chem. Technol., 1980, 53(4): 903.
[63]
Altenhoff A L, de Witt J, Andler R, Steinbuchel A. Biodegradation, 2019, 30(1): 13.
[64]
Marchut-Mikołajczyk O, Drożdżyński P, Januszewicz B, Domański J, Wrześniewska-Tosik K. J. Hazard. Mater., 2019, 367: 8.
[65]
Chen Y, Liu J, Zhang Y X, Li J Y, Li G J. Chinese Journal of Applied Ecology, 2022, 33 (8): 2262.
(陈瑶, 刘金, 张颖昕, 李佳旸, 李桂菊. 应用生态学报, 2022, 33 (8): 2262.).
[66]
Tamis J E, Koelmans A A, Dröge R, Kaag N H B M, Keur M C, Tromp P C, Jongbloed R H. Micropl.&Nanopl., 2021, 1: 10.
[67]
Tian Z Y, Gonzalez M, Rideout C A, Zhao H N, Hu X M, Wetzel J, Mudrock E, James C A, McIntyre J K, Kolodziej E P. Environ. Sci. Technol. Lett., 2022, 9(2): 140.
[68]
Rhodes E P, Ren Z Y, Mays D C. Environ. Sci. Technol., 2012, 46(23): 12856.
[69]
Sun B B, Hu Y A, Cheng H F, Tao S. Water Res., 2019, 151: 215.
[70]
Selbes M, Yilmaz O, Khan A A, Karanfil T. Chemosphere, 2015, 139: 617.
[71]
Weyrauch S, Seiwert B, Voll M, Wagner S, Reemtsma T. Sci. Total Environ., 2023, 904: 166679.
[72]
Xu S P, Wang Q, Lao J Y, Cao Y R, Hong P, Chen C, Lam E Y, Fang J K, Lee S, Leung K M Y. Environ. Sci. Technol., 2024, 58(42): 18940.
[73]
Foscari A, Seiwert B, Zahn D, Schmidt M, Reemtsma T. Water Res., 2024, 253: 121322.
[74]
Foscari A, Schmidt N, Seiwert B, Herzke D, Sempéré R, Reemtsma T. Front. Environ. Sci., 2023, 11: 1206449.
[75]
Zhang T S, Wang M J, Han Y X, Liu J X, Zhang Z X, Wang M J, Liu P, Gao S X. J. Hazard. Mater., 2024, 470: 134106.
[76]
Halle L L, Palmqvist A, Kampmann K, Khan F R. Sci. Total Environ., 2020, 706: 135694.
[77]
Glaubitz F, Rocha Vogel A, Kolberg Y, von Tümpling W, Kahlert H. Environ. Pollut., 2023, 335: 122293.
[78]
Huang W, Deng J Q, Liang J, Xia X H. Chem. Eng. J., 2023, 460: 141838.
[79]
Lian F, Huang F, Chen W, Xing B S, Zhu L Y. Environ. Pollut., 2011, 159(4): 850.
[80]
Wu L, Zhang X F, Men Z Y, Zhang J, Chang J Y, Zhang B X, Mao H J. China Environ. Sci., 2020, 40(4): 1486.
(吴琳, 张新峰, 门正宇, 张静, 常俊雨, 张宝玺, 毛洪钧. 中国环境科学, 2020, 40(4): 1486.).
[81]
Fan X L, Cao B W, Wang S P, Li H X, Zhu M X, Sha H D, Yang Y Y. Environ. Sci. Pollut. Res., 2024, 31(20): 29232.
[82]
Hüffer T, Wehrhahn M, Hofmann T. Environ. Sci.: Processes Impacts, 2020, 22(1): 121.
[83]
Alamo-Nole L, Perales-Perez O, Roman F R. Desalin. Water Treat., 2012, 49(1-3): 296.
[84]
Wang L Y, Luo Z X, Zhen Z, Yan Y, Yan C Z, Ma X F, Sun L, Wang M, Zhou X Y, Hu A Y. Environ. Pollut., 2020, 265: 114922.
[85]
Lang M F, Yu X Q, Liu J H, Xia T J, Wang T C, Jia H Z, Guo X T. Sci. Total Environ., 2020, 722: 137762.
[86]
Fan X L, Zou Y F, Liu J Q, Li Y, Liu Q, Hou J. Environmental Science, 2021, 42 (4):1901.
(范秀磊, 邹晔锋, 刘加强, 李莹, 刘强, 侯俊. 环境科学, 2021, 42 (4):1901.).
[87]
Duan J J, Bolan N, Li Y, Ding S Y, Atugoda T, Vithanage M, Sarkar B, Tsang D C W, Kirkham M B. Water Res., 2021, 196: 117011.
[88]
Hüffer T, Weniger A K, Hofmann T. Environ. Pollut., 2018, 236: 218.
[89]
Ciesielski A. An Introduction to Rubber Technology. iSmithers Rapra Publishing, 1999.

Funding

National Natural Science Foundation of China(22241602)
National Natural Science Foundation of China(22125603)
PDF(1918 KB)

Accesses

Citation

Detail

Sections
Recommended

/