Lithium Phosphorus Sulfur Chlorine Sulfide (LPSC) Composite Solid Electrolyte

Yifan Tang, Jutang Hu, Qianying Song, Guichao Kuang, Libao Chen

Prog Chem ›› 2025, Vol. 37 ›› Issue (6) : 858-867.

Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
Prog Chem ›› 2025, Vol. 37 ›› Issue (6) : 858-867. DOI: 10.7536/PC240725
Review

Lithium Phosphorus Sulfur Chlorine Sulfide (LPSC) Composite Solid Electrolyte

Author information +
History +

Abstract

All-solid-state batteries have the characteristics of high energy density, long cycle lifeand high safety, which is the development direction of the next generation of electrochemical energy storage. Solid-state electrolytes are the core components of all-solid-state batteries, and sulfide electrolytes have attracted extensive attention due to their advantages of high ionic conductivity and good mechanical ductility. As one of the most studied sulfide electrolytes in recent years, lithium-phosphorus-sulfur-chloride sulfide (LPSC) has high ionic conductivity and relatively low cost, but its practical application is limited by shortcomings such as poor stability and poor compatibility of positive and negative electrode materials. The composite solid-state electrolyte has good electrochemical and mechanical properties, and the composite solid-state electrolyte is prepared by modifying the LPSC with polymers, aiming to improve the interfacial compatibility and electrochemical stability of the LPSC. In this paper, the basic composition, recombination mode, modification strategy and ion transport mechanism of LPSC composite solid electrolyte are reviewed, and the future research direction and application prospect of LPSC composite electrolyte are prospected.

Contents

1 Introduction

2 Ion transport mechanism in LPSC composite solid electrolyte

3 Classification of LPSC composite solid electrolytes

3.1 LPSC-CSSE based on polymers

3.2 LPSC-CSSE based on sulfides

4 Conclusion and outlook

Key words

composite solid electrolyte / LPSC / all-solid-state batteries / ionic conductivity

Cite this article

Download Citations
Yifan Tang , Jutang Hu , Qianying Song , et al . Lithium Phosphorus Sulfur Chlorine Sulfide (LPSC) Composite Solid Electrolyte[J]. Progress in Chemistry. 2025, 37(6): 858-867 https://doi.org/10.7536/PC240725

