The Review on Application and Catalytic Mechanism of Transition Metal Catalysts in Li-S Batteries

Xin Chen, Jingzhao Wang, Xiangming Cui, Mi Zhou, Jianan Wang, Wei Yan

Prog Chem ›› 2025, Vol. 37 ›› Issue (5) : 758-774.

PDF(5851 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(5851 KB)
Prog Chem ›› 2025, Vol. 37 ›› Issue (5) : 758-774. DOI: 10.7536/PC240713
Review

The Review on Application and Catalytic Mechanism of Transition Metal Catalysts in Li-S Batteries

Author information +
History +

Abstract

Li-S batteries have great application prospects because of their extremely high capacity and energy density. However,the instability and insulation of polysulfides(LiPSs)seriously hinder their further application. In order to solve the problem of slow reaction kinetics in Li-S batteries,it is urgent to explore efficient catalysts to accelerate the sulfur redox. In the case,transition metals with unique and excellent catalytic properties are considered as potential catalysts for Li-S battery. However,differences in the structure and properties of transition metals will lead to different catalytic mechanisms. Therefore,this work divides five types of transition metals(ferrous metals,conventional non-ferrous metals,precious metals,rare refractory metals,and rare earth metals)based on metal characteristics. Then,the catalytic mechanisms of transition metal catalysts were analyzed,including adsorption,accelerating electron transfer,reducing activation energy and co-catalysis. Besides,the research progress of various metals used in Li-S batteries was reviewed,and the catalytic mechanisms of different types of metals were clarified. Four optimization strategies were proposed: nanostructured design,doping-modification,alloying and external cladding,in order to provide certain references for the design of Li-S battery catalysts.

Contents

1 Introduction

2 Catalytic mechanism and functionality of transition metal catalysts

2.1 Catalytic mechanism

2.2 Functionality

3 The application of transition metals in lithium sulfur batteries

3.1 Ferrous metal

3.2 Non-ferrous metal

3.3 Noble metal

3.4 Rare refractory metal

3.5 Rare earth metal

4 Challenges and optimization strategies of transition metal catalysts

5 Conclusion and outlook

Key words

Li-S batteries / transition metal catalysts / sulfur reduction reaction / design strategie

Cite this article

Download Citations
Xin Chen , Jingzhao Wang , Xiangming Cui , et al . The Review on Application and Catalytic Mechanism of Transition Metal Catalysts in Li-S Batteries[J]. Progress in Chemistry. 2025, 37(5): 758-774 https://doi.org/10.7536/PC240713

