Study and Applications of Two-Dimensional Nanochannel Ion Sieving Membranes

Jianyu Wang, Shuai Wang, Chuanjie Fang, Baoku Zhu, Liping Zhu

Prog Chem ›› 2025, Vol. 37 ›› Issue (4) : 564-574.

PDF(4596 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(4596 KB)
Prog Chem ›› 2025, Vol. 37 ›› Issue (4) : 564-574. DOI: 10.7536/PC240802
Review

Study and Applications of Two-Dimensional Nanochannel Ion Sieving Membranes

Author information +
History +

Abstract

Two-dimensional nanochannel membrane is a new membrane composed of two-dimensional nanosheets with atomic layer thickness and stacked by self-assembly. Compared with traditional separation membranes,its ion separation behavior has many unique characteristics,and has important potential applications in seawater desalination,energy storage and conversion,rare element extraction and separation,and other fields. These materials have attracted great interest and wide attention from researchers. It has become an important development direction and research hotspot in the field of membrane separation science and technology in recent years. In this paper,the construction strategy,performance evaluation method and mass transfer mechanism of two-dimensional nanochannel membranes were systematically summarized from the perspective of two-dimensional nanochannel membranes used for accurate ion sieving. The latest research progress in the preparation and application of two-dimensional nanochannel membranes in recent years was reviewed,and the development trend was prospected. We hope this review can provide enlightenment for structure design and optimization,performance enhancement,large-scale preparation and engineering applications of two-dimensional nanochannel membranes in the future.

Contents

1 Introduction

2 Two-dimensional nanochannel ion sieving membrane and its construction methods

2.1 Two-dimensional nanochannel ion screening membrane

2.2 Construction method of 2D nanochannel ion sieving membrane

2.3 Characterization of structure and evaluation of properties of two-dimensional nanochannel ion sieving membranes

3 Mass transfer mechanism in two-dimensional nanochannels

3.1 Mass transfer mechanism of solvent in two-dimensional channels

3.2 Mass transfer mechanism of ions in two-dimensional channels

4 Application of two-dimensional nanochannel ion sieving membrane

4.1 Desalination of seawater

4.2 Energy conversion and storage

4.3 Extraction and separation of elements

5 Conclusion and outlook

Key words

two-dimensional materials / two-dimensional nanochannels / ion sieving / ion transport

Cite this article

Download Citations
Jianyu Wang , Shuai Wang , Chuanjie Fang , et al . Study and Applications of Two-Dimensional Nanochannel Ion Sieving Membranes[J]. Progress in Chemistry. 2025, 37(4): 564-574 https://doi.org/10.7536/PC240802

