Progress and Applications of Controllable Nanostructured Woody Aerogel

Keqi Zhang, Zongying Fu, Shenjie Han, Yun Lu

Prog Chem ›› 2025, Vol. 37 ›› Issue (6) : 903-917.

Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
Prog Chem ›› 2025, Vol. 37 ›› Issue (6) : 903-917. DOI: 10.7536/PC240715
Review

Progress and Applications of Controllable Nanostructured Woody Aerogel

Author information +
History +

Abstract

In order to promote the comprehensive green transformation of economic and social development, the standardization of green energy-saving materials has concurrently fostered the emergence of novel materials. Confronted with the dual crisis of energy scarcity and environmental pollution, aerogels have garnered significant research interest because of their exceptional physicochemical properties, such as low thermal conductivity, high strength, low density and high specific surface area. Biomass-based natural wood and its derived nanocellulose, as renewable, biodegradable, and surface chemistry-tunable eco-friendly materials, have attracted widespread attention. This article first reviews the evolution and classification of woody aerogel, then discusses the preparation methods, structural characteristics, and performance advantages of woody aerogels. Subsequently, it provides an overview of the applications of woody aerogels in energy-efficient construction, environmental purification, and energy storage. Finally, it summarizes and analyzes the current research status and the problems faced by woody aerogels, and looks forward to the future development of this field.

Contents

1 Introduction

2 Research progress of woody aerogel

2.1 Overview of woody aerogel

2.2 Preparation method of woody aerogel

2.3 Structure and properties of woody aerogel

3 Application of woody aerogel

3.1 Building energy efficiency field

3.2 Environmental purification field

3.3 Energy storage field

4 Conclusion and outlook

Key words

wood / lignocellulose / aerogel / porosity

Cite this article

Download Citations
Keqi Zhang , Zongying Fu , Shenjie Han , et al. Progress and Applications of Controllable Nanostructured Woody Aerogel[J]. Progress in Chemistry. 2025, 37(6): 903-917 https://doi.org/10.7536/PC240715