References

[1]
Seh Z W, Sun Y M, Zhang Q F, Cui Y. Chem. Soc. Rev., 2016, 45(20): 5605.
[2]
Yang X F, Luo J, Sun X L. Chem. Soc. Rev., 2020, 49(7): 2140.
[3]
Dörfler S, Althues H, Härtel P, Abendroth T, Schumm B, Kaskel S. Joule, 2020, 4(3): 539.
[4]
Li Y, Guo S. Matter, 2021, 4(4): 1142.
[5]
Manthiram A, Fu Y Z, Chung S H, Zu C X, Su Y S. Chem. Rev., 2014, 114(23): 11751.
[6]
Yang K, Yang L Y, Wang Z J, Guo B, Song Z B, Fu Y D, Ji Y C, Liu M Q, Zhao W G, Liu X H, Yang S C, Pan F. Adv. Energy Mater., 2021, 11(22): 2100601.
[7]
Peng H J, Huang J Q, Cheng X B, Zhang Q. Adv. Energy Mater., 2017, 7(24): 1770141.
[8]
Gao R H, Zhang M T, Han Z Y, Xiao X, Wu X R, Piao Z H, Lao Z J, Nie L, Wang S G, Zhou G M. Adv. Mater., 2024, 36(1): 2303610.
[9]
Wang J N, Chen X, Wang Z Y, Lin C Z, Sun S Y, Liu J W, Liu Y P, Ma Q Y, Wang L, Yang K, Feng J T, Wang X, Cai Q, Yan W. Chem. Eng. J., 2023, 465: 142657.
[10]
Lim W G, Jo C, Cho A, Hwang J, Kim S, Han J W, Lee J. Adv. Mater., 2019, 31(3): 1970015.
[11]
Ma F, Wan Y Y, Wang X M, Wang X C, Liang J S, Miao Z P, Wang T Y, Ma C, Lu G, Han J T, Huang Y H, Li Q. ACS Nano, 2020, 14(8): 10115.
[12]
Sun S Y, Wang J N, Zong S R, Ma Q Y, Li H X, Chen X, Cui X M, Yang K, Cai Q, Zhao Y L, Yan W. Adv. Funct. Mater., 2023, 33(47): 2304929.
[13]
Sun S Y, Wang J N, Chen X, Ma Q Y, Wang Y Y, Yang K, Yao X H, Yang Z P, Liu J W, Xu H, Cai Q, Zhao Y L, Yan W. Adv. Energy Mater., 2022, 12(41): 2270172.
[14]
Yang Y, Zheng G Y, Cui Y. Chem. Soc. Rev., 2013, 42(7): 3018.
[15]
He Y B, Chang Z, Wu S C, Zhou H S. J. Mater. Chem. A, 2018, 6(15): 6155.
[16]
Fan Q N, Wang J Z. Chem, 2022, 8(5): 1173.
[17]
Lang S Y, Yu S H, Feng X R, Krumov M R, Abruña H D. Nat. Commun., 2022, 13: 4811.
[18]
Song Y W, Shen L, Yao N, Li X Y, Bi C X, Li Z, Zhou M Y, Zhang X Q, Chen X, Li B Q, Huang J Q, Zhang Q. Chem, 2022, 8(11): 3031.
[19]
Zhou X, Huang X L, Li G, Zeng P, Liu X L, Liu H, Chen M F, Wang X Y. Chem. Eng. J., 2023, 471: 144806.
[20]
Park H, Lee S, Kim H, Park H, Kim H, Kim J, Agostini M, Sun Y K, Hwang J Y. Carbon Energy, 2024, 6(7): e472.
[21]
Zhou S Y, Shi J, Liu S G, Li G, Pei F, Chen Y H, Deng J X, Zheng Q Z, Li J Y, Zhao C, Hwang I, Sun C J, Liu Y Z, Deng Y, Huang L, Qiao Y, Xu G L, Chen J F, Amine K, Sun S G, Liao H G. Nature, 2023, 621(7977): 75.
[22]
Suriyakumar S, Stephan A M, Angulakshmi N, Hassan M H, Alkordi M H. J. Mater. Chem. A, 2018, 6(30): 14623.
[23]
Han D D, Wang Z Y, Pan G L, Gao X P. ACS Appl. Mater. Interfaces, 2019, 11(20): 18427.
[24]
Wang K X, Duan J, Chen X, Wang J N, Li J Q, Jiang L X, Yan W, Lyu W, Liao Y Z. Adv. Energy Mater., 2024, 14(25): 2401146.
[25]
Chen X, Wang Y B, Wang J N, Liu J W, Sun S Y, Zhu L, Ma Q Y, Zhu N R, Wang X, Chen J, Yan W. J. Mater. Chem. A, 2022, 10(3): 1359.
[26]