References

[1]
Hou J X, Lu L G, Wang L, Ohma A, Ren D S, Feng X N, Li Y, Li Y L, Ootani I, Han X B, Ren W N, He X M, Nitta Y, Ouyang M. Nat. Commun., 2020, 11: 5100.
[2]
Feng X N, Ren D S, He X M, Ouyang M G. Joule, 2020, 4(4): 743.
[3]
Wang J H, Yamada Y, Sodeyama K, Watanabe E, Takada K, Tateyama Y, Yamada A. Nat. Energy, 2018, 3(1): 22.
[4]
Zhou L D, Minafra N, Zeier W G, Nazar L F. Acc. Chem. Res., 2021, 54(12): 2717.
[5]
Janek J, Zeier W G. Nat. Energy, 2023, 8(3): 230.
[6]
Ohno S, Banik A, Dewald G F, Kraft M A, Krauskopf T, Minafra N, Till P, Weiss M, Zeier W G. Prog. Energy, 2020, 2(2): 022001.
[7]
Huo H Y, Luo J, Thangadurai V, Guo X X, Nan C W, Sun X L. ACS Energy Lett., 2020, 5(1): 252.
[8]
Jia M Y, Zhao N, Huo H Y, Guo X X. Electrochem. Energy Rev., 2020, 3(4): 656.
[9]
Liu X Z, Ding L, Liu Y Z, Xiong L P, Chen J, Luo X L. Rare Met., 2021, 40(8): 2301.
[10]
Asano T, Sakai A, Ouchi S, Sakaida M, Miyazaki A, Hasegawa S. Adv. Mater., 2018, 30(44): 1803075.
[11]
Peng L F, Yu C, Zhang Z Q, Ren H T, Zhang J Z, He Z Y, Yu M, Zhang L, Cheng S J, Xie J. Chem. Eng. J., 2022, 430: 132896.
[12]
Zhang Z R. Doctoral Dissertation of Huazhong University of Science and Technology , 2021.
(张卓然. 华中科技大学博士论文, 2021).
[13]
Lu S T, Kosaka F, Shiotani S, Tsukasaki H, Mori S, Otomo J. Solid State Ion., 2021, 362: 115583.
[14]
Liu Z Q, Tang Y F, Wang Y M, Huang F Q. J. Power Sources, 2014, 260: 264.
[15]
Tokuda Y, Uchino T, Yoko T. J.Non Cryst. Solids, 2003, 3301-3: 61.
[16]
Zhao R, Hu G T, Kmiec S, Gebhardt R, Whale A, Wheaton J, Martin S W. ACS Appl. Mater. Interfaces, 2021, 13(23): 26841.
[17]
Itoh K, Sonobe M, Mori K, Sugiyama M, Fukunaga T. Phys. B Condens. Matter, 2006, 385-386: 520.
[18]
Ito Y, Sakuda A, Ohtomo T, Hayashi A, Tatsumisago M. Solid State Ion., 2013, 236: 1.
[19]
Whiteley J M, Woo J H, Hu E Y, Nam K W, Lee S H. J. Electrochem. Soc., 2014, 161(12): A1812.
[20]
Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A. Nat. Mater., 2011, 10(9): 682.
[21]
Bron P, Johansson S, Zick K, Schmedt auf der Günne J, Dehnen S, Roling B. J. Am. Chem. Soc., 2013, 135(42): 15694.
[22]
Deiseroth H J, Kong S T, Eckert H, Vannahme J, Reiner C, Zaiß T, Schlosser M. Angew. Chem. Int. Ed., 2008, 47(4): 755.
[23]
Fu J L, Li Z, Zhou X Y, Guo X. Mater. Adv., 2022, 3(9): 3809.
[24]
Vincent C A. Prog. Solid State Chem., 1987, 17(3): 145.
[25]
Zheng J, Tang M X, Hu Y Y. Angew. Chem. Int. Ed., 2016, 55(40): 12538.
[26]
Xu S J, Sun Z H, Sun C G, Li F, Chen K, Zhang Z H, Hou G J, Cheng H M, Li F. Adv. Funct. Mater., 2020, 30(51): 2007172.
[27]
Zhang Z H, Wu L P, Zhou D, Weng W, Yao X Y. Nano Lett., 2021, 21(12): 5233.
[28]
Wang C H, Yu R Z, Duan H, Lu Q W, Li Q Z, Adair K R, Bao D N, Liu Y, Yang R, Wang J T, Zhao S Q, Huang H, Sun X L. ACS Energy Lett., 2022, 7(1): 410.
[29]
Li D B, Liu H, Wang C, Yan C, Zhang Q, Nan C W, Fan L Z. Adv. Funct. Mater., 2024, 34(27): 2315555.
[30]
Hu L, Ren Y L, Wang C W, Li J D, Wang Z H, Sun F, Ju J W, Ma J, Han P X, Dong S M, Cui G L. Adv. Mater., 2024, 36(29): 2401909.
[31]
Nam Y J, Cho S J, Oh D Y, Lim J M, Kim S Y, Song J H, Lee Y G, Lee S Y, Jung Y S. Nano Lett., 2015, 15(5): 3317.
[32]
Zhu G L, Zhao C Z, Peng H J, Yuan H, Hu J K, Nan H X, Lu Y, Liu X Y, Huang J Q, He C X, Zhang J, Zhang Q. Adv. Funct. Mater., 2021, 31(32): 2101985.
[33]
Cao D X, Li Q, Sun X, Wang Y, Zhao X H, Cakmak E, Liang W T, Anderson A, Ozcan S, Zhu H L. Adv. Mater., 2021, 33(52): 2105505.
[34]
Kim D H, Lee Y H, Song Y B, Kwak H, Lee S Y, Jung Y S. ACS Energy Lett., 2020, 5(3): 718.
[35]
Liu S J, Zhou L, Han J, Wen K H, Guan S D, Xue C J, Zhang Z, Xu B, Lin Y H, Shen Y, Li L L, Nan C W. Adv. Energy Mater., 2022, 12(25): 2200660.
[36]
Wang Y T, Ju J W, Dong S M, Yan Y Y, Jiang F, Cui L F, Wang Q L, Han X Q, Cui G L. Adv. Funct. Mater., 2021, 31(28): 2101523.
[37]
Liu G Z, Shi J M, Zhu M T, Weng W, Shen L, Yang J, Yao X Y. Energy Storage Mater., 2021, 38: 249.
[38]
Serbessa G G, Taklu B W, Nikodimos Y, Temesgen N T, Muche Z B, Merso S K, Yeh T I, Liu Y J, Liao W S, Wang C H, Wu S H, Su W N, Yang C C, Hwang B J. ACS Appl. Mater. Interfaces, 2024, 16(8): 10832.
[39]
Li R, Chen N, Liu S N, Mao Y Q, Liao Z Q, Qiu K, Wang P B, Zhang T S, Hao S, Zhu G L, Guo C L, Liu X, Ren D S, Lu L G, Ouyang M G. Adv. Funct. Mater., 2024, 34(49): 2409403.
[40]
Yang X F, Gao X J, Jiang M, Luo J, Yan J T, Fu J M, Duan H, Zhao S Q, Tang Y F, Yang R, Li R Y, Wang J T, Huang H, Veer Singh C, Sun X L. Angew. Chem. Int. Ed., 2023, 62(5): e202215680.
[41]
Li D B, Cao L Y, Liu C D, Cao G Q, Hu J H, Chen J B, Shao G S. Appl. Surf. Sci., 2019, 493: 1326.
[42]
Martin T R, Teeter G, Jiang C S, Park K. Batter. Supercaps, 2023, 6(10): e202300255.

Funding

National Natural Science Foundation of China(U1904216)
National Natural Science Foundation of China(52473204)
Natural Science Foundation of Hunan Province(2023JJ50012)

Accesses

Citation

Detail

Sections
Recommended

/