References

[1]
Meinshausen M, Lewis J, McGlade C, Gütschow J, Nicholls Z, Burdon R, Cozzi L, Hackmann B. Nature, 2022, 604(7905): 304.
[2]
Shi S, Lv P, Valenzuela C, Li B, Liu Y, Wang L, Feng W. Small, 2023, 19: 2301957.
[3]
Ahankari S, Paliwal P, Subhedar A, Kargarzadeh H. ACS Nano, 2021, 15(3): 3849.
[4]
Aditya L, Mahlia T M I, Rismanchi B, Ng H M, Hasan M H, Metselaar H S C, Muraza O, Aditiya H B. Renew. Sustain. Energy Rev., 2017, 73: 1352.
[5]
Lu Y. Wood Supramolecular Science Preliminary Theory. Beijing: Science Press, 2024
(卢芸. 木材超分子科学导论. 北京: 科学出版社, 2024).
[6]
Long L Y, Weng Y X, Wang Y Z. Polymers, 2018, 10(6): 623.
[7]
Kistler S S. J. Phys. Chem., 1932, 36(1): 52.
[8]
Weatherwax R C, Caulfield D F. Tappi J., 1971, 54: 985.
[9]
Alinče B. Colloid Polym. Sci., 1975, 253(9): 720.
[10]
Qiu J. Doctoral Dissertation of Northeast Forestry University, 2004
(邱坚. 东北林业大学博士论文, 2004).
[11]
Qiu J, Gao J R, Li J, Liu Y X. J. Northeast. For. Univ., 2008, 36(12): 73
(邱坚, 高景然, 李坚, 刘一星. 东北林业大学学报, 2008, 36(12): 73).
[12]
Gao J R, Qiu J, Li J, Liu Y X. J. Northeast. For. Univ., 2008, 36(11): 98
(高景然, 邱坚, 李坚, 刘一星. 东北林业大学学报, 2008, 36(11): 98).
[13]
Li J, Lu Y, Yang D J, Sun Q F, Liu Y X, Zhao H J. Biomacromolecules, 2011, 12(5): 1860.
[14]
Li J. Frontier of Wood Science. Beijing: Science Press, 2023
(李坚. 木材科学前沿. 北京: 科学出版社, 2023).
[15]
Garemark J, Yang X, Sheng X, Cheung O, Sun L C, Berglund L A, Li Y Y. ACS Nano, 2020, 14(6): 7111.
[16]
Garemark J, Perea-Buceta J E, Rico del Cerro D, Hall S, Berke B, Kilpeläinen I, Berglund L A, Li Y Y. ACS Appl. Mater. Interfaces, 2022, 14(21): 24697.
[17]
Garemark J, Perea-Buceta J E, Felhofer M, Chen B, Cortes Ruiz M F, Sapouna I, Gierlinger N, Kilpeläinen I A, Berglund L A, Li Y Y. ACS Nano, 2023, 17(5): 4775.
[18]
Wang Z G. Doctoral Dissertation of Nanjing Forestry University, 2023
(王忠国. 南京林业大学博士论文, 2023 ).
[19]
Ye G C, Lu Y, Yin Y F, Yang D J, Sun J, She X L, Xia Y Z. Acta Polym. Sin., 2017, 48(4): 683
(叶贵超, 卢芸, 殷亚方, 杨东江, 孙瑾, 佘希林, 夏延致. 高分子学报, 2017, 48(4): 683).
[20]
Liu W, Pang B, Zhang M, Lv J Y, Xu T, Bai L, Cai X M, Yao S Q, Huan S Q, Si C L. Aggregate, 2024, 5(2): e555.
[21]
Miao C W, Atifi S, Hamad W Y. Carbohydr. Polym., 2020, 248: 116775.
[22]
Sivaraman D, Nagel Y, Siqueira G, Chansoria P, Avaro J, Neels A, Nyström G, Sun Z X, Wang J, Pan Z Y, Iglesias-Mejuto A, Ardao I, García-González C A, Li M M, Wu T T, Lattuada M, Malfait W J, Zhao S Y. Adv. Sci., 2024, 11(24): 2307921.
[23]
Cai C Y, Chen Y, Cheng F L, Wei Z C, Zhou W B, Fu Y. ACS Nano, 2024, 18(5): 4376.
[24]
Li S, Zhou C B, He Y Y, Liu H X, Zhou L, Yu C B, Wei C, Wang C Y. Macromol. Mater. Eng., 2020, 305(11): 2000467.
[25]
Gu H B, Huo X Y, Chen J Y, El-Bahy S M, El-Bahy Z M. ES Food Agrofor., 2022, 10: 1.
[26]
Zhou J P, Zhang L N. Polym. J., 2000, 32(10): 866.
[27]
Yang G, Xiong X P, Zhang L N. J. Membr. Sci., 2002, 201(1/2): 161.
[28]
Lu Y, Sun Q F, Yu H P, Liu Y X. Chin. J. Org. Chem., 2010, 30(10): 1593
(卢芸, 孙庆丰, 于海鹏, 刘一星. 有机化学, 2010, 30(10): 1593).
[29]
Lu Y, Sun Q F, Yang D J, She X L, Yao X D, Zhu G S, Liu Y X, Zhao H J, Li J. J. Mater. Chem., 2012, 22(27): 13548.
[30]
Ma X, Zhou S, Li J T, Xie F, Yang H, Wang C, Fahlman B D, Li W J. J. Hazard. Mater., 2023, 454: 131397.
[31]
Ebrahimi A, Dahrazma B, Adelifard M. J. Porous Mater., 2020, 27(4): 1219.