Xia J Z, Cao R, Zhao L C, Wu Q. J. Colloid Interface Sci., 2023, 630: 317.
[27]
Li H, Meng R W, Ye C, Tadich A, Hua W X, Gu Q F, Johannessen B, Chen X, Davey K, Qiao S Z. Nat. Nanotechnol., 2024, 19(6): 792.
[28]
Yu Y, Tang Z K, Wang Y X, Zhang H Z, Zhang H M, Li X F. J. Mater. Chem. A, 2024, 12(10): 5760.
[29]
Hua W X, Li H, Pei C, Xia J Y, Sun Y F, Zhang C, Lv W, Tao Y, Jiao Y, Zhang B S, Qiao S Z, Wan Y, Yang Q H. Adv. Mater., 2021, 33(38): 2101006.
[30]
An Q, Wang L L, Zhao G F, Duan L Y, Sun Y J, Liu Q, Mei Z Y, Yang Y X, Zhang C H, Guo H. Adv. Mater., 2024, 36(4): 2305818.
[31]
Chen L P, Cao G Q, Li Y, Zu G N, Duan R X, Bai Y, Xue K Y, Fu Y H, Xu Y H, Wang J, Li X F. Nano-Micro Lett., 2024, 16: 97.
[32]
Kim M, Ha M Y, Jung W B, Yoon J, Shin E, Kim I D, Lee W B, Kim Y, Jung H T. Adv. Mater., 2022, 34(19): 2108900.
[33]
Cui M N, Zheng Z H, Wang J C, Wang Y W, Zhao X L, Ma R G, Liu J J. Energy Storage Mater., 2021, 35: 577.
[34]
Sun Y F, Wang J Y, Shang T X, Li Z J, Li K H, Wang X W, Luo H R, Lv W, Jiang L L, Wan Y. Angew. Chem. Int. Ed., 2023, 62(46): e202306791.
[35]
Wang J N, Yi S S, Liu J W, Sun S Y, Liu Y P, Yang D W, Xi K, Gao G X, Abdelkader A, Yan W, Ding S J, Kumar R V. ACS Nano, 2020, 14(8): 9819.
[36]
Liu J W, Wang J N, Zhu L, Chen X, Ma Q Y, Wang L, Wang X, Yan W. Chem. Eng. J., 2021, 411: 128540.
[37]
Gu Q H, Qi Y J, Hua W X, Shang T X, Chen J N, Jiang L Z, Li L N, Lu M, Zhang Y X, Liu X, Wan Y, Zhang B S. J. Energy Chem., 2022, 69: 490.
[38]
Huang K X, Hua J H, Chang G G, Li Z H, Tian G, Chen M J, Li J X, Ke S C, Yang X Y, Chen B L. Small, 2021, 17(22): 2002811.
[39]
Li J, Wang Z, Shi K, Wu Y, Huang W, Min Y, Liu Q, Liang Z. Adv. Energy Mater., 2023, 14(9): 2303546.
[40]
Li J H, Shi K X, Pan J J, Pan J D, Lin Y X, Wang K X, Li H, Liao J Y, Dong H F, Liu Q B. Renewables, 2023, 1(3): 341.
[41]
Zhong Y R, Yin L C, He P, Liu W, Wu Z S, Wang H L. J. Am. Chem. Soc., 2018, 140(4): 1455.
[42]
Jia H N, Fan J H, Su P, Guo T T, Liu M C. Small, 2024, 20(26): 2311343.
[43]
Xu Y H, Yuan W C, Geng C N, Hu Z H, Li Q, Zhao Y F, Zhang X, Zhou Z, Yang C P, Yang Q H. Adv. Sci., 2024, 11(31): 2402497.
[44]
Wang S, Wang Z H, Wang Z J, W M, Guo Y S, Chen H L, Liu Z G, Z. Nano Energy, 2024, 120: 109161.
[45]
Chen Z, Chen T, Wang J, Li P, Liu J, Chen W, Yang Z, Deng Y, Chang J, Yang Y. Adv. Energy Mater., 2024, 14(34): 2401568.
[46]
Zhai S J, Liu W Y, Hu Y X, Chen Z H, Xu H Y, Xu S S, Wu L P, Ye Z, Wang X B, Mei T. ACS Appl. Mater. Interfaces, 2022, 14(45): 50932.
[47]
Wu C, Wu J G, Li J, Zou Z, Yang H B, Wu X S, Zeng Q X, Dai F Y, Sun W, Li C M. Small, 2024, 20(1): 2304938.
[48]
Xu C, Ding B, Fan Z J, Xu C Y, Xia Q Z, Li P, Dou H, Zhang X G. ACS Appl. Mater. Interfaces, 2022, 14(34): 38750.
[49]