References

[1]
Siria A, Bocquet M L, Bocquet L. Nat. Rev. Chem., 2017, 1: 0091.
[2]
Kuo H C, Cheng C F, Clark R B, Lin J J, Lin J L, Hoshijima M, Nguyêñ-Trân V T B, Gu Y S, Ikeda Y, Chu P H, Ross J Jr, Giles W R, Chien K R. Cell, 2001, 107(6): 801.
[3]
Alvarez P J J, Chan C K, Elimelech M, Halas N J, Villagrán D. Nat. Nanotechnol., 2018, 13(8): 634.
[4]
Kang Y, Xia Y, Wang H T, Zhang X W. Adv. Funct. Mater., 2019, 29(29): 1902014.
[5]
Andreeva D V, Trushin M, Nikitina A, Costa M C F, Cherepanov P V, Holwill M, Chen S Y, Yang K, Chee S W, Mirsaidov U, Castro Neto A H, Novoselov K S. Nat. Nanotechnol., 2021, 16(2): 174.
[6]
Sholl D S, Lively R P. Nature, 2016, 532(7600): 435.
[7]
Van der Bruggen B, Vandecasteele C. Desalination, 2002, 143(3): 207.
[8]
Gin D L, Noble R D. Science, 2011, 332(6030): 674.
[9]
Wang S F, Yang L X, He G W, Shi B B, Li Y F, Wu H, Zhang R N, Nunes S, Jiang Z Y. Chem. Soc. Rev., 2020, 49(4): 1071.
[10]
Nie L N, Goh K, Wang Y, Lee J, Huang Y J, Karahan H E, Zhou K, Guiver M D, Bae T H. Sci. Adv., 2020, 6(17): eaaz9184.
[11]
Novoselov K S, Geim A K, Morozov S V. Science, 2004, 306: 666.
[12]
Wang J, Zho H, Li S. Angew. Chem. Inter. Edi., 2023, 62: e202218321.
[13]
Nair R R, Wu H A, Jayaram P N, Grigorieva I V, Geim A K. Science, 2012, 335(6067): 442.
[14]
Han D, Dong X Y, Yu G L, Gao T T, Zhou K G. Adv. Membr., 2022, 2: 100045.
[15]
Tsou CH, An QF, Lo SC. J. Membr. Sci., 2015, 477: 93.
[16]
Tian M, Wang L, Wang J. ACS Sustain. Chem. Eng., 2022, 10(3): 1137.
[17]
Liao F, Xu Z, Fan Z. J. Mat. Chem. A, 2021, 9: 12236.
[18]
Shen J, Liu G P, Huang K, Chu Z Y, Jin W Q, Xu N P. ACS Nano, 2016, 10(3): 3398.
[19]
Akbari A, Sheath P, Martin S T. Nat. Commu., 2016, 7: 10891.
[20]
Huang L Z, Wu H Y, Ding L, Caro J, Wang H H. Angew. Chem. Int. Ed., 2024, 63(6): e202314638.
[21]
Deng J J, Lu Z, Ding L, Li Z K, Wei Y Y, Caro J, Wang H H. Chem. Eng. J., 2021, 408: 127806.
[22]
Wang S F, Yang L X, He G W, Shi B B, Li Y F, Wu H, Zhang R N, Nunes S, Jiang Z Y. Chem. Soc. Rev., 2020, 49(4): 1071.
[23]
Wang S, Liang S S, Chen L, Fang H P. Desalination, 2022, 528: 115601.
[24]
Liu J F, Wang S, Yang R J, Li L, Liang S S, Chen L. J. Membr. Sci., 2022, 659: 120745.
[25]
Lu Z, Wu Y, Ding L, Wei Y Y, Wang H H. Angew. Chem. Int. Ed., 2021, 60(41): 22265.
[26]
Wang S, Liang S S. Sep. Purif. Technol., 2024, 328: 125086.
[27]
Xu R M, Kang Y, Zhang W M, Pan B C, Zhang X W. Nat. Commun., 2023, 14: 4907.
[28]
Joshi R K, Carbone P, Wang F C. Science, 2014, 343: 752.
[29]
Goh K, Jiang W, Karahan H E. Adv. Fun. Mat., 2015, 25: 7348.
[30]
Wang Z Y, Tu Q S, Zheng S X, Urban J J, Li S F, Mi B X. Nano Lett., 2017, 17(12): 7289.
[31]
Wang Y, Li L, Wei Y. Angew. Chem. Inter. Edi., 2017, 56: 8974.
[32]
Boukhvalov D W, Katsnelson M I, Son Y W. Nano Lett., 2013, 13(8): 3930.
[33]
Wang F C, Zhu Y B, Wu H A. Sci. China Phys. Mech. Astron. 2018, 48(9): 117.
(王奉超, 朱银波, 吴恒安. 中国科学: 物理学力学天文学, 2018, 48(9): 117.).
[34]
Ries L, Petit E, Michel T. Nat. Mat., 2019, 18: 1112.
[35]
Kim S, Choi H, Kim B, Lim G, Kim T, Lee M, Ra H, Yeom J, Kim M, Kim E, Hwang J, Lee J S, Shim W. Adv. Mater., 2023, 35(43): 2206354.
[36]
Algara-Siller G, Lehtinen O, Wang F C, Nair R R, Kaiser U, Wu H A, Geim A K, Grigorieva I V. Nature, 2015, 519(7544): 443.
[37]
Kwac K, Kim I, Pascal T A, Goddard W A, Park H G, Jung Y. J. Phys. Chem. C, 2017, 121(29): 16021.
[38]
Wen X Y, Foller T, Jin X H, Musso T, Kumar P, Joshi R. Nat. Commun., 2022, 13: 5690.
[39]
Zheng S X, Tu Q S, Urban J J, Li S F, Mi B X. ACS Nano, 2017, 11(6): 6440.
[40]