[32]
Wan C C, Jiao Y, Wei S, Zhang L Y, Wu Y Q, Li J. Chem. Eng. J., 2019, 359: 459.
[33]
Huang J Z, Wu J W, Wu J Q, Sun D H. ACS Sustainable Chem. Eng., 2024, 12(19): 7457.
[34]
Sun H, Bi H J, Lin X, Cai L P, Xu M. Polymers, 2020, 12(1): 165.
[35]
Gong C, Ni J P, Tian C, Su Z H. Int. J. Biol. Macromol., 2021, 172: 573.
[36]
Yang Y S, Dang B K, Wang C, Chen Y P, Chen K C, Chen X J, Li Y Y, Sun Q F. Carbohydr. Polym., 2024, 323: 121392.
[37]
Chen L, Yu X, Gao M, Xu C, Zhang J, Zhang X, Zhu M, Cheng Y. Chem. Soc. Rev., 2024, 19.
[38]
Sen S, Singh A, Bera C, Roy S, Kailasam K. Cellulose, 2022, 29(9): 4805.
[39]
Tian Y P, Shao H, Liu X J, Chen F Q, Li Y S, Tang C Y, Zheng Y. ACS Appl. Mater. Interfaces, 2021, 13(19): 22521.
[40]
Zhao X P, Liu Y, Zhao L X, Yazdkhasti A, Mao Y M, Siciliano A P, Dai J Q, Jing S S, Xie H, Li Z H, He S M, Clifford B C, Li J G, Chen G S, Wang E Q, Desjarlais A, Saloni D, Yu M, Kośny J, Zhu J Y, Gong A, Hu L B. Nat. Sustain., 2023, 6(3): 306.
[41]
Li Z R, Chen Z L, Huang Q L, Zhang S, Wang W, Li W. Adv. Compos. Hybrid. Mater., 2024, 7: 28.
[42]
Zong D D, Bai W Y, Yin X, Yu J Y, Zhang S C, Ding B. Adv. Funct. Mater., 2023, 33(31): 2301870.
[43]
Kaya M. J. Appl. Polym. Sci., 2017, 134: 1.
[44]
Zhao D Y, Tian Y Y, Jing X F, Lu Y, Zhu G S. J. Mater. Chem. A, 2019, 7(1): 157.
[45]
Mi H Y, Jing X, Politowicz A L, Chen E, Huang H X, Turng L S. Carbon, 2018, 132: 199.
[46]
Cao J Z. Master’s Dissertation of Nanjing Forestry University, 2023
(曹济舟. 南京林业大学硕士论文, 2023).
[47]
Luo B, Cai C C, Liu T, Meng X J, Zhuang X L, Liu Y H, Gao C, Chi M C, Zhang S, Wang J L, Bai Y Y, Wang S F, Nie S X. Adv. Funct. Mater., 2023, 33(42): 2306810.
[48]
Liu Z S, Sheng Z Z, Bao Y Q, Cheng Q Q, Wang P X, Liu Z W, Zhang X T. ACS Nano, 2023, 17(18): 18411.
[49]
Yan M Y, Fu Y Y, Pan Y L, Cheng X D, Gong L L, Zhou Y, Ahmed H, Zhang H P. Compos. Part B Eng., 2022, 230: 109496.
[50]
Wu T, Lu Y, Tao X L, Chen P, Zhang Y Y, Ren B H, Xie F F, Yu X, Zhou X Y, Yang D J, Sun J, Chen X Y. Carbon Energy, 2024, 6(11): e561.
[51]
Duchemin B J C, Staiger M P, Tucker N, Newman R H. J. Appl. Polym. Sci., 2010, 115(1): 216.
[52]
Liu W B, Zhao H B, Wang Y Z. Adv. Mater., 2022, 34: 2107905.
[53]
Gan W T, Chen C J, Wang Z Y, Pei Y, Ping W W, Xiao S L, Dai J Q, Yao Y G, He S M, Zhao B H, Das S, Yang B, Sunderland P B, Hu L B. Adv. Funct. Mater., 2020, 30(10): 1909196.
[54]
Farooq M, Sipponen M H, Seppälä A, Österberg M. ACS Appl. Mater. Interfaces, 2018, 10(32): 27407.
[55]
Huang Y J, Zhou T, He S, Xiao H, Dai H M, Yuan B H, Chen X F, Yang X B. Appl. Surf. Sci., 2019, 497: 143775.
[56]
Xu M. China Pulp Pap., 2023, 42(9): 11
(徐媚. 中国造纸, 2023, 42(9): 11).
[57]
Guo X, Wang Z S, Liu X D, Cao X Y, Li C G, Shi H Q. China Pulp Paper, 2023, 11: 123
(郭旭, 王忠善, 刘潇笛, 曹欣雨, 李长庚, 石海强. 中国造纸, 2023, 11: 123).
[58]
Nguyen S T, Feng J D, Le N T, Le A T T, Hoang N, Tan V B C, Duong H M. Ind. Eng. Chem. Res., 2013, 52(51): 18386.
[59]
Benito-González I, López-Rubio A, Gómez-Mascaraque L G, Martínez-Sanz M. Chem. Eng. J., 2020, 390: 124607.
[60]
Korhonen J T, Kettunen M, Ras R H A, Ikkala O. ACS Appl. Mater. Interfaces, 2011, 3(6): 1813.
[61]
Zhao L, Chen J Y, Pan D F, Hou Y. Gels, 2023, 9(6): 467.
[62]
Zhang K, Zhai W X, Cao Z F, Wang Y X, Li L Z, Li J, Liu J Q, Xie Y J, Gan W T. Chem. Eng. J., 2024, 480: 147971.