Liu G L, Wang W M, Zeng P, Yuan C, Wang L, Li H T, Zhang H, Sun X H, Dai K H, Mao J, Li X, Zhang L. Nano Lett., 2022, 22(15): 6366.
[50]
Yang L, Wang X, Cheng X, Zhang Y, Ma C, Zhang Y, Wang J, Qiao W, Ling L. Adv. Funct. Mater., 2023, 33(38): 2303705.
[51]
Luo Y X, Zhang D, He Y Q, Zhang W Q, Liu S S, Zhu K, Huang L, Yang Y, Wang G, Yu R Z, Shu H B, Wang X Y, Chen M F. Chem. Eng. J., 2023, 474: 145751.
[52]
Hou W S, Li R L, Wang Z H, Fang L, Bai Z, Wang T, Bai Y, Sun K N. J. Energy Chem., 2023, 81: 432.
[53]
Gao G P, Zheng F, Wang L W. Chem. Mater., 2020, 32(5): 1974.
[54]
Liu X F, Guo X Q, Wang R, Liu Q C, Li Z J, Zang S Q, Mak T C W. J. Mater. Chem. A, 2019, 7(6): 2838.
[55]
Qiao S M, Lei D, Wang Q, Shi X S, Zhang Q, Huang C H, Liu A M, He G H, Zhang F X. Chem. Eng. J., 2022, 442: 136258.
[56]
Li C, Luo H B, Li F Y, Li F. ACS Omega, 2023, 8(48): 45348.
[57]
Liu Q, Wu Y, Li D, Peng Y Q, Liu X, Li B Q, Huang J Q, Peng H J. Adv. Mater., 2022, 35(7): 2209233.
[58]
Wang X, Luo D, Wang J Y, Sun Z H, Cui G L, Chen Y X, Wang T, Zheng L R, Zhao Y, Shui L L, Zhou G F, Kempa K, Zhang Y G, Chen Z W. Angew. Chem. Int. Ed., 2021, 60(5): 2371.
[59]
Wang C W, Xiao Q C, Yang X Y, Yan H, Qi J, Liu S K, Wang J M, Huang J F. Appl. Surf. Sci., 2024, 652: 159283.
[60]
Zhu C Y, Wang J, Xu G Y, Du X, Chen C X, Yang X W, Bao C J, Gao G. CrystEngComm, 2023, 25(19): 2892.
[61]
Zheng S Y, Yi F, Li Z P, Zhu Y J, Xu Y H, Luo C, Yang J H, Wang C S. Adv. Funct. Mater., 2014, 24(26): 4156.
[62]
Xiao R, Yu T, Yang S, Chen K, Li Z N, Liu Z B, Hu T Z, Hu G J, Li J, Cheng H M, Sun Z H, Li F. Energy Storage Mater., 2022, 51: 890.
[63]
He K Q, Tan H, Li S Z, Hu P, Shang C Q. J. Alloys Compd., 2024, 976: 173169.
[64]
Dai X, Lv G J, Wu Z, Wang X, Liu Y, Sun J J, Wang Q C, Xiong X Y, Liu Y N, Zhang C F, Xin S, Chen Y Z, Zhou T F. Adv. Energy Mater., 2023, 13(21): 2300452.
[65]
Wang R, Wu R, Yan X, Liu D, Guo P, Li W, Pan H. Adv. Funct. Mater., 2022, 32(20): 2200424.
[66]
Wang T, Cui G L, Zhao Y, Nurpeissova A, Bakenov Z. J. Alloys Compd., 2021, 853: 157268.
[67]
Xiao T J, Chen Q W, Zhong W, Yang M Z, Cai F P, Liu W L, Ren M M, Wang Y H. J. Alloys Compd., 2022, 907: 164486.
[68]
Song C L, He Q T, Zeng Z Y, Chen J Y, Wen T, Huang Y X, Zhuang L C, Yi W, Cai Y P, Hong X J. J. Energy Chem., 2023, 79: 505.
[69]
Sun H, Li X, Chen T Q, Xia S X, Yuan T, Yang J H, Pang Y P, Zheng S Y. ACS Appl. Mater. Interfaces, 2023, 15(15): 19043.
[70]
Wang R, Qin J L, Pei F, Li Z Z, Xiao P, Huang Y H, Yuan L X, Wang D L. Adv. Funct. Mater., 2023, 33(44): 2305991.
[71]
Park J M, Baek S H, Kim W I, Lee S J, Gund G S, Park H S. Electrochim. Acta, 2023, 462: 142750.
[72]
Liu Z F, Lu C X, Yuan S X, Ren X D, Chen Y. J. Alloys Compd., 2023, 960: 170844.
[73]
Zhu J, Wang X Y, Ke T, Jia M J, Jin B Y, Li Y Y, Yang Q W, Ren L H, Ren Y Y, Cheng D G, Lu J G, Gao X, He Q G, Hou Y, Zhan X L, Zhang Q H. J. Energy Chem., 2023, 78: 203.