Razmjou A, Asadnia M, Hosseini E, Habibnejad Korayem A, Chen V. Nat. Commun., 2019, 10: 5793.
[41]
Richards L A, Schäfer A I, Richards B S, Corry B. Small, 2012, 8(11): 1701.
[42]
Corry B. MRS Bull., 2017, 42(4): 306.
[43]
He Z J, Zhou J, Lu X H, Corry B. ACS Nano, 2013, 7(11): 10148.
[44]
Hirunpinyopas W, Iamprasertkun P, Bissett M A, Dryfe R A W. Carbon, 2020, 156: 119.
[45]
Shen J, Liu G P, Han Y, Jin W Q. Nat. Rev. Mater., 2021, 6(4): 294.
[46]
Cheng C, Jiang G P, Simon G P, Liu J Z, Li D. Nat. Nanotechnol., 2018, 13(8): 685.
[47]
Kang Y, Xia Y, Wang H T, Zhang X W. Adv. Funct. Mater., 2019, 29(29): 1902014.
[48]
van der Vegt N F A, Haldrup K, Roke S, Zheng J R, Lund M, Bakker H J. Chem. Rev., 2016, 116(13): 7626.
[49]
Chen C C, Wu X L, Chen J J, Liu S Y, Wang Y Z, Wu W J, Zhang J, Wang J T, Jiang Z Y. Angew. Chem. Int. Ed., 2024, 63(29): e202406113.
[50]
Mouterde T, Keerthi A, Poggioli A R, Dar S A, Siria A, Geim A K, Bocquet L, Radha B. Nature, 2019, 567(7746): 87.
[51]
Esfandiar A, Radha B, Wang F C, Yang Q, Hu S, Garaj S, Nair R R, Geim A K, Gopinadhan K. Science, 2017, 358(6362): 511.
[52]
Sun P Z, Zhu M, Wang K L, Zhong M L, Wei J Q, Wu D H, Xu Z P, Zhu H W. ACS Nano, 2013, 7(1): 428.
[53]
Williams C D, Dix J, Troisi A, Carbone P. J. Phys. Chem. Lett., 2017, 8(3): 703.
[54]
Ai K L, Ruan C P, Shen M X, Lu L H. Adv. Funct. Mater., 2016, 26(30): 5542.
[55]
Lv Y J, Dong L, Cheng L Y, Gao T Y, Wu C, Chen X, He T, Cui Y Y, Liu W. ACS Appl. Mater. Interfaces, 2023, 15(39): 46261.
[56]
Chen J J, Liu X, Ding Z L, He Z L, Jiang H X, Zhu K Y, Li Y Z, Shi G S. Nano Lett., 2023, 23(23): 10884.
[57]
Chen H L, Liu X, Gong D, Zhu C, Liu G J, Fan J R, Wu P, Li Z, Pan Y C, Shi G S, Sun Y H, Zeng G F. Nat. Water, 2023, 1(9): 800.
[58]
Wang M D, Zhang P H, Liang X, Zhao J Y, Liu Y W, Cao Y, Wang H J, Chen Y, Zhang Z M, Pan F S, Zhang Z J, Jiang Z Y. Nat. Sustain., 2022, 5(6): 518.
[59]
Hu S, Lozada-Hidalgo M, Wang F C, Mishchenko A, Schedin F, Nair R R, Hill E W, Boukhvalov D W, Katsnelson M I, Dryfe R A W, Grigorieva I V, Wu H A, Geim A K. Nature, 2014, 516(7530): 227.
[60]
Karnik R N. Nature, 2014, 516(7530): 173.
[61]
He G, Chang C, Xu M. Adv. Fun. Mat., 2016, 25: 7502.
[62]
He G W, Xu M Z, Zhao J, Jiang S T, Wang S F, Li Z, He X Y, Huang T, Cao M Y, Wu H, Guiver M D, Jiang Z Y. Adv. Mater., 2017, 29(28): 1605898.
[63]
Qin S, Liu D, Wang G, Portehault D, Garvey C J, Gogotsi Y, Lei W W, Chen Y. J. Am. Chem. Soc., 2017, 139(18): 6314.
[64]
Huang J Q, Zhuang T Z, Zhang Q, Peng H J, Chen C M, Wei F. ACS Nano, 2015, 9(3): 3002.
[65]
Sun J, Sun Y M, Pasta M, Zhou G M, Li Y Z, Liu W, Xiong F, Cui Y. Adv. Mater., 2016, 28(44): 9797.
[66]
Wang J, Cui Z, Li S Z, Song Z Y, He M L, Huang D X, Feng Y, Liu Y Z, Zhou K, Wang X D, Wang L. Nat. Commun., 2024, 15: 608.
[67]
Ding L, Zheng M T, Xiao D, Zhao Z H, Xue J, Zhang S Q, Caro J, Wang H H. Angew. Chem. Int. Ed., 2022, 61(41): e202284162.
[68]
Shi C L, Jing Y, Jia Y Z. J. Mol. Liq., 2016, 215: 640.
[69]
Lv Y J, Dai Z Q, Chen Y, Lu Y, Zhang X S, Yu J M, Zhai W B, Yu Y, Wen Z Y, Cui Y Y, Liu W. Nano Lett., 2024, 24(9): 2782.
[70]
Wang S, Zhu L Y, Yang R J, Li M L, Dai F F, Sheng S Q, Chen L, Liang S S. J. Phys. Chem. C, 2023, 127(14): 6981.
[71]
Wu T, Wang Z, Lu Y, Liu S, Li H, Ye G, Chen J. Adv. Sci., 2021, 8: 2002717.
[72]
Liang J, Zhang X, Li H D, Wen C X, Tian L L, Chen X M, Li Z. Adv. Mater., 2024, 36(30): 2470240.

Funding

Foundation Research Project of Kaili University(2025ZD007)
National Natural Science Foundation of China(U21A20302)
PDF(4596 KB)

Accesses

Citation

Detail

Sections
Recommended

/