[63]
Gupta P, Singh B, Agrawal A K, Maji P K. Mater. Des., 2018, 158: 224.
[64]
Song M Y, Jiang J G, Qin H F, Ren X Y, Jiang F. ACS Appl. Mater. Interfaces, 2020, 12(40): 45363.
[65]
Yang L, Mukhopadhyay A, Jiao Y C, Yong Q, Chen L, Xing Y J, Hamel J, Zhu H L. Nanoscale, 2017, 9(32): 11452.
[66]
Luo X L, Shen J Y, Ma Y N, Liu L, Meng R J, Yao J M. Carbohydr. Polym., 2020, 230: 115623.
[67]
Fu J J, He C X, Huang J D, Chen Z L, Wang S Q. RSC Adv., 2016, 6(102): 100326.
[68]
Li T, Zhai Y, He S M, Gan W T, Wei Z Y, Heidarinejad M, Dalgo D, Mi R Y, Zhao X P, Song J W, Dai J Q, Chen C J, Aili A, Vellore A, Martini A, Yang R G, Srebric J, Yin X B, Hu L B. Science, 2019, 364(6442): 760.
[69]
Cai C Y, Sun Y B, Chen Y, Wei Z C, Wang Y B, Chen F L, Cai W Q, Ji J W, Ji Y X, Fu Y. J. Bioresour. Bioprod., 2023, 8(4): 421.
[70]
Cai C Y, Chen W B, Wei Z C, Ding C X, Sun B J, Gerhard C, Fu Y, Zhang K. Nano Energy, 2023, 114: 108625.
[71]
Abraham E, Cherpak V, Senyuk B, ten Hove J B, Lee T, Liu Q K, Smalyukh I I. Nat. Energy, 2023, 8(4): 381.
[72]
Lian M, Ding W, Liu S, Wang Y F, Zhu T Y, Miao Y E, Zhang C, Liu T X. Nano-Micro Lett., 2024, 16: 131.
[73]
Huang H D, Liu C Y, Zhou D, Jiang X, Zhong G J, Yan D X, Li Z M. J. Mater. Chem. A, 2015, 3(9): 4983.
[74]
Shen M X, Qi J L, Xu X Y, Li J B, Xu Y J, Yang H, Gao K, Huang J F, Li J Y, Shang Z, Ni Y H. Small, 2024, 20(12): 2306915.
[75]
Bai Y F, Jia X H, Shan Z Q, Huang C Y, Wang D, Yang J, Pang B, Song H J. Carbohydr. Polym., 2024, 333: 121951.
[76]
Han Z M, Sun W B, Yang K P, Yang H B, Liu Z X, Li D H, Yin C H, Liu H C, Zhao Y X, Ling Z C, Guan Q F, Yu S H. Angew. Chem. Int. Ed., 2023, 62(6): e202211099.
[77]
Peng H L, Wu J N, Wang Y X, Wang H, Liu Z Y, Shi Y L, Guo X H. Appl. Phys. A, 2016, 122(5): 516.
[78]
Gao R N, Xiao S L, Gan W T, Liu Q, Amer H, Rosenau T, Li J, Lu Y. ACS Sustainable Chem. Eng., 2018, 6(7): 9047.
[79]
Chao W X, Sun X H, Li Y D, Cao G L, Wang R P, Wang C Y, Ho S H. ACS Appl. Mater. Interfaces, 2020, 12(19): 22387.
[80]
Wu J F, Cui Z W, Yu Y, Yue B, Hu J D, Qu J F, Li J Z, Tian D, Cai Y H. Adv. Sci., 2023, 10(35): 2305523.
[81]
Qin J J, Chen L, Zhao C H, Lin Q X, Chen S W. J. Mater. Sci., 2017, 52(14): 8455.
[82]
Kobayashi Y, Saito T, Isogai A. Angew. Chem. Int. Ed., 2014, 53(39): 10394.
[83]
Zhao J M, Zhang W L, Liu T, Luo B, Qin Y, Gao C, Yuan J X, Wang S F, Nie S X. Adv. Funct. Mater., 2024, 34(29): 2400476.
[84]
Liu T, Liang R R, He H J, Zeng Y P, Hou Z L, Liu Y H, Yuan J X, Luo B, Zhang S, Cai C C, Wang S F, Lu D J, Nie S X. Nano Energy, 2023, 112: 108480.
[85]
Lyu S Y, Chang H J, Zhang L F, Wang S Q, Li S M, Lu Y, Li S J. Compos. Part B Eng., 2023, 264: 110888.
[86]
Xu T, Song Q, Liu K, Liu H Y, Pan J J, Liu W, Dai L, Zhang M, Wang Y X, Si C L, Du H S, Zhang K. Nano-Micro Lett., 2023, 15: 98.
[87]
Pang H P, Sun P P, Gong H Y, Zhang N, Cao J C, Zhang R H, Luo M F, Li Y, Sun G L, Li Y G, Deng J L, Gao M, Wang M, Kong B. ACS Appl. Mater. Interfaces, 2021, 13(33): 39458.
[88]
Sun J M, Huang J, Lei E, Ma C H, Wu Z W, Xu Z, Luo S, Li W, Liu S X. ACS Sustainable Chem. Eng., 2020, 8(30): 11114.

Funding

National Natural Science Foundation of China(32122058)
National Natural Science Foundation of China(32371797)

Accesses

Citation

Detail

Sections
Recommended

/