[74]
Zhang X, Yang T, Zhang Y, Wang X, Wang J, Li Y, Yu A, Wang X, Chen Z. Adv. Mater., 2022, 35(6): 2208470.
[75]
Ma S B, Wang L G, Wang Y, Zuo P J, He M X, Zhang H, Ma L, Wu T P, Yin G P. Carbon, 2019, 143: 878.
[76]
Zhou T H, Zhao Y, Song K S, Baster D, El Kazzi M, Coskun A. Chem. Mater., 2023, 35(14): 5362.
[77]
Pu J, Zhu G X, Chang S Z, Zhu X M, Wang Z H, Xue P. Inorg. Chem., 2023, 62(44): 18307.
[78]
Liu Y P, Chatterjee A, Rusch P, Wu C Q, Nan P F, Peng M H, Bettels F, Li T R, Ma C X, Zhang C F, Ge B H, Bigall N C, Pfnür H, Ding F, Zhang L. ACS Nano, 2021, 15(9): 15047.
[79]
Song H B, Li T, He T T, Wang Z H, Fang D L, Wang Y, Li X L, Zhang D H, Hu J P, Huang S Z. Chem. Eng. J., 2022, 450: 138115.
[80]
Yuan J, Xi B J, Wang P, Zhang Z, Song N, An X G, Liu J, Feng J K, Xiong S L. Small, 2022, 18(37): 2203947.
[81]
Hong X J, Song C L, Yang Y, Tan H C, Li G H, Cai Y P, Wang H. ACS Nano, 2019, 13(2): 1923.
[82]
Liang Y Y, Kang W M, Zhong C L, Deng N P, Cheng B W. Chem. Eng. J., 2021, 403: 126449.
[83]
Su Y C, Wang W S, Wang W K, Wang A B, Huang Y Q, Guan Y P. J. Electrochem. Soc., 2022, 169(3): 030528.
[84]
Li Y, Lin S, Wang D, Gao T, Song J, Zhou P, Xu Z, Yang Z, Xiao N, Guo S. Adv. Mater., 2020, 32(8): 1906722.
[85]
Chafiq M, Chaouiki A, Ko Y G. Nano-Micro Lett., 2023, 15: 213.
[86]
Chen Y N, Egan G C, Wan J Y, Zhu S Z, Jacob R J, Zhou W B, Dai J Q, Wang Y B, Danner V A, Yao Y G, Fu K, Wang Y B, Bao W Z, Li T, Zachariah M R, Hu L B. Nat. Commun., 2016, 7: 12332.
[87]
Dong Q, Hu L B. Chem, 2022, 8(4): 895.
[88]
Wang Z Y, Huang W Z, Wu H, Wu Y J, Shi K X, Li J H, Zhang W G, Liu Q B. Adv. Funct. Mater., 2024, 34(49): 2409303.
[89]
Xie Y H, Zheng W R, Ao J, Shao Y Q, Huang X, Li H, Cheng S Y, Wang X H. Energy Storage Mater., 2023, 62: 102925.
[90]
Pang X W, Geng H T, Dong S W, An B G, Zheng S M, Wang B. Small, 2023, 19(5): 2205525.
[91]
Xu H F, Hu R M, Zhang Y Z, Yan H B, Zhu Q, Shang J X, Yang S B, Li B. Energy Storage Mater., 2021, 43: 212.
[92]
Wu Q P, Chen K Y, Shadike Z, Li C L. ACS Nano, 2024, 18(21): 13468.
[93]
Han F F, Wang Z L, Jin Q, Fan L W, Tao K H, Li L, Shi L, Lu H Q, Zhang Z G, Li J J, Zhang X T, Wu L L. ACS Nano, 2024, 18(23): 15167.
[94]
Xu K Y, Liang L C, Li T, Bao M J, Yu Z P, Wang J W, Thalluri S M, Lin F, Liu Q B, Cui Z M, Song S Q, Liu L F. Adv. Mater., 2024, 36(31): 2403792.
[95]
Liu Y, Kou W, Li X C, Huang C Q, Shui R B, He G H. Small, 2019, 15(34): 1970179.
[96]
Zhao C, Xu G L, Zhao T S, Amine K. Angew. Chem. Int. Ed., 2020, 59(40): 17634.

Funding

National Natural Science Foundation of China(52172097)
New Energy Material Innovation Consortium Projects of Yunnan Province(202302AB080018)
PDF(5851 KB)

Accesses

Citation

Detail

Sections
Recommended

/